1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/1/1/10.1063/1.4853535
1.
1. D. R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01793.x
2.
2. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/004
3.
3. Ü. Özgür, Proc. IEEE 98, 1255 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2044550
4.
4. C. Woll, Prog. Surf. Sci. 82, 55 (2007).
http://dx.doi.org/10.1016/j.progsurf.2006.12.002
5.
5. M. D. McCluskey, J. Appl. Phys. 106, 071101 (2009).
http://dx.doi.org/10.1063/1.3216464
6.
6. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
7.
7. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, J. Appl. Phys. 93, 1 (2003).
http://dx.doi.org/10.1063/1.1517164
8.
8. Z. L. Wang, J. Phys.:Condens. Matter 16, R829 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
9.
9. C. Klingshirn, Phys. Status Solidi B 244, 3027 (2007).
http://dx.doi.org/10.1002/pssb.200743072
10.
10. L. J. Brillson and Y. Lu, J. Appl. Phys. 109, 121301 (2011).
http://dx.doi.org/10.1063/1.3581173
11.
11. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).
http://dx.doi.org/10.1088/0034-4885/72/12/126501
12.
12. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00216-0
13.
13. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
http://dx.doi.org/10.1063/1.118824
14.
14. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, Solid State Commun. 105, 399 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10145-4
15.
15. K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/006
16.
16. V. Atrutin, G. Cantwell, J. Zhang, J. J. Song, D. J. Sliversmith, and H. Morkoç, Proc. IEEE 98, 1339 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2040363
17.
17. W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.59
18.
18. J. J. Hopfield and D. G. Thomas, Phys. Rev. Lett. 15, 22 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.22
19.
19. Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, Phys. Rev. 143, 512 (1966).
http://dx.doi.org/10.1103/PhysRev.143.512
20.
20. D. W. Langer, R. N. Euwema, K. Era, and T. Koda, Phys. Rev. B 2, 4005 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4005
21.
21. D. Eger and Y. Goldstein, Phys. Rev. B 19, 1089 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.1089
22.
22. M. Nitzan, Y. Grinshpan, and Y. Goldstein, Phys. Rev. B 19, 4107 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.4107
23.
23. E. Veyhoff and D. Kohl, J. Phys. C. 14, 2395 (1981).
http://dx.doi.org/10.1088/0022-3719/14/17/012
24.
24. A. Goldenblum, V. Bogatu, T. Stoica, Y. Goldstein, and A. Many, Phys. Rev. B 60, 5832 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.5832
25.
25. S. Akasaka, K. Nakahara, H. Yuji, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Express 4, 035701 (2011).
http://dx.doi.org/10.1143/APEX.4.035701
26.
26. S. Graubner, C. Neumann, N. Volbers, B. K. Meyer, J. Blasing, and A. Krost, Appl. Phys. Lett. 90, 042103 (2007).
http://dx.doi.org/10.1063/1.2434170
27.
27. S. Ohashi, M. Lippmaa, N. Nakagawa, H. Nagasawa, H. Koinuma, and M. Kawasaki, Rev. Sci. Instrum. 70, 178 (1999).
http://dx.doi.org/10.1063/1.1149562
28.
28. S. Akasaka, A. Tsukazaki, K. Nakahara, A. Ohtomo, and M. Kawasaki, Jpn. J. Appl. Phys. 50, 080215 (2011).
http://dx.doi.org/10.1143/JJAP.50.080215
29.
29. H. Yuji, K. Nakahara, K. Tamura, S. Akasaka, A. Sasaki, T. Tanabe, H. Takasu, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Proc. SPIE 6895, 68950D1 (2008).
http://dx.doi.org/10.1117/12.774974
30.
30. H. Yuji, K. Nakahara, K. Tamura, S. Akasaka, Y. Nishimoto, D. Takamizu, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Jpn. J. Appl. Phys. 49, 071104 (2010).
http://dx.doi.org/10.1143/JJAP.49.071104
31.
31. J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Appl. Phys. Express 4, 091101 (2011).
http://dx.doi.org/10.1143/APEX.4.091101
32.
