1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4840136
1.
1.See, for example, papers in “ Special issue on spintronics,” IEEE Trans. Electron Devices54(5 ) (2007), edited by L. W. Molenkamp, J. S. Moodera, H. Morkoç, H. Ohno, and R. Ramesh.
2.
2. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
3. M. N. Baibich, J. M. Bruto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2472
4.
4. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.4828
5.
5. M. Julliere, Phys. Lett. 54A, 225 (1975).
6.
6. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
7.
7. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3273
8.
8. M. Tanaka and S. Ohya, “ Spintronic devices based on semiconductors” in Comprehensive Semiconductor Science and Technology, edited by P. Bhattacharya, R. Fornari, and H. Kamimura (Elsevier, Amsterdam, 2011), Vol. 6, pp. 540562.
9.
9. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
http://dx.doi.org/10.1063/1.102730
10.
10. S. Sugahara and M. Tanaka, Appl. Phys. Lett. 84, 2307 (2004).
http://dx.doi.org/10.1063/1.1689403
11.
11. M. Tanaka and S. Sugahara, IEEE Trans. Electron Devices 54, 961 (2007).
http://dx.doi.org/10.1109/TED.2007.894375
12.
12. T. Kasuya and A. Yanase, Rev. Mod. Phys. 40, 684 (1968).
http://dx.doi.org/10.1103/RevModPhys.40.684
13.
13. J. Furdyna, J. Appl. Phys. 64, R29 (1988).
http://dx.doi.org/10.1063/1.341700
14.
14. T. Story, R. R. Galazka, R. B. Frankel, and P. A. Wolff, Phys. Rev. Lett. 56, 777 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.777
15.
15. H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. Chang, and L. Esaki, Phys. Rev. Lett. 63, 1849 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1849
16.
16. H. Ohno, H. Munekata, S. von Molnar, and L. L. Chang, J. Appl. Phys. 69, 6103 (1991).
http://dx.doi.org/10.1063/1.347780
17.
17. H. Munekata, H. Ohno, R. R. Ruf, R. J. Gambino, and L. L. Chang, J. Cryst. Growth 111, 1011 (1991).
http://dx.doi.org/10.1016/0022-0248(91)91123-R
18.
18. H. Ohno, H. Munekata, T. Penny, S. von Molnar, and L. L. Chang, Phys. Rev. Lett. 68, 2664 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2664
19.
19. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and H. Iye, Appl. Phys. Lett. 69, 363 (1996).
http://dx.doi.org/10.1063/1.118061
20.
20. T. Hayashi, M. Tanaka, T. Nishinaga, H. Shimada, H. Tsuchiya, and Y. Ootuka, J. Cryst. Growth 175–176, 1063 (1997).
http://dx.doi.org/10.1016/S0022-0248(96)00937-2
21.
21. A. Van Esch, L. Van Bockstal, J. De Boeck, G. Verbanck, A. S. van Steenbergen, P. J. Wellmann, B. Grietens, R. B. F. Herlach, and G. Borghs, Phys. Rev. B 56, 13103 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13103
22.
22. T. Jungwirth, J. Sinova, J. Macek, J. Kucera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.809
23.
23. N. Samarth, Nature Mater. 11, 360 (2012).
http://dx.doi.org/10.1038/nmat3317
24.
24. T. Hayashi, H. Shimada, H. Shimizu, and M. Tanaka, J. Cryst. Growth 201–202, 689 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01440-7
25.
25. D. Chiba, N. Akiba, F. Matsukura, Y. Ohno, and H. Ohno, Appl. Phys. Lett. 77, 1873 (2000).
http://dx.doi.org/10.1063/1.1310626
26.
26. M. Tanaka and Y. Higo, Phys. Rev. Lett. 87, 026602 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.026602
27.
27. M. Tanaka and Y. Higo, Physica E 13, 495 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00178-9
28.
28. B. Grandidier, J. P. Nys, C. Delerue, D. Stiévenard, Y. Higo, and M. Tanaka, Appl. Phys. Lett. 77, 4001 (2000).
http://dx.doi.org/10.1063/1.1322052
29.
