1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The physics and chemistry of the Schottky barrier height
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4858400
1.
1. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley and Sons, Hoboken, NJ, 2007).
2.
2. L. J. Brillson, Surfaces and Interfaces of Electronic Materials (Wiley-VCH, 2010).
3.
3. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, 1988).
4.
4. R. T. Tung, Mater. Sci. Eng. Rep. 35, 1138 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00037-7
5.
5. W. Schottky, Z. Phys. 113, 367 (1939).
http://dx.doi.org/10.1007/BF01340116
6.
6. N. F. Mott, Proc. R. Soc. (London) A 171, 27 (1939).
http://dx.doi.org/10.1098/rspa.1939.0051
7.
7. W. F. Egelhoff, Jr., Surf. Sci. Rep. 6, 253415 (1987).
http://dx.doi.org/10.1016/0167-5729(87)90007-0
8.
8. R. L. Anderson, Solid-State Electron. 5, 341 (1962).
http://dx.doi.org/10.1016/0038-1101(62)90115-6
9.
9. H. L. Skriver and N. M. Rosengaard, Phys. Rev. B 46, 71577168 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.7157
10.
10. M. Weinert and R. E. Watson, Phys. Rev. B 29, 30013008 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.3001
11.
11. A. Franciosi and C. G. Van de Walle, Surf. Sci. Rep. 25, 140 (1996).
http://dx.doi.org/10.1016/0167-5729(95)00008-9
12.
12. J. R. Waldrop, Appl. Phys. Lett. 44, 10021004 (1984).
http://dx.doi.org/10.1063/1.94599
13.
13. P. E. Schmid, Helv. Phys. Acta 58, 371 (1985).
14.
14. W. Mönch, Surf. Sci. 21, 443446 (1970).
http://dx.doi.org/10.1016/0039-6028(70)90246-3
15.
15. R. T. Tung, J. Vac. Sci. Technol. B 11, 15461552 (1993).
http://dx.doi.org/10.1116/1.586967
16.
16. S. Kurtin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. 22, 1433 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.1433
17.
17. M. Schluter, Phys. Rev. B 17, 50445047 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.5044
18.
18. W. Monch, Phys. Rev. Lett. 58, 1260 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.1260
19.
19. J. P. Sullivan, R. T. Tung, M. R. Pinto, and W. R. Graham, J. Appl. Phys. 70, 74037424 (1991).
http://dx.doi.org/10.1063/1.349737
20.
20. R. T. Tung, Phys. Rev. B 45, 1350913523 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13509
21.
21. J. E. Inglesfield, Rep. Prog. Phys. 45, 223284 (1982).
http://dx.doi.org/10.1088/0034-4885/45/3/001
22.
22. C. B. Duke, A. Paton, W. K. Ford, A. Kahn, and J. Carelli, Phys. Rev. B 24, 562573 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.562
23.
23. C. A. Swarts, T. C. McGill, and W. A. Goddard Iii, Surf. Sci. 110, 400414 (1981).
http://dx.doi.org/10.1016/0039-6028(81)90647-6
24.
24. D. E. Eastman, T. C. Chiang, P. Heimann, and F. J. Himpsel, Phys. Rev. Lett. 45, 656659 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.656
25.
25. J. Bardeen, Phys. Rev. 71, 717 (1947).
http://dx.doi.org/10.1103/PhysRev.71.717
26.
26. A. M. Cowley and S. M. Sze, J. Appl. Phys. 36, 3212 (1965).
http://dx.doi.org/10.1063/1.1702952
27.
27. J. Tersoff, Phys. Rev. B 32, 69686971 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.6968
28.
28. V. Heine, Phys. Rev. 138, A1689 (1965).
http://dx.doi.org/10.1103/PhysRev.138.A1689
29.
29. C. Tejedor, F. Flores, and E. Louis, J. Phys. C 10, 21632177 (1977).
http://dx.doi.org/10.1088/0022-3719/10/12/022
30.
30. J. Tersoff, Phys. Rev. Lett. 52, 465468 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.465
31.
31. F. Flores and C. Tejedor, J. Phys. C 12, 731749 (1979).
http://dx.doi.org/10.1088/0022-3719/12/4/018
32.
32. J. Tersoff, Phys. Rev. B 30, 48744877 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.4874
33.
33. M. Cardona and N. E. Christensen, Phys. Rev. B 35, 61826194 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.6182
34.
34. W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol. B 4, 10681073 (1986).
http://dx.doi.org/10.1116/1.583544
35.
35. A. D. Katnani and G. Margaritondo, J. Appl. Phys. 54, 25222525 (1983).
http://dx.doi.org/10.1063/1.332320
36.
36. G. H. Parker, T. C. McGill, C. A. Mead, and D. Hoffmann, Solid-State Electron. 11, 201 (1968).
http://dx.doi.org/10.1016/0038-1101(68)90079-8
37.
37. J. M. Andrews and M. P. Lepselter, Solid-State Electron. 13, 10111023 (1970).
http://dx.doi.org/10.1016/0038-1101(70)90098-5
38.
38. C. R. Crowell, J. Vac. Sci. Technol. 11, 951957 (1974).
http://dx.doi.org/10.1116/1.1318712
39.
39. R. G. Dandrea and C. B. Duke, J. Vac. Sci. Technol. B 11, 15531558 (1993).
http://dx.doi.org/10.1116/1.586968
40.
40. R. T. Tung, J. M. Gibson, and J. M. Poate, Phys. Rev. Lett. 50, 429432 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.429
41.