32. M. W. Cho, A. Settawan, H. J. Ko, S. K. Hong, and T. Yao, Semicond. Sci. Technol. 20, S13 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/002
33.
33. H. Xu, K. Ohtani, M. Yamao, and H. Ohno, Appl. Phys. Let. 89, 071918 (2006).
http://dx.doi.org/10.1063/1.2337541
34.
34. E. Mollow, Landolt-Bornstein New Series, edited by O. Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982), Vol. 17.
35.
35. L. H. Robins, J. T. Armstrong, R. B. Marinenko, A. J. Paul, J. G. Pellegrino, and K. A. Bertness, J. Appl. Phys. 93, 3747 (2003).
http://dx.doi.org/10.1063/1.1556554
36.
36. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).
http://dx.doi.org/10.1063/1.121384
37.
37. A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/001
38.
38. T. Makino, Y. Segawa, M. Kawasaki, and H. Koinuma, Semicond. Sci. Technol. 20, S78 (2005).
http://dx.doi.org/10.1088/0268-1242/20/4/010
39.
39. Y. Kozuka, J. Falson, Y. Segawa, T. Makino, A. Tsukazaki, and M. Kawasaki, J. Appl. Phys. 112, 043515 (2012).
http://dx.doi.org/10.1063/1.4748306
40.
40. A. Dal Corso, M. Posternak, R. Resta, and A. Baldareschi, Phys. Rev. B 50, 10715 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.10715
41.
41. A. Malashevich and D. Vanderbilt, Phys. Rev. B 75, 045106 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045106
42.
42. S. Akasaka, K. Nakahara, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Express 3, 071101 (2010).
http://dx.doi.org/10.1143/APEX.3.071101
43.
43. D. Y. Jiang, J. Y. Zhang, K. W. Liu, C. X. Shan, Y. M. Zhao, T. Yang, B. Yao, Y. M. Lu, and D. Z. Shen, Appl. Surf. Sci. 254, 2146 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.08.092
44.
44. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, A. I. Belogorokhov, H. S. Kim, D. P. Norton, and S. J. Pearton, J. Appl. Phys. 103, 083704 (2008).
http://dx.doi.org/10.1063/1.2906180
45.
45. Y. Nishimoto, K. Nakahara, D. Takamuzu, A. Sasaki, K. Tamura, S. Akasaka, H. Yuji, T. Fujii, T. Tanabe, H. Takasu, A. Tsukazaki, A. Ohtomo, T. Onuma, S. F. Chichibu, and M. Kawasaki, Appl. Phys. Express 1, 091202 (2008).
http://dx.doi.org/10.1143/APEX.1.091202
46.
46. S. M. Sze and M. K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, 1986).
47.
47. S. Kurtin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. 22, 1433 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.1433
48.
48. M. Nakano, A. Tsukazaki, R. Y. Gunji, K. Ueno, A. Ohtomo, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 91, 142113 (2007).
http://dx.doi.org/10.1063/1.2789697
49.
49. N. Koch, A. Kahn, J. Ghijsen, J. J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, Appl. Phys. Lett. 82, 70 (2003).
http://dx.doi.org/10.1063/1.1532102
50.
50. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Adv. Funct. Mater. 15, 290 (2005).
http://dx.doi.org/10.1002/adfm.200400073
51.
51. N. Koch, A. Vollmer, and A. Elschner, Appl. Phys. Lett. 90, 043512 (2007).
http://dx.doi.org/10.1063/1.2435350
52.
52. I. Broser, O. Madelung, H. Weiss, and M. Schulz, Physics of II-VI and I-VII Compounds, Semimagnetic Semiconductors (Springer, Berlin, 1982) Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. B.
53.
53. H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane, and Y. Kashiwaba, Appl. Phys. Lett. 90, 121906 (2007).
http://dx.doi.org/10.1063/1.2715100
54.
54. M. W. Allen, M. M. Alkaisi, and S. M. Durbin, Appl. Phys. Lett. 89, 103520 (2006).
http://dx.doi.org/10.1063/1.2346137
55.
