1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Diffusion of n-type dopants in germanium
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4838215
1.
1. C. Claeys and E. Simoen, Germanium-Based Technologies: From Materials to Devices (Elsevier, 2007).
2.
2. G. Impellizzeri, S. Boninelli, F. Priolo, E. Napolitani, C. Spinella, A. Chroneos, and H. Bracht, J. Appl. Phys. 109, 113527 (2011).
http://dx.doi.org/10.1063/1.3592962
3.
3. N. A. Stolwijk and H. Bracht, Diffusion in Silicon, Germanium and their Alloys, Landolt-Börnstein New Series Vol. III/33, Subvolume A (Springer, New York, 1998);
3. H. Bracht and N. A. Stolwijk, Solubility in Silicon and Germanium, Landolt-Börnstein New Series Vol. III/41, Subvolume A2α (Springer, New York, 2002).
4.
4. H. Bracht and S. Brotzmann, Mater. Sci. Semicond. Process. 9, 471 (2006);
http://dx.doi.org/10.1016/j.mssp.2006.08.041
4. H. H. Silvestri, H. Bracht, J. L. Hansen, A. N. Larsen, and E. E. Haller, Semicond. Sci. Technol. 21, 758 (2006).
http://dx.doi.org/10.1088/0268-1242/21/6/008
5.
5. A. Chroneos, R. W. Grimes, and C. Tsamis, Mater. Sci. Semicond. Process. 9, 536 (2006).
http://dx.doi.org/10.1016/j.mssp.2006.08.059
6.
6. H. M. Pinto, J. Coutinho, V. J. B. Torres, S. Öberg, and P. R. Briddon, Mater. Sci. Semicond. Process. 9, 498 (2006).
http://dx.doi.org/10.1016/j.mssp.2006.08.045
7.
7. P. Tsouroutas, D. Tsoukalas, A. Florakis, I. Zergioti, A. A. Serafetinides, N. N. Cherkashin, B. Marty, and A. Claverie, Mater. Sci. Semicond. Process. 9, 644 (2006).
http://dx.doi.org/10.1016/j.mssp.2006.08.013
8.
8. A. Chroneos, D. Skarlatos, C. Tsamis, A. Christofi, D. S. McPhail, and R. Hung, Mater. Sci. Semicond. Process. 9, 640 (2006);
http://dx.doi.org/10.1016/j.mssp.2006.10.001
8. A. Chroneos, Phys. Status Solidi B 244, 3206 (2007);
http://dx.doi.org/10.1002/pssb.v244:9
8. H. Tahini, A. Chroneos, R. W. Grimes, U. Schwingenschlögl, and A. Dimoulas, J. Phys. Condens. Matter 24, 195802 (2012).
http://dx.doi.org/10.1088/0953-8984/24/19/195802
9.
9. E. E. Haller, Mater. Sci. Semicond. Process. 9, 408 (2006).
http://dx.doi.org/10.1016/j.mssp.2006.08.063
10.
10. C. Janke, R. Jones, J. Coutinho, S. Öberg, and P. R. Briddon, Phys. Rev. B 77, 195210 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195210
11.
11. A. Chroneos, H. Bracht, R. W. Grimes, and B. P. Uberuaga, Mater. Sci. Eng., B 154–155, 72 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.08.005
12.
12. M. Naganawa, Y. Shimizu, M. Uematsu, K. M. Itoh, K. Sawano, Y. Shiraki, and E. E. Haller, Appl. Phys. Lett. 93, 191905 (2008).
http://dx.doi.org/10.1063/1.3025892
13.
13. S. Schneider, H. Bracht, M. C. Petersen, J. Lundsgaard Hansen, and A. Nylandsted Larsen, J. Appl. Phys. 103, 033517 (2008).
http://dx.doi.org/10.1063/1.2838206
14.
14. E. Hüger, U. Tietze, D. Lott, H. Bracht, D. Bougeard, E. E. Haller, and H. Schmidt, Appl. Phys. Lett. 93, 162104 (2008).
http://dx.doi.org/10.1063/1.3002294
15.
15. A. Chroneos, H. Bracht, C. Jiang, B. P. Uberuaga, and R. W. Grimes, Phys. Rev. B 78, 195201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195201
16.
16. P. Tsouroutas, D. Tsoukalas, and H. Bracht, J. Appl. Phys. 108, 024903 (2010).
http://dx.doi.org/10.1063/1.3456998
17.