41. R. T. Tung, J. M. Gibson, and J. M. Poate, Appl. Phys. Lett. 42, 888890 (1983).
http://dx.doi.org/10.1063/1.93776
42.
42. D. Cherns, G. R. Anstis, J. L. Hutchison, and J. C. H. Spence, Phil. Mag. A 46, 849862 (1982).
http://dx.doi.org/10.1080/01418618208236936
43.
43. J. M. Gibson, R. T. Tung, and J. M. Poate, in Defects in Semiconductors, II (Mater. Res. Soc. Symp. Proc., 1983), Vol. 14, pp. 395409.
44.
44. H. Foll, Phys. Status Solidi A 69, 779788 (1982).
http://dx.doi.org/10.1002/pssa.2210690243
45.
45. E. Vlieg, A. E. M. J. Fischer, J. F. Van Der Veen, B. N. Dev, and G. Materlik, Surf. Sci. 178, 3646 (1986).
http://dx.doi.org/10.1016/0039-6028(86)90278-5
46.
46. I. K. Robinson, R. T. Tung, and R. Feidenhans'l, Phys. Rev. B 38, 36323635 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.3632
47.
47. R. T. Tung, Phys. Rev. Lett. 52, 461464 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.461
48.
48. M. Liehr, P. E. Schmid, F. K. LeGoues, and P. S. Ho, Phys. Rev. Lett. 54, 21392142 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.2139
49.
49. R. J. Hauenstein, T. E. Schlesinger, T. C. McGill, B. D. Hunt, and L. J. Schowalter, Appl. Phys. Lett. 47, 853855 (1985).
http://dx.doi.org/10.1063/1.96007
50.
50. R. T. Tung, K. K. Ng, J. M. Gibson, and A. F. J. Levi, Phys. Rev. B 33, 70777090 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.7077
51.
51. M. Ospelt, J. Henz, L. Flepp, and H. von Kanel, Appl. Phys. Lett. 52, 227229 (1988).
http://dx.doi.org/10.1063/1.99527
52.
52. J. Vrijmoeth, J. F. van der Veen, D. R. Heslinga, and T. M. Klapwijk, Phys. Rev. B 42, 95989608 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9598
53.
53. J. P. Sullivan, R. T. Tung, and F. Schrey, J. Appl. Phys. 72, 478 (1992).
http://dx.doi.org/10.1063/1.351878
54.
54. R. T. Tung, F. Schrey, and S. M. Yalisove, Appl. Phys. Lett. 55, 2005 (1989).
http://dx.doi.org/10.1063/1.102338
55.
55. D. Cherns, C. J. D. Hetherington, and C. J. Humphreys, Phil. Mag. A 49, 165177 (1984).
http://dx.doi.org/10.1080/01418618408233436
56.
56. R. T. Tung, A. F. J. Levi, J. P. Sullivan, and F. Schrey, Phys. Rev. Lett. 66, 7275 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.72
57.
57. G. Ottaviani, K. N. Tu, and J. W. Mayer, Phys. Rev. B 24, 33543359 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.3354
58.
58. P. E. Schmid, P. S. Ho, H. Föll, and T. Y. Tan, Phys. Rev. B 28, 45934601 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.4593
59.
59. G. P. Das, P. Blochl, O. K. Andersen, N. E. Christensen, and O. Gunnarsson, Phys. Rev. Lett. 63, 11681171 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1168
60.
60. H. Fujitani and S. Asano, Phys. Rev. B 42, 16961704 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.1696
61.
61. H. Fujitani and S. Asano, J. Phys. Soc. Jpn. 60, 25262529 (1991).
http://dx.doi.org/10.1143/JPSJ.60.2526
62.
62. J. C. Hensel, A. F. J. Levi, R. T. Tung, and J. M. Gibson, Appl. Phys. Lett. 47, 151 (1985).
http://dx.doi.org/10.1063/1.96245
63.
63. R. T. Tung, A. F. J. Levi, and J. M. Gibson, Appl. Phys. Lett. 48, 635 (1986).
http://dx.doi.org/10.1063/1.96728
64.
64. J. M. Gibson, J. C. Bean, J. M. Poate, and R. T. Tung, Appl. Phys. Lett. 41, 818 (1982).
http://dx.doi.org/10.1063/1.93699
65.
65. R. T. Tung, J. C. Bean, J. M. Gibson, J. M. Poate, and D. C. Jacobson, Appl. Phys. Lett. 40, 684 (1982).
http://dx.doi.org/10.1063/1.93234
66.
66. F. Hellman and R. T. Tung, Phys. Rev. B 37, 10786 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.10786
67.
67. J. P. Sullivan, R. T. Tung, D. J. Eaglesham, F. Schrey, and W. R. Graham, J. Vac. Sci. Technol. B 11, 15641570 (1993).
http://dx.doi.org/10.1116/1.586970
68.
68. S. Y. Zhu, R. L. Van Meirhaeghe, C. Detavernier, F. Cardon, G. P. Ru, X. P. Qu, and B. Z. Li, Solid-State Electron. 44, 663671 (2000).
http://dx.doi.org/10.1016/S0038-1101(99)00268-3
69.
69. D. Loretto, J. M. Gibson, and S. M. Yalisove, Phys. Rev. Lett. 63, 298301 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.298
70.
70. C. W. T. Bulle-Lieuwma, A. F. De Jong, and D. E. W. Vandenhoudt, Phil. Mag. A 64, 255280 (1991).
http://dx.doi.org/10.1080/01418619108221184
71.