55. M. W. Allen, P. Miller, R. J. Reeves, and S. M. Durbin, Appl. Phys. Lett. 90, 062104 (2007).
http://dx.doi.org/10.1063/1.2450642
56.
56. R. T. Tung, Mater. Sci. Eng. R 35, 1 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00037-7
57.
57. M. W. Allen, S. M. Durbin, and J. B. Metson, Appl. Phys. Lett. 91, 053512 (2007).
http://dx.doi.org/10.1063/1.2768028
58.
58. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Appl. Phys. Lett. 93, 123309 (2008).
http://dx.doi.org/10.1063/1.2989125
59.
59. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, Y. Nishimoto, S. Akasaka, D. Takamizu, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Appl. Phys. Express 1, 121201 (2008).
http://dx.doi.org/10.1143/APEX.1.121201
60.
60. E. Monroy, F. Calle, J. L. Pau, F. J. Sánchez, E. Muñoz, F. Omnès, B. Beaumont, and P. Gibart, J. Appl. Phys. 88, 2081 (2000).
http://dx.doi.org/10.1063/1.1305838
61.
61. E. Muñoz, Phys. Status Solidi (b) 244, 2859 (2007).
http://dx.doi.org/10.1002/pssb.200675618
62.
62. F. A. Ponce and D. P. Bour, Nature 386, 351 (1997).
http://dx.doi.org/10.1038/386351a0
63.
63. I. Akasaki and H. Amano, Jpn. J. Appl. Phys. 36, 5393 (1997).
http://dx.doi.org/10.1143/JJAP.36.5393
64.
64. R. F. Service, Science 276, 895 (1997).
http://dx.doi.org/10.1126/science.276.5314.895
65.
65. C. H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Appl. Phys. Lett. 82, 1848 (2003).
http://dx.doi.org/10.1063/1.1561158
66.
66. K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 97, 013501 (2010).
http://dx.doi.org/10.1063/1.3459139
67.
67. H. Kato, T. Yamamuro, A. Ogawa, C. Kyotani, and M. Sano, Appl. Phys. Express 4, 091105 (2011).
http://dx.doi.org/10.1143/APEX.4.091105
68.
68. A. Tsukazaki, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, H. Takasu, A. Ohtomo, and M. Kawasaki, Appl. Phys. Express 1, 055004 (2008).
http://dx.doi.org/10.1143/APEX.1.055004
69.
69. A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles, Phys. Rev. Lett. 16, 901 (1966).
http://dx.doi.org/10.1103/PhysRevLett.16.901
70.
70. R. Dingle, H. L. Stömer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
http://dx.doi.org/10.1063/1.90457
71.
71. B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.035403
72.
72. C. Noguera and J. Goniakowski, J. Phys.: Condens. Matter 20, 264003 (2008).
http://dx.doi.org/10.1088/0953-8984/20/26/264003
73.
73. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999).
http://dx.doi.org/10.1063/1.369664
74.
74. M. Nakano, A. Tsukazaki, K. Ueno, R. Y. Gunji, A. Ohtomo, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 96, 052116 (2010).
http://dx.doi.org/10.1063/1.3309699
75.
75. M. Nakano, A. Tsukazaki, A. Ohtomo, K. Ueno, S. Akasaka, H. Yuji, K. Nakahara, T. Fukumura, and M. Kawasaki, Adv. Mater. 22, 876 (2010).
http://dx.doi.org/10.1002/adma.200902162
76.
76. F. Stern, Phys. Rev. B 5, 4891 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.4891
77.
77. A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, Science 315, 1388 (2007).
http://dx.doi.org/10.1126/science.1137430
78.
78. A. Tsukazaki, A. Ohtomo, D. Chiba, Y. Ohno, H. Ohno, and M. Kawasaki, Appl. Phys. Lett. 93, 241905 (2008).
http://dx.doi.org/10.1063/1.3035844
79.
79. A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Nature Mater. 9, 889 (2010).
http://dx.doi.org/10.1038/nmat2874
80.