17. A. Chroneos, J. Appl. Phys. 105, 056101 (2009).
http://dx.doi.org/10.1063/1.3086664
18.
18. E. Bruno, S. Mirabella, G. Scapellato, G. Impellizzeri, A. Terrasi, F. Priolo, E. Napolitani, D. De Salvador, M. Mastromatteo, and A. Carnera, Phys. Rev. B 80, 033204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.033204
19.
19. A. Chroneos, C. Jiang, R. W. Grimes, U. Schwingenschlögl, and H. Bracht, Appl. Phys. Lett. 94, 252104 (2009);
http://dx.doi.org/10.1063/1.3159468
19. J. J. Pullikotil, A. Chroneos, and U. Schwingenschlögl, J. Appl. Phys. 110, 036105 (2011).
http://dx.doi.org/10.1063/1.3618671
20.
20. S. Decoster, B. De Vries, U. Wahl, J. G. Correia, and A. Vantomme, J. Appl. Phys. 105, 083522 (2009).
http://dx.doi.org/10.1063/1.3110104
21.
21. J. Oh and J. C. Cambell, Mater. Sci. Semicond. Process. 13, 185 (2010).
http://dx.doi.org/10.1016/j.mssp.2010.10.009
22.
22. M. Werner, H. Mehrer, and H. D. Hochheimer, Phys. Rev. B 32, 3930 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.3930
23.
23. A. J. R. da Silva, A. Janotti, A. Fazzio, R. J. Baierle, and R. Mota, Phys. Rev. B 62, 9903 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.9903
24.
24. R. A. Logan, Phys. Rev. 101, 1455 (1956).
http://dx.doi.org/10.1103/PhysRev.101.1455
25.
25. A. Giese, N. A. Stolwijk, and H. Bracht, Appl. Phys. Lett. 77, 642 (2000).
http://dx.doi.org/10.1063/1.127071
26.
26. J. Vanhellemont, P. Spiewak, and K. Sueoka, J. Appl. Phys. 101, 036103 (2007).
http://dx.doi.org/10.1063/1.2429718
27.
27. H. Bracht and A. Chroneos, J. Appl. Phys. 104, 076108 (2008).
http://dx.doi.org/10.1063/1.2996284
28.
28. N. A. Stolwijk and L. Lerner, J. Appl. Phys. 110, 033526 (2011).
http://dx.doi.org/10.1063/1.3609070
29.
29. J. A. Van Vechten, Phys. Rev. B 33, 2674 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.2674
30.
30. J. Coutinho, R. Jones, P. R. Briddon, and S. Öberg, Phys. Rev. B 62, 10824 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10824
31.
31. A. Chroneos and C. A. Londos, J. Appl. Phys. 107, 093518 (2010).
http://dx.doi.org/10.1063/1.3409888
32.
32. A. Chroneos, C. A. Londos, and H. Bracht, Mater. Sci. Eng. B 176, 453 (2011).
http://dx.doi.org/10.1016/j.mseb.2011.01.004
33.
33. A. Chroneos, R. W. Grimes, and H. Bracht, J. Appl. Phys. 105, 016102 (2009);
http://dx.doi.org/10.1063/1.3056387
33. A. Chroneos, J. Appl. Phys. 107, 076102 (2010);
http://dx.doi.org/10.1063/1.3361115
33. A. Chroneos, C. A. Londos, and E. N. Sgourou, J. Appl. Phys. 110, 093507 (2011).
http://dx.doi.org/10.1063/1.3658261
34.
34. H. Wang, A. Chroneos, C. A. Londos, E. N. Sgourou, and U. Schwingenschlögl, Appl. Phys. Lett. 103, 052101 (2013).
http://dx.doi.org/10.1063/1.4817012
35.
35. H. Haesslein, R. Sielemann, and C. Zistl, Phys. Rev. Lett. 80, 2626 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2626
36.
36. S. Brotzmann, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. Simoen, E. E. Haller, J. S. Christensen, and P. Werner, Phys. Rev. B 77, 235207 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235207
37.
37. A. Chroneos, H. Bracht, R. W. Grimes, and B. P. Uberuaga, Appl. Phys. Lett. 92, 172103 (2008).
http://dx.doi.org/10.1063/1.2918842
38.