71. S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, and J. Ramdani, J. Vac. Sci. Technol. A 19, 934939 (2001).
http://dx.doi.org/10.1116/1.1365132
72.
72. P. Werner, W. Jager, and A. Schuppen, J. Appl. Phys. 74, 38463854 (1993).
http://dx.doi.org/10.1063/1.354479
73.
73. P. Werner, W. Jager, and A. Schuppen, Mater. Res. Soc. Symp. Proc. 320, 227232 (1994).
74.
74. N. V. Rees and C. C. Matthai, J. Phys. C 21, L981 (1988).
http://dx.doi.org/10.1088/0022-3719/21/27/002
75.
75. H. Fujitani and S. Asano, Appl. Surf. Sci. 41–42, 164168 (1989).
http://dx.doi.org/10.1016/0169-4332(89)90050-0
76.
76. R. Stadler and R. Podloucky, Phys. Rev. B 62, 22092219 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.2209
77.
77. A. Y. Cho and P. D. Dernier, J. Appl. Phys. 49, 33283332 (1978).
http://dx.doi.org/10.1063/1.325286
78.
78. R. Ludeke, L. L. Chang, and L. Esaki, Appl. Phys. Lett. 23, 201203 (1973).
http://dx.doi.org/10.1063/1.1654858
79.
79. T. Sands, Appl. Phys. Lett. 52, 197199 (1988).
http://dx.doi.org/10.1063/1.99518
80.
80. J. P. Harbison, T. Sands, N. Tabatabaie, W. K. Chan, L. T. Florez, and V. G. Keramidas, Appl. Phys. Lett. 53, 17171719 (1988).
http://dx.doi.org/10.1063/1.99804
81.
81. C. J. Palmstrom, B. O. Fimland, T. Sands, K. C. Garrison, and R. A. Bartynski, J. Appl. Phys. 65, 47534758 (1989).
http://dx.doi.org/10.1063/1.343228
82.
82. W. C. Marra, P. Eisenberger, and A. Y. Cho, J. Appl. Phys. 50, 69276933 (1979).
http://dx.doi.org/10.1063/1.325845
83.
83. D. J. Eaglesham, C. J. Kiely, D. Cherns, and M. Missous, Phil. Mag. A 60, 161175 (1989).
http://dx.doi.org/10.1080/01418618908219279
84.
84. J. Mizuki, K. Akimoto, I. Horosawa, K. Hirose, T. Mizutani, and J. Matsui, J. Vac. Sci. Technol. B 6, 3133 (1988).
http://dx.doi.org/10.1116/1.583988
85.
85. W. I. Wang, J. Vac. Sci. Technol. B 1, 574580 (1983).
http://dx.doi.org/10.1116/1.582601
86.
86. K. Hirose, K. Akimoto, I. Hirosawa, J. Mizuki, T. Mizutani, and J. Matsui, Phys. Rev. B 43, 45384540 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.4538
87.
87. M. Lazzarino, G. Scarel, S. Rubini, G. Bratina, L. Sorba, A. Franciosi, C. Berthod, N. Binggeli, and A. Baldereschi, Phys. Rev. B 57, R9431R9434 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R9431
88.
88. C. Barret and J. Massies, J. Vac. Sci. Technol. B 1, 819824 (1983).
http://dx.doi.org/10.1116/1.582699
89.
89. M. Missous, E. H. Rhoderick, and K. E. Singer, J. Appl. Phys. 60, 24392444 (1986).
http://dx.doi.org/10.1063/1.337156
90.
90. W. Chen, A. Kahn, P. Soukiassian, P. S. Mangat, J. Gaines, C. Ponzoni, and D. Olego, Phys. Rev. B 51, 1426514270 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.14265
91.
91. R. J. Needs, J. P. A. Charlesworth, and R. W. Godby, Europhys. Lett. 25, 3136 (1994).
http://dx.doi.org/10.1209/0295-5075/25/1/006
92.
92. J. Bardi, N. Binggeli, and A. Baldereschi, Phys. Rev. B 59, 80548064 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8054
93.
93. N. Tabatabaie, T. Sands, J. P. Harbison, H. L. Gilchrist, and V. G. Keramidas, Appl. Phys. Lett. 53, 25282530 (1988).
http://dx.doi.org/10.1063/1.100198
94.
94. J. G. Zhu, C. B. Carter, C. J. Palmstrom, and K. C. Garrison, Appl. Phys. Lett. 55, 3941 (1989).
http://dx.doi.org/10.1063/1.101748
95.
95. T. L. Cheeks, T. Sands, R. E. Nahory, J. Harbison, N. Tabatabaie, H. L. Gilchrist, B. J. Wilkens, and V. G. Keramidas, Appl. Phys. Lett. 56, 10431045 (1990).
http://dx.doi.org/10.1063/1.102609
96.
96. T. Sands, C. J. Palmstrom, J. P. Harbison, V. G. Keramidas, N. Tabatabaie, T. L. Cheeks, R. Ramesh, and Y. Silberberg, Mater. Sci. Rep. 5, 99170 (1990).
http://dx.doi.org/10.1016/S0920-2307(05)80003-9
97.
97. C. J. Palmstrøm, S. Mounier, T. G. Finstad, and P. F. Miceli, Appl. Phys. Lett. 56, 382384 (1990).
http://dx.doi.org/10.1063/1.102792
98.