29. K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu, Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 65, 201303R (2002).
http://dx.doi.org/10.1103/PhysRevB.65.201303
30.
30. D. Chiba, F. Matsukura, and H. Ohno, Physica E 21, 966 (2004).
http://dx.doi.org/10.1016/j.physe.2003.11.172
31.
31. H. Saito, S. Yuasa, and K. Ando, Phys. Rev. Lett. 95, 086604 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.086604
32.
32. M. Elsen, O. Boulle, J.-M. George, H. Jaffrès, R. Mattana, V. Cros, A. Fert, A. Lemaitre, R. Giraud, and G. Faini, Phys. Rev. B 73, 035303 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.035303
33.
33. S. Ohya, I. Muneta, P. N. Hai, and M. Tanaka, Appl. Phys. Lett. 95, 242503 (2009).
http://dx.doi.org/10.1063/1.3254218
34.
34. D. Chiba, Y. Sato, T. Kita, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 93, 216602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.216602
35.
35. A. Vedyayev, D. Bagrets, A. Bagrets, and B. Dieny, Phys. Rev. B 63, 064429 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.064429
36.
36. K. Pappert, S. Hümpfner, J. Wenisch, K. Brunner, C. Gould, G. Schmidt, and L. W. Molenkamp, Appl. Phys. Lett. 90, 062109 (2007).
http://dx.doi.org/10.1063/1.2437075
37.
37. C. Rüster, C. Gould, T. Jungwirth, J. Sinova, G. M. Schott, R. Giraud, K. Brunner, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 94, 027203 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.027203
38.
38. Z. Liu, J. De Boeck, V. V. Moshchalkov, and G. Borghs, J. Magn. Magn. Mater. 242, 967 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)01314-2
39.
39. S. Ohya, P. N. Hai, Y. Mizuno, and M. Tanaka, Phys. Rev. B 75, 155328 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155328
40.
40. A. G. Petukhov, A. N. Chantis, and D. O. Demchenko, Phys. Rev. Lett. 89, 107205 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.107205
41.
41. T. Hayashi, M. Tanaka, and A. Asamitsu, J. Appl. Phys. 87, 4673 (2000).
http://dx.doi.org/10.1063/1.373126
42.
42. H. Shimizu and M. Tanaka, J. Appl. Phys. 91, 7487 (2002).
http://dx.doi.org/10.1063/1.1447199
43.
43. A. Oiwa, R. Moriya, Y. Kashimura, and H. Munekata, J. Magn. Magn. Mater. 272–276, 2016 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.546
44.
44. S. H. Chun, S. J. Potashnik, K. C. Ku, P. Schiffer, and N. Samarth, Phys. Rev. B 66, 100408R (2002).
http://dx.doi.org/10.1103/PhysRevB.66.100408
45.
45. R. Wessel and M. Altarelli, Phys. Rev. B 39, 12802 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.12802
46.
46. J. M. Luttinger and W. Kohn, Phys. Rev. B 97, 869 (1955).
http://dx.doi.org/10.1103/PhysRev.97.869
47.
47. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.195205
48.
48.In the ideal RTD structure, the same voltage drops occur at the two barriers and no voltage drops occur in other regions (electrodes and QW), thus the ideal multiple number is 2.
49.
49. M. Sawicki, F. Matsukura, A. Idziaszek, T. Dietl, G. M. Schott, C. Ruester, C. Gould, G. Karczewski, G. Schmidt, and L. W. Molenkamp, Phys. Rev. B 70, 245325 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.245325
50.
50. H. Shimizu, T. Hayashi, T. Nishinaga, and M. Tanaka, Appl. Phys. Lett. 74, 398 (1999).
http://dx.doi.org/10.1063/1.123082
51.
51. S. Ohya, I. Muneta, P. N. Hai, and M. Tanaka, Phys. Rev. Lett. 104, 167204 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.167204
52.
52. E. Likovich et al., Phys. Rev. B 80, 201307R (2009).
http://dx.doi.org/10.1103/PhysRevB.80.201307
53.