38. C. Janke, R. Jones, S. Öberg, and P. R. Briddon, J. Mater. Sci.: Mater. Electron. 18, 775 (2007).
http://dx.doi.org/10.1007/s10854-006-9071-x
39.
39. A. Chroneos, B. P. Uberuaga, and R. W. Grimes, J. Appl. Phys. 102, 083707 (2007).
http://dx.doi.org/10.1063/1.2798875
40.
40. S. Uppal, A. F. W. Willoughby, J. M. Bonar, A. G. R. Evans, N. E. B. Cowern, R. Morris, and M. G. Dowsett, J. Appl. Phys. 90, 4293 (2001).
http://dx.doi.org/10.1063/1.1402664
41.
41. C. O. Chui, K. Gopalakrishnan, P. B. Griffin, J. D. Plummer, and K. C. Saraswat, Appl. Phys. Lett. 83, 3275 (2003).
http://dx.doi.org/10.1063/1.1618382
42.
42. P. Dorner, W. Gust, A. Lodding, H. Odelius, and B. Predel, Acta Metall. 30, 941 (1982).
http://dx.doi.org/10.1016/0001-6160(82)90200-0
43.
43. P. Dorner, W. Gust, A. Lodding, H. Odelius, B. Predel, and U. Roll, Z. Metallkd. 73, 325 (1982).
44.
44. U. Södervall, H. Odelius, A. Lodding, U. Roll, B. Predel, W. Gust, and P. Dorner, Philos. Mag. A 54, 539 (1986).
http://dx.doi.org/10.1080/01418618608243611
45.
45. R. Kube, H. Bracht, A. Chroneos, M. Posselt, and B. Schmidt, J. Appl. Phys. 106, 063534 (2009).
http://dx.doi.org/10.1063/1.3226860
46.
46. A. Chroneos, R. Kube, H. Bracht, R. W. Grimes, and U. Schwingenschlögl, Chem. Phys. Lett. 490, 38 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.03.005
47.
47. S. Brotzmann and H. Bracht, J. Appl. Phys. 103, 033508 (2008).
http://dx.doi.org/10.1063/1.2837103
48.
48. A. Chroneos, R. W. Grimes, B. P. Uberuaga, and H. Bracht, Phys. Rev. B 77, 235208 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235208
49.
49. H. Tahini, A. Chroneos, R. W. Grimes, U. Schwingenschlögl, and H. Bracht, Appl. Phys. Lett. 99, 072112 (2011).
http://dx.doi.org/10.1063/1.3625939
50.
50. H. Letaw, Jr., W. M. Portnoy, and L. Slifkin, Phys. Rev. 102, 636 (1956).
http://dx.doi.org/10.1103/PhysRev.102.636
51.
51. M. W. Valenta and C. Ramasastry, Phys. Rev. 106, 73 (1957).
http://dx.doi.org/10.1103/PhysRev.106.73
52.
52. N. A. Stolwijk, W. Frank, J. Hölzl, S. J. Pearton, and E. E. Haller, J. Appl. Phys. 57, 5211 (1985).
http://dx.doi.org/10.1063/1.335259
53.
53. H. Bracht, N. A. Stolwijk, and H. Mehrer, Phys. Rev. B 43, 14465 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.14465
54.
54. H. Bracht, Mater. Sci. Semicond. Process. 7, 113 (2004).
http://dx.doi.org/10.1016/j.mssp.2004.06.001
55.
55. H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.393
56.
56. Y. Shimizu, M. Uematsu, and K. M. Itoh, Phys. Rev. Lett. 98, 095901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.095901
57.
57. R. Kube, H. Bracht, E. Hüger, H. Schmidt, J. Lundsgaard Hansen, A. Nylandsted Larsen, J. W. Ager III, E. E. Haller, T. Geue, and J. Stahn, Phys. Rev. B 88, 085206 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085206
58.
58. A. Seeger and K. P. Chik, Phys. Status Solidi 29, 455 (1968).
http://dx.doi.org/10.1002/pssb.19680290202
59.
59. N. E. B. Cowern, S. Simdyankin, C. Ahn, N. S. Bennett, J. P. Goss, J.-M. Hartmann, A. Pakfar, S. Hamm, J. Valentin, E. Napolitani, D. De Salvador, E. Bruno, and S. Mirabella, Phys. Rev. Lett. 110, 155501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.155501
60.