98. C. J. Palmstrom, T. L. Cheeks, H. L. Gilchrist, J. G. Zhu, C. B. Carter, B. J. Wilkens, and R. Martin, J. Vac. Sci. Technol. A 10, 19461953 (1992).
http://dx.doi.org/10.1116/1.578120
99.
99. W. R. L. Lambrecht, A. G. Petukhov, and B. T. Hemmelman, Solid State Commun. 108, 361365 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00356-1
100.
100. K. T. Delaney, N. A. Spaldin, and C. G. Van De Walle, Phys. Rev. B 81, 165312 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165312
101.
101. S. Picozzi, A. Continenza, G. Satta, S. Massidda, and A. J. Freeman, Phys. Rev. B 61, 16736167342 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.16736
102.
102. C. Berthod, N. Binggeli, and A. Baldereschi, Phys. Rev. B 68, 085323 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085323
103.
103. C. Berthod, J. Bardi, N. Binggeli, and A. Baldereschi, J. Vac. Sci. Technol. 14, 30003007 (1996).
http://dx.doi.org/10.1116/1.588949
104.
104. C. Berthod, N. Binggeli, and A. Baldereschi, Europhys. Lett. 36, 6772 (1996).
http://dx.doi.org/10.1209/epl/i1996-00188-3
105.
105. M. Peressi, N. Binggeli, and A. Baldereschi, J. Phys. D 31, 12731299 (1998).
http://dx.doi.org/10.1088/0022-3727/31/11/002
106.
106. C. Berthod, N. Binggeli, and A. Baldereschi, J. Vac. Sci. Technol. B 18, 21142118 (2000).
http://dx.doi.org/10.1116/1.1303734
107.
107. J. R. Waldrop and R. W. Grant, Appl. Phys. Lett. 56, 557559 (1990).
http://dx.doi.org/10.1063/1.102744
108.
108. J. R. Waldrop, R. W. Grant, Y. C. Wang, and R. F. Davis, J. Appl. Phys. 72, 47574760 (1992).
http://dx.doi.org/10.1063/1.352086
109.
109. J. R. Waldrop, J. Appl. Phys. 75, 45484550 (1994).
http://dx.doi.org/10.1063/1.355948
110.
110. A. Itoh and H. Matsunami, Phys. Status Solidi A 162, 389408 (1997).
http://dx.doi.org/10.1002/1521-396X(199707)162:1<389::AID-PSSA389>3.0.CO;2-X
111.
111. S. Hara, T. Teraji, H. Okushi, and K. Kajimura, Appl. Surf. Sci. 117–118, 394399 (1997).
http://dx.doi.org/10.1016/S0169-4332(97)80113-4
112.
112. M. O. Aboelfotoh, C. Fröjdh, and C. S. Petersson, Phys. Rev. B 67, 075312 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.075312
113.
113. M. Kohyama and J. Hoekstra, Phys. Rev. B 61, 26722679 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2672
114.
114. G. Profeta, A. Blasetti, S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 64, 235312 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.235312
115.
115. S. Tanaka, T. Tamura, K. Okazaki, S. Ishibashi, and M. Kohyama, Phys. Status Solidi C 4, 29722976 (2007).
http://dx.doi.org/10.1002/pssc.200675489
116.
116. R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 30143017 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3014
117.
117. K. Ueno, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, and H. Takagi, Appl. Phys. Lett. 83, 17551757 (2003).
http://dx.doi.org/10.1063/1.1605806
118.
118. Y. Hikita, M. Nishikawa, T. Yajima, and H. Y. Hwang, Phys. Rev. B 79, 073101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.073101
119.
119. M. Mrovec, J. M. Albina, B. Meyer, and C. Elsasser, Phys. Rev. B 79, 245121 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245121
120.
120. R. Schafranek, S. Payan, M. Maglione, and A. Klein, Phys. Rev. B 77, 195310 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195310
121.
121. M. Nunez and M. B. Nardelli, Phys. Rev. B 73, 235422 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235422
122.
122. M. Nunez and M. B. Nardelli, Phys. Status Solidi B 243, 20812084 (2006).
http://dx.doi.org/10.1002/pssb.200666810
123.
123. R. A. McKee, F. J. Walker, M. B. Nardelli, W. A. Shelton, and G. M. Stocks, Science 300, 17261730 (2003).
http://dx.doi.org/10.1126/science.1083894
124.
124. T. Okumura and K. N. Tu, J. Appl. Phys. 54, 922927 (1983).
http://dx.doi.org/10.1063/1.332055
125.
125. O. Engstrom, H. Pettersson, and B. Sernelius, Phys. Status Solidi A 95, 691701 (1986).
http://dx.doi.org/10.1002/pssa.2210950239
126.
126. A. Tanabe, K. Konuma, N. Teranishi, S. Tohyama, and K. Masubuchi, J. Appl. Phys. 69, 850853 (1991).
http://dx.doi.org/10.1063/1.347321
127.
127. L. D. Bell and W. J. Kaiser, Phys. Rev. Lett. 61, 23682371 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2368
128.
128. M. H. Hecht, L. D. Bell, W. J. Kaiser, and F. J. Grunthaner, Appl. Phys. Lett. 55, 780782 (1989).
http://dx.doi.org/10.1063/1.101778
129.
129. A. E. Fowell, R. H. Williams, B. E. Richardson, A. A. Cafolla, D. I. Westwood, and D. A. Woolf, J. Vac. Sci. Technol. B 9, 581584 (1991).
http://dx.doi.org/10.1116/1.585463
130.