53. T. Niizeki, N. Tezuka, and K. Inomata, Phys. Rev. Lett. 100, 047207 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.047207
54.
54. S. Ohya, K. Takata, and M. Tanaka, Nat. Phys. 7, 342 (2011).
http://dx.doi.org/10.1038/nphys1905
55.
55. S. Ohya, I. Muneta, Y. Xin, K. Takata, and M. Tanaka, Phys. Rev. B 86, 094418 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.094418
56.
56. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
57.
57. T. Jungwirth et al., Phys. Rev. B 72, 165204 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165204
58.
58. D. Neumaier, M. Turek, U. Wurstbauer, A. Vogl, M. Utz, W. Wegscheider, and D. Weiss, Phys. Rev. Lett. 103, 087203 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.087203
59.
59. Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. B 81, 045208 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045208
60.
60. K. Hirakawa, S. Katsumoto, T. Hayashi, Y. Hashimoto, and Y. Iye, Phys. Rev. B 65, 193312 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.193312
61.
61. K. S. Burch et al., Phys. Rev. Lett. 97, 087208 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.087208
62.
62. V. F. Sapega, M. Moreno, M. Ramsteiner, L. Däweritz, and K. H. Ploog, Phys. Rev. Lett. 94, 137401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.137401
63.
63. K. Ando, H. Saito, K. C. Agarwal, N. C. Debnath, and V. Zayets, Phys. Rev. Lett. 100, 067204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.067204
64.
64. L. P. Rokhinson et al., Phys. Rev. B 76, 161201R (2007).
http://dx.doi.org/10.1103/PhysRevB.76.161201
65.
65. K. Alberi, K. M. Yu, P. R. Stone, O. D. Dubon, W. Walukiewicz, T. Wojtowicz, X. Liu, and J. K. Furdyna, Phys. Rev. B 78, 075201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.075201
66.
66. J. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 64, 125304 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.125304
67.
67. H. Akai, Phys. Rev. Lett. 81, 3002 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3002
68.
68. A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D. D. Awschalom, and A. Yazdani, Science 327, 665 (2010).
http://dx.doi.org/10.1126/science.1183640
69.
69. K. W. Edmonds et al., Phys. Rev. Lett. 92, 037201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.037201
70.
70. K. Wagner, D. Neumaier, M. Reinwald, W. Wegscheider, and D. Weiss, Phys. Rev. Lett. 97, 056803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.056803
71.
71. F. Marczinowski, J. Wiebe, J.-M. Tang, M. E. Flatté, F. Meier, M. Morgenstern, and R. Wiesendanger, Phys. Rev. Lett. 99, 157202 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.157202
72.
72. G. D. Sanders, Y. Sun, C. J. Stanton, G. A. Khodaparast, J. Kono, D. S. King, Y. H. Matsuda, S. Ikeda, N. Miura, A. Oiwa, and H. Munekata, Physica E 20, 378 (2004).
http://dx.doi.org/10.1016/j.physe.2003.08.038
73.
73. Y. H. Matsuda, G. A. Khodaparast, M. A. Zudov, J. Kono, Y. Sun, F. V. Kyrychenko, G. D. Sanders, C. J. Stanton, N. Miura, S. Ikeda, Y. Hashimono, S. Katsumoto, and H. Munekata, Phys. Rev. B 70, 195211 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195211
74.
74. K. Hirakawa, A. Oiwa, and H. Munekata, Physica E 10, 215 (2001).
http://dx.doi.org/10.1016/S1386-9477(01)00085-6
75.
75. S. Ohya, H. Shimizu, Y. Higo, J. Sun, and M. Tanaka, Jpn. J. Appl. Phys., Part 2 41, L24 (2002).
http://dx.doi.org/10.1143/JJAP.41.L24
76.
76. T. Slupinski, H. Munekata, and A. Oiwa, Appl. Phys. Lett. 80, 1592 (2002).
http://dx.doi.org/10.1063/1.1457526
77.