60. T. Südkamp, H. Bracht, G. Impellizzeri, J. Lundsgaard Hansen, A. Nylandsted Larsen, and E. E. Haller, Appl. Phys. Lett. 102, 242103 (2013).
http://dx.doi.org/10.1063/1.4811442
61.
61. A. Mesli, L. Dobaczewski, K. Bonde Nielsen, Vl. Kolkovsky, M. Christian Petersen, and A. Nylandsted Larsen, Phys. Rev. B 78, 165202 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.165202
62.
62. J. Coutinho, R. Jones, V. J. B. Torres, M. Barroso, S. Öberg, and P. R. Briddon, J. Phys.: Condens. Matter 17, L521 (2005).
http://dx.doi.org/10.1088/0953-8984/17/48/L02
63.
63. A. Satta, E. Simoen, T. Janssens, T. Clarysse, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, and W. Vandervorst, J. Electrochem. Soc. 153, G229 (2006);
http://dx.doi.org/10.1149/1.2162469
63. S. Satta, T. Janssens, T. Clarysse, E. Simoen, M. Meuris, A. Benedetti, I. Hoflijk, B. De Jaeger, C. Demeurisseand, and W. Vandervorst, J. Vac. Sci. Technol. B 24, 494 (2006).
http://dx.doi.org/10.1116/1.2162565
64.
64. M. Posselt, B. Schmidt, W. Anwand, R. Grötzschel, V. Heera, A. Mücklich, H. Hortenbach, S. Gennaro, M. Bersani, D. Giubertoni, A. Möller, and H. Bracht, J. Vac. Sci. Technol. B 26, 430 (2008).
http://dx.doi.org/10.1116/1.2805249
65.
65. B. C. Johnson, P. Gortmaker, and J. C. McCallum, Phys. Rev. B 77, 214109 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214109
66.
66. S. Koffel, N. Cherkashin, F. Houdellier, M. J. Hytch, G. Benassayag, P. Scheiblin, and A. Claverie, J. Appl. Phys. 105, 126110 (2009).
http://dx.doi.org/10.1063/1.3153985
67.
67. S. Mayburg, Phys. Rev. 95, 38 (1954).
http://dx.doi.org/10.1103/PhysRev.95.38
68.
68. J. A. Hiraki, J. Phys. Soc. Jpn. 21, 34 (1966).
http://dx.doi.org/10.1143/JPSJ.21.34
69.
69. D. Shaw, Phys. Status Solidi B 72, 11 (1975).
http://dx.doi.org/10.1002/pssb.2220720102
70.
70. M. Dionízio Moreira, R. H. Miwa, and P. Venezuela, Phys. Rev. B 70, 115215 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115215
71.
71. A. Carvalho, R. Jones, C. Janke, J. P. Goss, P. R. Briddon, J. Coutinho, and S. Öberg, Phys. Rev. Lett. 99, 175502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.175502
72.
72. S. Schneider, H. Bracht, J. N. Klug, J. Lundsgaard Hansen, A. Nylandsted Larsen, D. Bougeard, and E. E. Haller, Phys. Rev. B 87, 115202 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115202
73.
73. H. Bracht, Phys. Rev. B 75, 035210 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035210
74.
74. F. C. Frank and D. Turnbull, Phys. Rev. 104, 617 (1956).
http://dx.doi.org/10.1103/PhysRev.104.617
75.
75. L. Pelaz, M. Jaraiz, G. H. Gilmer, H.-J. Gossmann, C. S. Rafferty, D. J. Eaglesham, and J. M. Poate, Appl. Phys. Lett. 70, 2285 (1997).
http://dx.doi.org/10.1063/1.118839
76.
76. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraíz, J. M. Poate, H. S. Luftman, and T. E. Haynes, J. Appl. Phys. 81, 6031 (1997).
http://dx.doi.org/10.1063/1.364452
77.
77. P. Pichler, in Silicon Front-End Junction Formation Technologies, edited by Daniel F. Downey, Mark E. Law, Alain Claverie, Michael J. Rendon (Mater. Res. Soc. Symp. Proc., 2002), Vol. 717, p. C3.1.1.
78.
78. H. Bracht, H. H. Silvestri, I. D. Sharp, and E. E. Haller, Phys. Rev. B 75, 035211 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035211
79.
79. E. Vainonen-Ahlgren, T. Ahlgren, J. Likonen, S. Lehto, J. Keinonen, W. Li, and J. Haapamaa, Appl. Phys. Lett. 77, 690 (2000).
http://dx.doi.org/10.1063/1.127087
80.