130. H. Palm, M. Arbes, and M. Schulz, Phys. Rev. Lett. 71, 22242227 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2224
131.
131. L. J. Schowalter and E. Y. Lee, Phys. Rev. B 43, 93089311 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.9308
132.
132. R. T. Tung, Appl. Phys. Lett. 58, 28212823 (1991).
http://dx.doi.org/10.1063/1.104747
133.
133. A. Olbrich, J. Vancea, F. Kreupl, and H. Hoffmann, Appl. Phys. Lett. 70, 25592561 (1997).
http://dx.doi.org/10.1063/1.119203
134.
134. A. Olbrich, J. Vancea, F. Kreupl, and H. Hoffmann, J. Appl. Phys. 83, 358365 (1998).
http://dx.doi.org/10.1063/1.366691
135.
135. S. Yae, R. Tsuda, T. Kai, K. Kukuchi, M. Uetsuji, T. Fujii, M. Fujitani, and Y. Nakato, J. Electrochem. Soc. 141, 30903095 (1994).
http://dx.doi.org/10.1149/1.2059283
136.
136. R. C. Rossi, M. X. Tan, and N. S. Lewis, Appl. Phys. Lett. 77, 26982700 (2000).
http://dx.doi.org/10.1063/1.1319534
137.
137. S. M. Sze, C. R. Crowell, and D. Kahng, J. Appl. Phys. 35, 2534 (1964).
http://dx.doi.org/10.1063/1.1702894
138.
138. C. R. Crowell and G. I. Roberts, J. Appl. Phys. 40, 37263730 (1969).
http://dx.doi.org/10.1063/1.1658262
139.
139. H. C. Card and E. H. Rhoderick, J. Phys. D 4, 15891601 (1971).
http://dx.doi.org/10.1088/0022-3727/4/10/319
140.
140. F. A. Padovani and R. Stratton, Solid-State Electron. 9, 695 (1966).
http://dx.doi.org/10.1016/0038-1101(66)90097-9
141.
141. V. L. Rideout and C. R. Crowell, Solid-State Electron. 13, 993 (1970).
http://dx.doi.org/10.1016/0038-1101(70)90097-3
142.
142. R. H. Cox and H. Strack, Solid-State Electron. 10, 1213 (1967).
http://dx.doi.org/10.1016/0038-1101(67)90063-9
143.
143. Y. Li, Ph.D. thesis, Graduate Center, CUNY, 2012.
144.
144. Y. Li, W. Long, and R. T. Tung, Appl. Phys. Lett. 101, 051604 (2012).
http://dx.doi.org/10.1063/1.4742142
145.
145. A. Thanailakis and A. Rasul, J. Phys. C 9, 337343 (1976).
http://dx.doi.org/10.1088/0022-3719/9/2/019
146.
146. N. Newman, M. van Schilfgaarde, T. Kendelwicz, M. D. Williams, and W. E. Spicer, Phys. Rev. B 33, 11461159 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.1146
147.
147. A. B. McLean and R. H. Williams, J. Phys. C 21, 783806 (1988).
http://dx.doi.org/10.1088/0022-3719/21/4/016
148.
148. I. Ohdomari and K. N. Tu, J. Appl. Phys. 51, 37353739 (1980).
http://dx.doi.org/10.1063/1.328160
149.
149. J. L. Freeouf, T. N. Jackson, S. E. Laux, and J. M. Woodall, Appl. Phys. Lett. 40, 634636 (1982).
http://dx.doi.org/10.1063/1.93171
150.
150. H. H. Guttler and J. H. Werner, Appl. Phys. Lett. 56, 11131115 (1990).
http://dx.doi.org/10.1063/1.102584
151.
151. J. Werner, A. F. J. Levi, R. T. Tung, M. Anzlowar, and M. Pinto, Phys. Rev. Lett. 60, 5356 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.53
152.
152. B. Bati, C. Nuhoglu, M. Saglam, E. Ayyildiz, and A. Turut, Phys. Scr. 61, 209212 (2000).
http://dx.doi.org/10.1238/Physica.Regular.061a00209
153.
153. G. L. Hall, Phys. Rev. B 19, 3921 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.3921
154.
154. F. W. de Wette, Phys. Rev. B 21, 3751 (1980).
http://dx.doi.org/10.1103/PhysRevB.21.3751
155.
155. J. Ihm and M. L. Cohen, Phys. Rev. B 21, 3754 (1980).
http://dx.doi.org/10.1103/PhysRevB.21.3754
156.
156. L. Kleinman, Phys. Rev. B 24, 7412 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.7412
157.
157. P. Bagno, L. F. D. d. Rose, and F. Toigo, Adv. Phys. 40, 685718 (1991).
http://dx.doi.org/10.1080/00018739100101542
158.
158. L. F. Mattheiss, Phys. Rev. 133, A1399A1403 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A1399
159.
159. C. G. Van de Walle and R. M. Martin, Phys. Rev. B 35, 81548165 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.8154
160.
160. A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61, 734737 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.734
161.
161. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976).
162.
162. C. Pisani, R. Dovesi, and C. Roetti, Hartree-Fock Ab Initio Treatment of Crystalline Systems, Lecture Notes in Chemistry, Vol. 48 (Springer-Verlag, Berlin, 1988).
163.
163. R. T. Tung and L. Kronik, “Cut-and-stitch analysis of potential distribution at metal-semiconductor interfaces” (unpublished).