77. S. Ohya, H. Kobayashi, and M. Tanaka, Appl. Phys. Lett. 83, 2175 (2003).
http://dx.doi.org/10.1063/1.1610788
78.
78. A. Slobodskyy, C. Gould, T. Slobodskyy, C. R. Becker, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 90, 246601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.246601
79.
79. M. Tran, J. Peiro, H. Jaffrès, J.-M. George, O. Mauguin, L. Largeau, and A. Lemaître, Appl. Phys. Lett. 95, 172101 (2009).
http://dx.doi.org/10.1063/1.3250172
80.
80. H. Ohno, N. Akiba, F. Matsukura, A. Shen, K. Ohtani, and Y. Ohno, Appl. Phys. Lett. 73, 363 (1998).
http://dx.doi.org/10.1063/1.121835
81.
81. M. Elsen, H. Jaffrès, R. Mattana, M. Tran, J.-M. George, A. Miard, and A. Lemaître, Phys. Rev. Lett. 99, 127203 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.127203
82.
82. T. Dietl and D. Sztenkiel, “Reconciling results of tunnelling experiments on (Ga,Mn)As,” e-print arXiv:1102.3267v2.
83.
83. S. Ohya, K. Takata, I. Muneta, P. N. Hai, and M. Tanaka, “Comment on “Reconciling results of tunnelling experiments on (Ga,Mn)As” arXiv:1102.3267v2 by Dietl and Sztenkiel,” e-print arXiv:1102.4459v3.
84.
84. T. W. Hickmott, Phys. Rev. B 46, 15169 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.15169
85.
85. E. E. Mendez, W. I. Wang, B. Ricco, and L. Esaki, Appl. Phys. Lett. 47, 415 (1985).
http://dx.doi.org/10.1063/1.96130
86.
86. M. Kobayashi, I. Muneta, Y. Takeda, Y. Harada, A. Fujimori, J. Krempasky, T. Schmitt, S. Ohya, M. Tanaka, M. Oshima, and V. N. Strocov, “Unveiling the impurity band inducing ferromagnetism in magnetic semiconductor (Ga,Mn)As,” e-print arXiv:1302.0063.
87.
87. J. Fujii et al., Phys. Rev. Lett. 111, 097201 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.097201
88.
88. M. A. Mayer, P. R. Stone, N. Miller, H. M. Smith, O. D. Dubon, E. E. Haller, K. M. Yu, W. Walukiewicz, X. Liu, and J. K. Furdyna, Phys. Rev. B 81, 045205 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045205
89.
89. M. Yildirim, S. March, R. Mathew, A. Gamouras, X. Liu, M. Dobrowolska, J. K. Furdyna, and K. C. Hall, Phys. Rev. B 84, 121202R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.121202
90.
90. Q. Song, K. H. Chow, Z. Salman, H. Saadaoui, M. D. Hossain, R. F. Kiefl, G. D. Morris, C. D. P. Levy, M. R. Pearson, T. J. Parolin, I. Fan, T. A. Keeler, M. Smadella, D. Wang, K. M. Yu, X. Liu, J. K. Furdyna, and W. A. MacFarlane, Phys. Rev. B 84, 054414 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.054414
91.
91. B. C. Chapler, R. C. Myers, S. Mack, A. Frenzel, B. C. Pursley, K. S. Burch, E. J. Singley, A. M. Dattelbaum, N. Samarth, D. D. Awschalom, and D. N. Basov, Phys. Rev. B 84, 081203R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.081203
92.
92. M. Dobrowolska, K. Tivakornsasithorn, X. Liu, J. K. Furdyna, M. Berciu, K. M. Yu, and W. Walukiewicz, Nature Mater. 11, 444 (2012).
http://dx.doi.org/10.1038/nmat3250
93.
93. B. C. Chapler, S. Mack, R. C. Myers, A. Frenzel, B. C. Pursley, K. S. Burch, A. M. Dattelbaum, N. Samarth, D. D. Awschalom, and D. N. Basov, Phys. Rev. B 87, 205314 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.205314
94.