80. P. Tsouroutas, D. Tsoukalas, I. Zergioti, N. Cherkashin, and A. Claverie, J. Appl. Phys. 105, 094910 (2009).
http://dx.doi.org/10.1063/1.3117485
81.
81. D. P. Brunco, B. De Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta, V. Terzieva, L. Souriau, F. E. Leys, G. Pourtois, M. Houssa, G. Winderickx, E. Vrancken, S. Sioncke, K. Opsomer, G. Nicholas, M. Caymax, A. Stesmans, J. Van Steenbergen, P. W. Mertens, M. Meuris, and M. M. Heyns, J. Electrochem. Soc. 155, H552 (2008).
http://dx.doi.org/10.1149/1.2919115
82.
82. T. Canneaux, D. Mathiot, J.-P. Ponpon, and Y. Leroy, Thin Solid Films 518, 2394 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.09.171
83.
83. M. S. Carroll and R. Koudelka, Semicond. Sci. Technol. 22, S164 (2007).
http://dx.doi.org/10.1088/0268-1242/22/1/S39
84.
84. Y. Cai, R. Camacho-Aguilera, J. T. Bessette, L. C. Kimerling, and J. Michel, J. Appl. Phys. 112, 034509 (2012).
http://dx.doi.org/10.1063/1.4745020
85.
85. I. Riihimäki, A. Virtanen, S. Rinta-Anttila, P. Pusa, J. Räisänen, and ISOLDE Collaboration, Appl. Phys. Lett. 91, 091922 (2007).
http://dx.doi.org/10.1063/1.2778540
86.
86. S. Uppal, A. F. W. Willoughby, J. M. Bonar, N. E. B. Cowern, T. Grasby, R. J. H. Morris, and M. G. Dowsett, J. Appl. Phys. 96, 1376 (2004).
http://dx.doi.org/10.1063/1.1766090
87.
87. S. Mirabella, D. De Salvador, E. Napolitani, E. Bruno, and F. Priolo, J. Appl. Phys. 113, 031101 (2013).
http://dx.doi.org/10.1063/1.4763353
88.
88. C. Wündisch, M. Posselt, B. Schmidt, V. Heera, T. Schumann, A. Mücklich, R. Grötzschel, W. Skorupa, T. Clarysse, E. Simoen, and H. Hortenbach, Appl. Phys. Lett. 95, 252107 (2009).
http://dx.doi.org/10.1063/1.3276770
89.
89. G. Hellings, E. Rosseel, E. Simoen, D. Radisic, D. H. Petersen, O. Hansen, P. F. Nielsen, G. Zschatzsch, A. Nazir, T. Clarysse, W. Vandervorst, T. Y. Hoffmann, and K. De Meyer, Electrochem. Solid-State Lett. 14, H39 (2011);
http://dx.doi.org/10.1149/1.3512990
89. E. Bruno, G. G. Scapellato, G. Bisognin, E. Carria, L. Romano, A. Carnera, and F. Priolo, J. Appl. Phys. 108, 124902 (2010).
http://dx.doi.org/10.1063/1.3520671
90.
90. J. Huang, N. Wu, Q. Zhang, C. Zhu, A. A. O. Tay, G. Chen, and M. Hong, Appl. Phys. Lett. 87, 173507 (2005).
http://dx.doi.org/10.1063/1.2115078
91.
91. C. O. Chui, L. Kulig, J. Moran, W. Tsai, and K. C. Saraswat, Appl. Phys. Lett. 87, 091909 (2005).
http://dx.doi.org/10.1063/1.2037861
92.
92. G. Luo, C. C. Cheng, C. Y. Huang, S. L. Hsu, C. H. Chien, W. X. Ni, and C. Y. Chang, Electron. Lett. 41, 1354 (2005).
http://dx.doi.org/10.1049/el:20052999
93.
93. E. E. Haller, W. L. Hansen, P. Luke, R. McMurray, and B. Jarrett, IEEE Trans. Nucl. Sci. 29, 745 (1982).
http://dx.doi.org/10.1109/TNS.1982.4335949
94.
94. A. Krukau, O. Vydrov, A. Izmaylov, and G. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
95.
95. S. M. Sze, The Physics of Semiconductor Devices (Wiley, New York, 2006).
96.