164.
164. R. S. Mulliken, J. Chem. Phys. 23, 18331840 (1955).
http://dx.doi.org/10.1063/1.1740588
165.
165. R. F. W. Bader, Acc. Chem. Res. 18, 915 (1985).
http://dx.doi.org/10.1021/ar00109a003
166.
166. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 53975403 (1990).
http://dx.doi.org/10.1063/1.458517
167.
167. M. H. Cohen, A. Wasserman, and K. Burke, J. Phys. Chem. A 111, 1244712453 (2007).
http://dx.doi.org/10.1021/jp0743370
168.
168. F. L. Hirshfeld, Theor. Chim. Acta 44, 129138 (1977).
http://dx.doi.org/10.1007/BF00549096
169.
169. K. B. Wiberg and P. R. Rablen, J. Comp. Chem. 14, 15041518 (1993).
http://dx.doi.org/10.1002/jcc.540141213
170.
170. W. A. Harrison, E. A. Kraut, J. R. Waldrop, and R. W. Grant, Phys. Rev. B 18, 44024410 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.4402
171.
171. N. Memmel, Surf. Sci. Rep. 32, 91163 (1998).
http://dx.doi.org/10.1016/S0167-5729(98)00006-5
172.
172. M. Di Ventra, C. Berthod, and N. Binggeli, Phys. Rev. B 62, R10622R10625 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R10622
173.
173. M. K. Niranjan, L. Kleinman, and A. A. Demkov, Phys. Rev. B 77, 155316 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155316
174.
174. M. Buttiker, IBM J. Res. Dev. 32, 317334 (1988).
http://dx.doi.org/10.1147/rd.323.0317
175.
175. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
176.
176. L. Pauling, J. Am. Chem. Soc. 54, 35703582 (1932).
http://dx.doi.org/10.1021/ja01348a011
177.
177. R. S. Mulliken, J. Chem. Phys. 2, 782793 (1934).
http://dx.doi.org/10.1063/1.1749394
178.
178. R. T. Sanderson, Science 114, 670672 (1951).
http://dx.doi.org/10.1126/science.114.2973.670
179.
179. W. Gordy and W. J. Orville-Thomas, J. Chem. Phys. 24, 439 (1956).
http://dx.doi.org/10.1063/1.1742493
180.
180. A. L. Allred and E. G. Rochow, J. Inorg. Nucl. Chem. 5, 264268 (1958).
http://dx.doi.org/10.1016/0022-1902(58)80003-2
181.
181. J. St. John and A. N. Bloch, Phys. Rev. Lett. 33, 10951098 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.1095
182.
182. A. R. Miedema, P. F. de Chatel, and F. R. de Boer, Physica B & C 100, 128 (1980).
http://dx.doi.org/10.1016/0378-4363(80)90054-6
183.
183. R. J. Boyd and G. E. Markus, J. Chem. Phys. 75, 5385 (1981).
http://dx.doi.org/10.1063/1.441984
184.
184. R. P. Iczkowsky and J. L. Margrave, J. Am. Chem. Soc. 83, 3547 (1961).
http://dx.doi.org/10.1021/ja01478a001
185.
185. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 38013807 (1978).
http://dx.doi.org/10.1063/1.436185
186.
186. J. Hinze, M. A. Whitehead, and H. H. Jaffé, J. Am. Chem. Soc. 85, 148154 (1963).
http://dx.doi.org/10.1021/ja00885a008
187.
187. J. K. Nagle, J. Am. Chem. Soc. 112, 47414747 (1990).
http://dx.doi.org/10.1021/ja00168a019
188.
188. L. C. Allen and E. T. Knight, J. Mol. Struc. THEOCHEM 261, 313330 (1992).
http://dx.doi.org/10.1016/0166-1280(92)87083-C
189.
189. Y. R. Luo and S. W. Benson, Acc. Chem. Res. 25, 375381 (1992).
http://dx.doi.org/10.1021/ar00020a008
190.
190. J. L. Reed, J. Phys. Chem. A 106, 31483152 (2002).
http://dx.doi.org/10.1021/jp012886e
191.
191. C. H. Suresh and N. Koga, J. Am. Chem. Soc. 124, 17901797 (2002).
http://dx.doi.org/10.1021/ja017122r
192.
192. A. Cherkasov, J. Chem. Inf. Comput. Sci. 43, 20392047 (2003).
http://dx.doi.org/10.1021/ci034147w
193.
193. J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys. Rev. Lett. 49, 16911694 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.1691
194.
194. W. Yang, Y. Zhang, and P. W. Ayers, Phys. Rev. Lett. 84, 51725175 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5172
195.
195. W. J. Mortier, K. Van Genechten, and J. Gasteiger, J. Am. Chem. Soc. 107, 829835 (1985).
http://dx.doi.org/10.1021/ja00290a017
196.
196. R. F. Nalewajski, J. Phys. Chem. 89, 28312837 (1985).
http://dx.doi.org/10.1021/j100259a025
197.
197. P. Bultinck, W. Langenaeker, P. Lahorte, F. De Proft, P. Geerlings, M. Waroquier, and J. P. Tollenaere, J. Phys. Chem. A 106, 78877894 (2002).
http://dx.doi.org/10.1021/jp0205463
198.
198. A. K. Rappe and W. A. Goddard III, J. Phys. Chem. 95, 33583363 (1991).
http://dx.doi.org/10.1021/j100161a070
199.