80. A. Gold, Appl. Phys. Lett. 96, 242111 (2010).
http://dx.doi.org/10.1063/1.3455881
81.
81. M. J. Manfra, K. W. Baldwin, A. M. Sergent, R. J. Molnar, and J. Caissie, Appl. Phys. Lett. 85, 1722 (2004).
http://dx.doi.org/10.1063/1.1784887
82.
82. D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd ed. (McGraw-Hill, New York, 2003), p. 159.
83.
83. D. G. Schlom and L. N. Pfeiffer, Nature Mater. 9, 881 (2010).
http://dx.doi.org/10.1038/nmat2888
84.
84. M. Sumiya, S. Fuke, A. Tsukazaki, K. Tamura, A. Ohtomo, M. Kawasaki, and H. Koinuma, J. Appl. Phys. 93, 2562 (2003).
http://dx.doi.org/10.1063/1.1542938
85.
85. A. Tsukazaki, A. Ohtomo, M. Kawasaki, S. Akasaka, H. Yuji, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, T. Gokmen, J. Shavani, and M. Shayegan, Phys. Rev. B 78, 233308 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.233308
86.
86. L. Pfeiffer and K. W. West, Physica E 20, 57 (2003).
http://dx.doi.org/10.1016/j.physe.2003.09.035
87.
87. V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. Nübler, and M. Dolev, J. Cryst. Growth 311, 1658 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.151
88.
88. Y. Kozuka, A. Tsukazaki, D. Maryenko, J. Falson, S. Akasaka, K. Nakahara, S. Nakamura, S. Awaji, K. Ueno, and M. Kawasaki, Phys. Rev. B 84, 033304 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.033304
89.
89. Y. Kozuka, A. Tsukazaki, D. Maryenko, J. Falson, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and M. Kawasaki, Phys. Rev. B 85, 075302 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075302
90.
90. D. Maryenko, J. Falson, Y. Kozuka, A. Tsukazaki, M. Onoda, H. Aoki, and M. Kawasaki, Phys. Rev. Lett. 108, 186803 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.186803
91.
91. Y. Kasahara, Y. Oshima, J. Falson, Y. Kozuka, A. Tsukazaki, M. Kawasaki, and Y. Iwasa, Phys. Rev. Lett. 109, 246401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.246401
92.
92. Y. Kozuka, S. Teraoka, J. Falson, A. Oiwa, A. Tsukazaki, S. Tarucha, and M. Kawasaki, Phys. Rev. B 87, 205411 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.205411
93.
93. L. Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin, Appl. Phys. Lett. 55, 1888 (1989).
http://dx.doi.org/10.1063/1.102162
94.
94. T. Sajoto, Y. W. Suen, L. W. Engel, M. B. Santos, and M. Shayegan, Phys. Rev. B 41, 8449 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.8449
95.
95. T. M. Lu, D. C. Tsui, C.-H. Lee, and C. W. Liu, Appl. Phys. Lett. 94, 182102 (2009).
http://dx.doi.org/10.1063/1.3127516
96.
96. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 87, 086801 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.086801
97.
97. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073303
98.
98. A. A. Shashkin, M. Rahimi, S. Anissimova, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. Lett. 91, 046403 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.046403
99.
99. K. Lai, T. M. Lu, W. Pan, D. C. Tsui, S. Lyon, J. Liu, Y. H. Xie, M. Mühlberger, and F. Schäffler, Phys. Rev. B 73, 161301R (2006).
http://dx.doi.org/10.1103/PhysRevB.73.161301
100.
100. J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 90, 056805 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.056805
101.
101. Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 94, 016405 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.016405
102.
102. K. Vakili, Y. P. Shkolnikov, E. Tutuc, E. P. De Poortere, and M. Shayegan, Phys. Rev. Lett. 92, 226401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.226401
103.
103. T. Gokmen, M. Padmanabhan, E. Tutuc, M. Shayegan, S. De Palo, S. Moroni, and G. Senatore, Phys. Rev. B 76, 233301 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.233301
104.
104. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.437
105.
105. W. Kohn, Phys. Rev. 123, 1242 (1961).
http://dx.doi.org/10.1103/PhysRev.123.1242
106.