94. R. Bouzerar and G. Bouzerar, Europhys. Lett. 92, 47006 (2010).
http://dx.doi.org/10.1209/0295-5075/92/47006
95.
95. I. Muneta, H. Terada, S. Ohya, and M. Tanaka, Appl. Phys. Lett. 103, 032411 (2013).
http://dx.doi.org/10.1063/1.4816133
96.
96. T. Jungwirth, J. Sinova, A. H. MacDonald, B. L. Gallagher, V. Novák, K. W. Edmonds, A. W. Rushforth, R. P. Campion, C. T. Foxon, L. Eaves, E. Olejník, J. Mašek, S.-R. Eric Yang, J. Wunderlich, C. Gould, L. W. Molenkamp, T. Dietl, and H. Ohno, Phys. Rev. B 76, 125206 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125206
97.
97. T. Jungwirth, P. Horodyská, N. Tesařová, P. Němec, J. Šubrt, P. Malý, P. Kužel, C. Kadlec, J. Mašek, I. Němec, M. Orlita, V. Novák, K. Olejník, Z. Šobáň, P. Vašek, P. Svoboda, and J. Sinova, Phys. Rev. Lett. 105, 227201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.227201
98.
98. J. Mašek, F. Máca, J. Kudrnovský, O. Makarovsky, L. Eaves, R. P. Campion, K. W. Edmonds, A. W. Rushforth, C. T. Foxon, B. L. Gallagher, V. Novák, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 105, 227202 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.227202
99.
99. K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Phys. Rev. B 75, 045203 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045203
100.
100. J. S. Blakemore, W. J. Brown, Jr., M. L. Stass, and D. A. Woodbury, J. Appl. Phys. 44, 3352 (1973).
http://dx.doi.org/10.1063/1.1662760
101.
101. D. E. Hill, J. Appl. Phys. 41, 1815 (1970).
http://dx.doi.org/10.1063/1.1659109
102.
102. P. Mahadevan and A. Zunger, Appl. Phys. Lett. 85, 2860 (2004).
http://dx.doi.org/10.1063/1.1799245
103.
103. J.-M. Tang and M. E. Flatté, Phys. Rev. Lett. 92, 047201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.047201
104.
104. Y. Mizuno, S. Ohya, P. N. Hai, and M. Tanaka, Appl. Phys. Lett. 90, 162505 (2007).
http://dx.doi.org/10.1063/1.2724771
105.
105. K. Mizushima, T. Kinno, T. Yamauchi, and K. Tanaka, IEEE Trans. Magn. 33, 3500 (1997).
http://dx.doi.org/10.1109/20.619479
106.
106. S. van Dijken, X. Jiang, and S. S. P. Parkin, Appl. Phys. Lett. 83, 951 (2003).
http://dx.doi.org/10.1063/1.1592001
107.
107. Y. W. Huang, C. K. Lo, Y. D. Yao, L. C. Hsieh, and D. R. Huang, IEEE Trans. Magn. 41, 2682 (2005).
http://dx.doi.org/10.1109/TMAG.2005.855293
108.
108. S. Ohya, I. Muneta, and M. Tanaka, Appl. Phys. Lett. 96, 052505 (2010).
http://dx.doi.org/10.1063/1.3298358
109.
109. M. I. Lepsa et al., in International Semiconductor Conference, 20th Edition, CAS'97 Proceedings (Cat. No. 97TH8261) (1997), Vol. 1, p. 139.
110.
110. C. Ertler and J. Fabian, Phys. Rev. B 75, 195323 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195323
111.
111. I. Muneta, S. Ohya, and M. Tanaka, Appl. Phys. Lett. 100, 162409 (2012).
http://dx.doi.org/10.1063/1.4704154
112.
112. T. Uemura, T. Marukame, and M. Yamamoto, IEEE Trans. Magn. 39, 2809 (2003).
http://dx.doi.org/10.1109/TMAG.2003.815719
113.
113. C. Ertler, W. Pötz, and J. Fabian, Appl. Phys. Lett. 97, 042104 (2010).
http://dx.doi.org/10.1063/1.3469999
114.