96. S. Lany and A. Zunger, Modell. Simul. Mater. Sci. Eng. 17, 084002 (2009).
http://dx.doi.org/10.1088/0965-0393/17/8/084002
97.
97. S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235104
98.
98. S. M. Hu, Phys. Status Solidi B 60, 595 (1973).
http://dx.doi.org/10.1002/pssb.2220600215
99.
99. H. Höhler, N. Atodiresei, K. Schroeder, R. Zeller, and P. Dederichs, Phys. Rev. B 71, 35212 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035212
100.
100. J. Vanhellemont and E. Simoen, Mater. Sci. Semicond. Process. 15, 642 (2012).
http://dx.doi.org/10.1016/j.mssp.2012.06.014
101.
101. I. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
http://dx.doi.org/10.1002/j.1538-7305.1960.tb03928.x
102.
102. V. E. Borisenko and S. G. Yudin, Phys. Status Solidi A 101, 123 (1987).
http://dx.doi.org/10.1002/pssa.2211010113
103.
103. A. Chroneos, R. W. Grimes, B. P. Uberuaga, S. Brotzmann, and H. Bracht, Appl. Phys. Lett. 91, 192106 (2007).
http://dx.doi.org/10.1063/1.2805773
104.
104. S. Satta, E. Simoen, R. Duffy, T. Janssens, T. Clarysse, A. Benedetti, M. Meuris, and W. Vandervorst, Appl. Phys. Lett. 88, 162118 (2006).
http://dx.doi.org/10.1063/1.2196227
105.
105. F. A. Kröger and V. J. Vink, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1956), Vol. 3, p. 307.
106.
106. D. W. Lawther, U. Myler, P. J. Simpson, P. M. Rousseau, P. B. Griffin, and J. D. Plummer, Appl. Phys. Lett. 67, 3575 (1995).
http://dx.doi.org/10.1063/1.115322
107.
107. S. Solmi, D. Nobili, and J. Shao, J. Appl. Phys. 87, 658 (2000).
http://dx.doi.org/10.1063/1.371922
108.
108. J. Xie and S. P. Chen, J. Appl. Phys. 87, 4160 (2000).
http://dx.doi.org/10.1063/1.373046
109.
109. A. Satta, E. Albertazzi, G. Lulli, and L. Colombo, Phys. Rev. B 72, 235206 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.235206
110.
110. R. Pinacho, M. Jaraiz, P. Castrillo, I. Martin-Bragado, J. E. Rubio, and J. Barbolla, Appl. Phys. Lett. 86, 252103 (2005).
http://dx.doi.org/10.1063/1.1948533
111.
111. A. Chroneos, R. W. Grimes, H. Bracht, and B. P. Uberuaga, J. Appl. Phys. 104, 113724 (2008).
http://dx.doi.org/10.1063/1.3035847
112.
112. A. Chroneos, R. W. Grimes, and H. Bracht, J. Appl. Phys. 106, 063707 (2009).
http://dx.doi.org/10.1063/1.3224900
113.
113. S. Boninelli, G. Impellizzeri, F. Priolo, E. Napolitani, and C. Spinella, Nucl. Instrum. Methods Phys. Res. B 282, 21 (2012).
http://dx.doi.org/10.1016/j.nimb.2011.08.039
114.
114. G. Impellizzeri, E. Napolitani, S. Boninelli, J. P. Sullivan, J. Roberts, S. J. Buckman, S. Ruffell, F. Priolo, and V. Privitera, ECS J. Solid State Sci. Technol. 1, Q44 (2012).
http://dx.doi.org/10.1149/2.009203jss
115.
115. V. V. Emtsev, Jr., C. A. J. Ammerlaan, V. V. Emtsev, G. A. Oganesyan, B. A. Andreev, D. F. Kuritsyn, A. Misiuk, B. Surma, and C. A. Londos, Phys. Status Solidi B 235, 75 (2003);
http://dx.doi.org/10.1002/pssb.v235:1
115. A. Misiuk, J. Bak-Misiuk, A. Barcz, A. Romano-Rodriguez, I. V. Antonova, V. P. Popov, C. A. Londos, and J. Jun, Int. J. Hydrogen Energy 26, 483 (2001).
http://dx.doi.org/10.1016/S0360-3199(00)00094-X
116.