199. T. Ogawa, N. Kurita, H. Sekino, O. Kitao, and S. Tanaka, Chem. Phys. Lett. 397, 382387 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.003
200.
200. R. A. Nistor, J. G. Polihronov, M. H. Muser, and N. J. Mosey, J. Chem. Phys. 125, 094108 (2006).
http://dx.doi.org/10.1063/1.2346671
201.
201. D. M. York and W. Yang, J. Chem. Phys. 104, 159172 (1996).
http://dx.doi.org/10.1063/1.470886
202.
202. P. Itskowitz and M. L. Berkowitz, J. Phys. Chem. A 102, 48084812 (1998).
http://dx.doi.org/10.1021/jp9730151
203.
203. C. Bret, M. J. Field, and L. Hemmingsen, Mol. Phys. 98, 751763 (2000).
http://dx.doi.org/10.1080/00268970009483345
204.
204. J. Morales and T. J. Martinez, J. Phys. Chem. A 105, 28422850 (2001).
http://dx.doi.org/10.1021/jp003823j
205.
205. A. Wadehra and S. K. Ghosh, J. Chem. Sci. 117, 401409 (2005).
http://dx.doi.org/10.1007/BF02708343
206.
206. R. T. Tung, Phys. Rev. B 64, 205310 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.205310
207.
207. S. M. Valone and S. R. Atlas, Phys. Rev. Lett. 97, 256402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.256402
208.
208. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, V. N. Staroverov, and J. Tao, Phys. Rev. A 76, 040501 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.040501
209.
209. J. Cioslowski and B. B. Stefanov, J. Chem. Phys. 99, 51515162 (1993).
http://dx.doi.org/10.1063/1.466016
210.
210. H. O. Pritchard and H. A. Skinner, Chem. Rev. 55, 745786 (1955).
http://dx.doi.org/10.1021/cr50004a005
211.
211. A. L. Companion and F. O. Ellison, J. Chem. Phys. 28, 18 (1958).
http://dx.doi.org/10.1063/1.1744050
212.
212. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity (Harper & Row, New York, 1978).
213.
213. R. T. Tung, “Spin-singlet atoms in molecules: Electrochemical potential equalization” (unpublished).
214.
214. R. T. Tung, Phys. Rev. Lett. 84, 60786081 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6078
215.
215. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988), p. 711.
216.
216. M. Akazawa, H. Ishii, and H. Hasegawa, Jpn. J. Appl. Phys., Part 1 30, 37443749 (1991).
http://dx.doi.org/10.1143/JJAP.30.3744
217.
217. C. Berthod, N. Binggeli, and A. Baldereschi, Phys. Rev. B 57, 97579762 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9757
218.
218. W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, J. Vac. Sci. Technol. 16, 14221433 (1979).
http://dx.doi.org/10.1116/1.570215
219.
219. M. S. Daw and D. L. Smith, Solid State Commun. 37, 205 (1981).
http://dx.doi.org/10.1016/0038-1098(81)91014-0
220.
220. R. E. Allen, T. J. Humphreys, J. D. Dow, and O. F. Sankey, J. Vac. Sci. Technol. B 2, 449452 (1984).
http://dx.doi.org/10.1116/1.582893
221.
221. W. Walukiewicz, J. Vac. Sci. Technol. B 5, 10621067 (1987).
http://dx.doi.org/10.1116/1.583729
222.
222. R. G. Barrera, O. Guzman, and B. Balaguer, Am. J. Phys. 46, 11721179 (1978).
http://dx.doi.org/10.1119/1.11501
223.
223. J. P. A. Charlesworth, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 70, 16851688 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1685
224.
224. J. P. A. Charlesworth, R. W. Godby, R. J. Needs, and L. J. Sham, Mater. Sci. Eng., B 14, 262265 (1992).
http://dx.doi.org/10.1016/0921-5107(92)90308-V
225.
225. C. R. Crowell and V. L. Rideout, Solid State Electron. 12, 89105 (1969).
http://dx.doi.org/10.1016/0038-1101(69)90117-8
226.
226. V. B. Bikbaev, S. C. Karpinskas, and J. J. Vaitkus, Phys. Status Solidi A 75, 583590 (1983).
http://dx.doi.org/10.1002/pssa.2210750231
227.
227. B. Shan and K. Cho, Phys. Rev. B 70, 233405 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.233405
228.
228. F. Léonard and A. A. Talin, Phys. Rev. Lett. 97, 026804 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.026804
229.
229. V. Vitale, A. Curioni, and W. Andreoni, J. Am. Chem. Soc. 130, 58485849 (2008).
http://dx.doi.org/10.1021/ja8002843
230.
230. J. Svensson and E. E. B. Campbell, J. Appl. Phys. 110, 111101 (2011).
http://dx.doi.org/10.1063/1.3664139
231.
231. F. Leonard and J. Tersoff, Phys. Rev. Lett. 84, 46934696 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4693
232.
232. J. Guo, J. Wang, E. Polizzi, S. Datta, and M. Lundstrom, IEEE Trans. Nanotechnol. 2, 329334 (2003).
http://dx.doi.org/10.1109/TNANO.2003.820518
233.
233. A. Natan, L. Kroni, H. Haick, and R. T. Tung, Adv. Mater. 19, 41034117 (2007).
http://dx.doi.org/10.1002/adma.200701681
234.
234. Y. Matsuda, W. Q. Deng, and W. A. Goddard, J. Phys. Chem. C 114, 1784517850 (2010).
http://dx.doi.org/10.1021/jp806437y
235.