114. T. Uemura, S. Honma, T. Marukame, and M. Yamamoto, Jpn. J. Appl. Phys., Part 2 43, L44 (2004).
http://dx.doi.org/10.1143/JJAP.43.L44
115.
115. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature 408, 944 (2000).
http://dx.doi.org/10.1038/35050040
116.
116. S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, Phys. Rev. Lett. 78, 4617 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4617
117.
117. M. Tanaka, H. Shimizu, and T. Hayashi, J. Vac. Sci. Technol. A 18, 1247 (2000).
http://dx.doi.org/10.1116/1.582334
118.
118. H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00444-8
119.
119. M. Tanaka, J. Vac. Sci. Technol. B 16, 2267 (1998).
http://dx.doi.org/10.1116/1.590160
120.
120. P. N. Hai, L. D. Anh, S. Mohan, T. Tamegai, M. Kodzuka, T. Ohkubo, K. Hono, and M. Tanaka, Appl. Phys. Lett. 101, 182403 (2012), and supplementary material.
http://dx.doi.org/10.1063/1.4764947
121.
121. P. N. Hai, L. D. Anh, and M. Tanaka, Appl. Phys. Lett. 101, 252410 (2012), and supplementary material.
http://dx.doi.org/10.1063/1.4772630
122.
122. M. Kodzuka, T. Ohkubo, and K. Hono, Ultramicroscopy 111, 557 (2011).
http://dx.doi.org/10.1016/j.ultramic.2010.11.008
123.
123. E. Malguth, A. Hoffmann, and M. R. Phillips, Phys. Status Solidi B 245, 455 (2008).
http://dx.doi.org/10.1002/pssb.200743315
124.
124. T. L. Estle, Phys. Rev. 136, A1702 (1964).
http://dx.doi.org/10.1103/PhysRev.136.A1702
125.
125. S. Haneda, M. Yamaura, Y. Takatani, K. Hara, S. Harigae, and H. Munekata, Jpn. J. Appl. Phys., Part 2 39, L9 (2000).
http://dx.doi.org/10.1143/JJAP.39.L9
126.
126. M. Takushima and Y. Kajikawa, Phys. Status Solidi C 5, 2781 (2008).
http://dx.doi.org/10.1002/pssc.200779157
127.
127. S. Haneda, in Binary Alloy Phase Diagrams, edited by T. B. Massalski (ASM International, Ohio, 1990), p. 279.
128.
128. K. Ando and H. Munekata, J. Magn. Magn. Mater. 272–276, 2004 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.791
129.
129. Recently, ferromagnetism was reported in n-type Co-doped TiO2 (Ref. 130). However, the intrinsic ferromagnetism in Co-doped TiO2 is controversial, because the MCD spectrum of Co-doped TiO2 does not show enhancement at optical critical point energies of TiO2, while it is enhanced at energies not related to the band structure of TiO2, and very broad MCD signals are seen at energies smaller than the band gap of TiO2 (Ref. 131).
130.
130. Y. Yamada, K. Ueno, T. Fukumura, H. T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, and M. Kawasaki, Science 332, 1065 (2011).
http://dx.doi.org/10.1126/science.1202152
131.
131. T. Fukumura, Y. Yamada, K. Tamura, K. Nakajima, T. Aoyama, A. Tsukazaki, M. Sumiya, S. Fuke, Y. Segawa, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Jpn. J. Appl. Phys., Part 2 42, L105 (2003).
http://dx.doi.org/10.1143/JJAP.42.L105
132.
132. H. Okamoto, J. Phase Equilib. 12, 457 (1991).
http://dx.doi.org/10.1007/BF02645968
133.
133. A. K. L. Fan, G. H. Rosenthal, H. L. Mckinzie, and A. Wold, J. Solid State Chem. 5, 136 (1972).
http://dx.doi.org/10.1016/0022-4596(72)90021-7
134.
134. P. N. Hai, D. Sasaki, L. D. Anh, and M. Tanaka, Appl. Phys. Lett. 100, 262409 (2012).
http://dx.doi.org/10.1063/1.4730955
135.