116. M. L. David, E. Simoen, C. Clays, V. B. Neimash, M. Kra'sko, A. Kraitchinscii, V. Voytovych, A. Kabaldin, and J. F. Barbot, J. Phys.: Condens. Matter 17, S2255 (2005).
http://dx.doi.org/10.1088/0953-8984/17/22/013
117.
117. A. Chroneos, C. A. Londos, and E. N. Sgourou, J. Appl. Phys. 110, 093507 (2011).
118.
118. A. Chroneos, C. A. Londos, E. N. Sgourou, and P. Pochet, Appl. Phys. Lett. 99, 241901 (2011).
http://dx.doi.org/10.1063/1.3666226
119.
119. E. N. Sgourou, D. Timerkaeva, C. A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, and P. Pochet, J. Appl. Phys. 113, 113506 (2013);
http://dx.doi.org/10.1063/1.4795510
119. C. A. Londos, E. N. Sgourou, D. Timerkaeva, A. Chroneos, P. Pochet, and V. V. Emtsev, J. Appl. Phys. 114, 113504 (2013).
http://dx.doi.org/10.1063/1.4821116
120.
120. W. Scorupa and R. A. Yankov, Mater. Chem. Phys. 44, 101 (1996).
http://dx.doi.org/10.1016/0254-0584(95)01673-I
121.
121. R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959).
http://dx.doi.org/10.1063/1.1730236
122.
122. E. E. Haller, W. L. Hansen, and F. S. Goulding, Adv. Phys. 30, 93 (1981).
http://dx.doi.org/10.1080/00018738100101357
123.
123. P. A. Stolk, H. J. Gossmann, D. J. Eaglesham, and J. M. Poate, Mater. Sci. Eng., B 36, 275 (1996).
http://dx.doi.org/10.1016/0921-5107(95)01273-7
124.
124. B. J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S. B. Felch, E. J. H. Collart, and N. E. B. Cowern, Appl. Phys. Lett. 89, 062102 (2006).
http://dx.doi.org/10.1063/1.2234315
125.
125. A. Chroneos, Semicond. Sci. Technol. 26, 095017 (2011).
http://dx.doi.org/10.1088/0268-1242/26/9/095017
126.
126. A. Brelot and J. Charlemagne, Radiat. Eff. 9, 65 (1971).
http://dx.doi.org/10.1080/00337577108242034
127.
127. M. L. David, E. Simoen, C. Clays, V. B. Neimash, N. Kra'sko, A. Kraitchinscii, V. Voytovych, V. Tishchenko, and J. F. Barbot, in The Proc. High Purity Silicon VIII, The Electrochem. Soc. Ser Proc. (2004), Vol. 2004–2005, p. 395.
128.
128. C. A. Londos, E. N. Sgourou, and A. Chroneos, J. Appl. Phys. 112, 123517 (2012).
http://dx.doi.org/10.1063/1.4770488
129.
129. G. D. Watkins and J. W. Corbett, Phys. Rev. 121, 1001 (1961).
http://dx.doi.org/10.1103/PhysRev.121.1001
130.
130. H. A. Tahini, A. Chroneos, R. W. Grimes, U. Schwingenschlögl, and H. Bracht, Phys. Chem. Chem. Phys. 15, 367 (2013).
http://dx.doi.org/10.1039/c2cp42973j
131.
131. H. A. Tahini, A. Chroneos, R. W. Grimes, and U. Schwingenschlögl, Appl. Phys. Lett. 99, 162103 (2011).
http://dx.doi.org/10.1063/1.3653472
132.
132. G. Thareja, S. L. Cheng, T. Kamins, K. Saraswat, and N. Nishi, IEEE Electron Device Lett. 32, 608 (2011).
http://dx.doi.org/10.1109/LED.2011.2119460
133.
133. J. Kim, S. W. Bedell, and D. K. Sadana, Appl. Phys. Lett. 98, 082112 (2011).
http://dx.doi.org/10.1063/1.3558715
134.
134. H. A. Tahini, A. Chroneos, R. W. Grimes, and U. Schwingenschlögl, J. Appl. Phys. 113, 073704 (2013).
http://dx.doi.org/10.1063/1.4792480
135.
135. X. D. Pi, C. P. Burrows, and P. G. Coleman, Phys. Rev. Lett. 90, 155901 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.155901
136.
136. F. Bernardi, J. H. R. dos Santos, and M. Behar, Phys. Rev. B 76, 033201 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.033201
137.
137. S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, and F. Cristiano, Appl. Phys. Lett. 93, 061906 (2008).
http://dx.doi.org/10.1063/1.2969055
138.