106. M. Padmanabhan, T. Gokmen, N. C. Bishop, and M. Shayegan, Phys. Rev. Lett. 101, 026402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026402
107.
107. V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M. Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett. 88, 196404 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.196404
108.
108. W. Zawadzki, C. Chaubet, D. Dur, W. Knap, and A. Raymond, Semicond. Sci. Technol. 9, 320 (1994).
http://dx.doi.org/10.1088/0268-1242/9/3/012
109.
109. B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.5005
110.
110. I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
111.
111. D. D. Awschalom and M. E. Flatté, Nat. Phys. 3, 153 (2007).
http://dx.doi.org/10.1038/nphys551
112.
112. Spin Physics in Semiconductors, edited by M. I. Dyakonov (Springer, Berlin, 2008).
113.
113. L. C. Lew Yan Voon, M. Willatzen, M. Cardona, and N. E. Christensen, Phys. Rev. B 53, 10703 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.10703
114.
114. D. Stein, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.130
115.
115. C. F. O. Graeff, M. S. Brandt, M. Stutzmann, M. Holzmann, G. Abstreiter, and F. Schäffler, Phys. Rev. B 59, 13242 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.13242
116.
116. J. Matsunami, M. Ooya, and T. Okamoto, Phys. Rev. Lett. 97, 066602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.066602
117.
117. V. Sih, W. H. Lau, R. C. Myers, A. C. Gossard, M. E. Flatté, and D. D. Awschalom, Phys. Rev. B 70, 161313R (2004).
http://dx.doi.org/10.1103/PhysRevB.70.161313
118.
118. A. A. Burkov and L. Balents, Phys. Rev. B 69, 245312 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245312
119.
119. D. Fukuoka, T. Yamazaki, N. Tanaka, K. Oto, K. Muro, Y. Hirayama, N. Kumada, and H. Yamaguchi, Phys. Rev. B 78, 041304R (2008).
http://dx.doi.org/10.1103/PhysRevB.78.041304
120.
120. Electron Spin Resonance and Related Phenomena in Low Dimensional Structures, edited by M. Fanciulli (Springer, Berlin, 2009).
121.
121. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 44, L643 (2005).
http://dx.doi.org/10.1143/JJAP.44.L643
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4853535
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4853535
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4853535
2014-01-06
2015-05-25

Abstract

Recent technological advancement in ZnO heterostructures has expanded the possibility of device functionalities to various kinds of applications. In order to extract novel device functionalities in the heterostructures, one needs to fabricate high quality films and interfaces with minimal impurities, defects, and disorder. With employing molecular-beam epitaxy and single crystal ZnO substrates, the density of residual impurities and defects can be drastically reduced and the optical and electrical properties have been dramatically improved for the ZnO films and heterostructures with Mg Zn O. Here, we overview such recent technological advancement from various aspects of application. Towards optoelectronic devices such as a light emitter and a photodetector in an ultraviolet region, the development of -type ZnO and the fabrication of excellent Schottky contact, respectively, have been subjected to intensive studies for years. For the former, the fine tuning of the growth conditions to make Mg Zn O as intrinsic as possible has opened the possibilities of making -type Mg Zn O through NH doping method. For the latter, conducting and transparent polymer films spin-coated on Mg Zn O was shown to give almost ideal Schottky junctions. The wavelength-selective detection can be realized with varying the Mg content. From the viewpoint of electronic devices, two-dimensional electrons confined at the Mg Zn O/ZnO interfaces are promising candidate for quantum devices because of high electron mobility and strong electron-electron correlation effect. These wonderful features and tremendous opportunities in ZnO-based heterostructures make this system unique and promising in oxide electronics and will lead to new quantum functionalities in optoelectronic devices and electronic applications with lower energy consumption and high performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4853535.html;jsessionid=f5twxnlofhpn.x-aip-live-06?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4853535&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Challenges and opportunities of ZnO-related single crystalline heterostructures
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4853535
10.1063/1.4853535
SEARCH_EXPAND_ITEM