135. K. Sato, H. Katayama-Yoshida, and P. H. Dederichs, Jpn. J. Appl. Phys., Part 2 44, L948 (2005).
http://dx.doi.org/10.1143/JJAP.44.L948
136.
136. P. N. Hai, S. Yada, and M. Tanaka, J. Appl. Phys. 109, 073919 (2011).
http://dx.doi.org/10.1063/1.3567112
137.
137. M. Yokoyama, H. Yamaguchi, T. Ogawa, and M. Tanaka, J. Appl. Phys. 97, 10D317 (2005).
http://dx.doi.org/10.1063/1.1852214
138.
138. P. N. Hai, S. Ohya, M. Tanaka, S. E. Barnes, and S. Maekawa, Nature 458, 489 (2009).
http://dx.doi.org/10.1038/nature07879
139.
139. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Nature Mater. 6, 440 (2007).
http://dx.doi.org/10.1038/nmat1910
140.
140. Y. Shuto, M. Tanaka, and S. Sugahara, Appl. Phys. Lett. 90, 132512 (2007).
http://dx.doi.org/10.1063/1.2718270
141.
141. A. Soibel, E. Zeldov, M. Rappaport, Y. Myasoedov, T. Tamegai, S. Ooi, M. Konczykowski, and V. B. Geshkenbein, Nature 406, 282 (2000).
http://dx.doi.org/10.1038/35018532
142.
142. B. Lee, T. Jungwirth, and A. H. MacDonald, Semicond. Sci. Technol. 17, 393 (2002).
http://dx.doi.org/10.1088/0268-1242/17/4/311
143.
143. I. Zutic, J. Fabian, and S. Das Sarma, Phys. Rev. Lett. 88, 066603 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.066603
144.
144. J. Fabian, I. Zutic, and S. Das Sarma, Phys. Rev. B 66, 165301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165301
145.
145. N. Lebedeva and P. Kuivalainen, J. Appl. Phys. 93, 9845 (2003).
http://dx.doi.org/10.1063/1.1575498
146.
146. J. Fabian and I. Zutic, Phys. Rev. B 69, 115314 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115314
147.
147. M. E. Flatte, Z. G. Yu, E. Johnston-Halperin, and D. D. Awschalom, Appl. Phys. Lett. 82, 4740 (2003).
http://dx.doi.org/10.1063/1.1586996
148.
148. S. Sugahara and M. Tanaka, J. Appl. Phys. 97, 10D503 (2005).
http://dx.doi.org/10.1063/1.1852280
149.
149. T. Matsuno, S. Sugahara, and M. Tanaka, Jpn. J. Appl. Phys., Part 1 43, 6032 (2004).
http://dx.doi.org/10.1143/JJAP.43.6032
150.
150. M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Nat. Phys. 6, 22 (2010).
http://dx.doi.org/10.1038/nphys1455
151.
151. N. A. Semikolenova, I. M. Nesmelova, and E. N. Khabarov, Sov. Phys. Semicond. 12, 1139 (1978).
152.
152. M. Kobayashi, P. N. Hai, L. D. Anh, T. Schmitt, A. Fujimori, M. Tanaka, M. Oshima, and V. N. Strocov (private communication).
153.
153. J. Okabayashi, A. Kimura, A. Fujimori, T. Hayashi, and M. Tanaka, Phys. Rev. B 58, R4211 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R4211
154.
154. P. W. Anderson, Phys. Rev. 124, 41 (1961).
http://dx.doi.org/10.1103/PhysRev.124.41
155.
155. J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
http://dx.doi.org/10.1103/PhysRev.149.491
156.
156. R. E. Walstedt and L. R. Walker, Phys. Rev. B 11, 3280 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.3280
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4840136
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4840136
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4840136
2014-01-08
2014-12-25

Abstract

Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4840136.html;jsessionid=nmxt1laymeza.x-aip-live-03?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4840136&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4840136
10.1063/1.4840136
SEARCH_EXPAND_ITEM