138. C. G. Van de Walle, F. R. McFeely, and S. T. Pantelides, Phys. Rev. Lett. 61, 1867 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1867
139.
139. M. Diebel and S. T. Dunham, Phys. Rev. Lett. 93, 245901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.245901
140.
140. G. M. Lopez, V. Fiorentini, G. Impellizzeri, S. Mirabella, and E. Napolitani, Phys. Rev. B 72, 045219 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045219
141.
141. V. Fiorentini and G. M. Lopez, Phys. Rev. Lett. 96, 039601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.039601
142.
142. G. M. Lopez and V. Fiorentini, Appl. Phys. Lett. 89, 092113 (2006).
http://dx.doi.org/10.1063/1.2338555
143.
143. S. A. Harrison, T. F. Edgar, and G. S. Hwang, Phys. Rev. B 74, 121201R (2006).
http://dx.doi.org/10.1103/PhysRevB.74.121201
144.
144. W. S. Jung, J. H. Park, A. Nainani, D. Nam, and K. C. Saraswat, Appl. Phys. Lett. 101, 072104 (2012).
http://dx.doi.org/10.1063/1.4746389
145.
145. H. Bracht, S. Schneider, J. N. Klug, C. Y. Liao, J. Lundsgaard Hansen, E. E. Haller, A. Nylandsted Larsen, D. Bougeard, M. Posselt, and C. Wündisch, Phys. Rev. Lett. 103, 255501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.255501
146.
146. S. Schneider and H. Bracht, Appl. Phys. Lett. 98, 014101 (2011).
http://dx.doi.org/10.1063/1.3534791
147.
147. H. Bracht, J. Fage Pedersen, N. Zangenberg, A. Nylandsted Larsen, E. E. Haller, G. Lulli, and M. Posselt, Phys. Rev. Lett. 91, 245502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.245502
148.
148. H. Bracht, “ Defect engineering in germanium,” Phys. Status Solidi. A (published online).
http://dx.doi.org/10.1002/pssa.201300151
149.
149. S. Schneider, Ph.D. dissertation, Münster University, 2012.
150.
150. D. Alloyeau, B. Freitag, S. Dag, L. W. Wang, and C. Kisielowski, Phys. Rev. B 80, 014114 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014114
151.
151. N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, and D. J. Gravesteijn, Phys. Rev. Lett. 65, 2434 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2434
152.
152. G. G. Scapellato, S. Boninelli, E. Napolitani, E. Bruno, A. J. Smith, S. Mirabella, M. Mastromatteo, D. De Salvador, R. Gwilliam, C. Spinella, A. Carnera, and F. Priolo, Phys. Rev. B 84, 024104 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024104
153.
153. E. Kamiyama, K. Sueoka, and J. Vanhellemont, J. Appl. Phys. 111, 083507 (2012).
http://dx.doi.org/10.1063/1.4703911
154.
154. H. Gang and H. A. Atwater, Appl. Phys. Lett. 68, 664 (1996).
http://dx.doi.org/10.1063/1.116502
155.
155. A. V. G. Chizmeshya, M. R. Bauer, and J. Kouvetakis, Chem. Mater. 15, 2511 (2003).
http://dx.doi.org/10.1021/cm0300011
156.
156. R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D'Costa, J. Menendez, and Z. D. Chen, Appl. Phys. Lett. 86, 191912 (2005).
http://dx.doi.org/10.1063/1.1922078
157.
157. J. Kouvetakis, J. Menendez, and A. V. G. Chizmeshya, Annu. Rev. Mater. Res. 36, 497 (2006).
http://dx.doi.org/10.1146/annurev.matsci.36.090804.095159
158.
158. A. Chroneos, C. Jiang, R. W. Grimes, U. Schwingenschlögl, and H. Bracht, Appl. Phys. Lett. 95, 112101 (2009).
http://dx.doi.org/10.1063/1.3224894
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4838215
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4838215
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4838215
2014-01-02
2014-10-02

Abstract

Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although -type dopants such as boron exhibit limited diffusion, -type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4838215.html;jsessionid=4bsdi4001q868.x-aip-live-02?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4838215&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2

Most read this month

Article
content/aip/journal/apr2
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Diffusion of n-type dopants in germanium
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4838215
10.1063/1.4838215
SEARCH_EXPAND_ITEM