235. Z. Q. Shi and W. A. Anderson, Solid-State Electron. 35, 14271432 (1992).
http://dx.doi.org/10.1016/0038-1101(92)90078-Q
236.
236. Z. Q. Shi and W. A. Anderson, J. Appl. Phys. 72, 38033807 (1992).
http://dx.doi.org/10.1063/1.352278
237.
237. H. J. Lee, W. A. Anderson, H. Hardtdegen, and H. Luth, Appl. Phys. Lett. 63, 19391941 (1993).
http://dx.doi.org/10.1063/1.110607
238.
238. A. Wang and W. A. Anderson, J. Electron. Mater. 25, 201205 (1996).
http://dx.doi.org/10.1007/BF02666244
239.
239. S. A. Clark, S. P. Wilks, A. Kestle, D. I. Westwood, and M. Elliott, Surf. Sci. 352–354, 850854 (1996).
http://dx.doi.org/10.1016/0039-6028(95)01286-9
240.
240. H.-T. Wang, B. S. Kang, F. Ren, A. Herrero, A. M. Gerger, B. P. Gila, S. J. Pearton, H. Shen, J. R. LaRoche, and K. V. Smith, J. Electrochem. Soc. 153, G787G790 (2006).
http://dx.doi.org/10.1149/1.2212049
241.
241. A. M. Herrero, A. M. Gerger, B. P. Gila, S. J. Pearton, H.-T. Wang, S. Jang, T. Anderson, J. J. Chen, B. S. Kang, and F. Ren, Appl. Surf. Sci. 253, 3298 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.07.032
242.
242. H. Hasegawa, Jpn. J. Appl. Phys., Part 1 38, 10981102 (1999).
http://dx.doi.org/10.1143/JJAP.38.1098
243.
243. H. Hasegawa, T. Sato, and T. Hashizume, J. Vac. Sci. Technol. B 15, 12271235 (1997).
http://dx.doi.org/10.1116/1.589443
244.
244. T. Hashizume, G. Schweeger, N. J. Wu, and H. Hasegawa, J. Vac. Sci. Technol. B 12, 26602666 (1994).
http://dx.doi.org/10.1116/1.587227
245.
245. S. Uno, T. Hashizume, S. Kasai, N. J. Wu, and H. Hasegawa, Jpn. J. Appl. Phys., Part 1 35, 12581263 (1996).
http://dx.doi.org/10.1143/JJAP.35.1258
246.
246. J. R. Heath and M. A. Ratner, Phys. Today 56(5), 4349 (2003).
http://dx.doi.org/10.1063/1.1583533
247.
247. I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Baraskkov, and J. P. Ferraris, Phys. Rev. B 54, R14321R14324 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R14321
248.
248. J. E. Pattison, M. F. Daniel, D. A. Anderson, P. R. Tapster, N. Apsley, and M. J. Slater, in External Abstract of European Solid-State DEvice Research Conference (ESSDERC) (1981), pp. 6465.
249.
249. R. H. Tredgold and Z. I. El-Badawy, J. Phys. D 18, 103109 (1985).
http://dx.doi.org/10.1088/0022-3727/18/1/013
250.
250. L. Kronik and Y. Shapira, Surf. Sci. Rep. 37(5), 206 (1999).
http://dx.doi.org/10.1016/S0167-5729(99)00002-3
251.
251. J. Ross Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 39, 412422 (1963).
http://dx.doi.org/10.1063/1.1734263
252.
252. A. Natan, Y. Zidon, Y. Shapira, and L. Kronik, Phys. Rev. B 73, 193310193314 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.193310
253.
253. H. Fukagawa, H. Yamane, S. Kera, K. K. Okudaira, and N. Ueno, Phys. Rev. B 73, 041302 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.041302
254.
254. D. Cornil, Y. Olivier, V. Geskin, and J. Cornil, Adv. Funct. Mater. 17, 11431148 (2007).
http://dx.doi.org/10.1002/adfm.200601116
255.
255. V. De Renzi, Surf. Sci. 603, 15181525 (2009).
http://dx.doi.org/10.1016/j.susc.2008.10.063
256.
256. G. Heimel, L. Romaner, E. Zojer, and J. L. Bredas, Nano Lett. 7, 932940 (2007).
http://dx.doi.org/10.1021/nl0629106
257.
257. M. L. Sushko and A. L. Shluger, Adv. Funct. Mater. 18, 22282236 (2008).
http://dx.doi.org/10.1002/adfm.200701305
258.
258. J. Topping, Proc. Royal Soc. London, Ser. A 114, 67 (1927).
http://dx.doi.org/10.1098/rspa.1927.0025
259.
259. T. Aqua, H. Cohen, O. Sinai, V. Frydman, T. Bendikov, D. Krepel, O. Hod, L. Kronik, and R. Naaman, J. Phys. Chem. C 115, 2488824892 (2011).
http://dx.doi.org/10.1021/jp208411f
260.
260. L. Wang, G. M. Rangger, L. Romaner, G. Heimel, T. Bučko, M. Zhongyun, Q. Li, Z. Shuai, and E. Zojer, Adv. Funct. Mater. 19, 37663775 (2009).
http://dx.doi.org/10.1002/adfm.200901152
261.
261. P. C. Rusu and G. Brocks, Phys. Rev. B 74, 073414 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.073414
262.
262. D. M. Taylor and G. F. Bayes, Phys. Rev. E 49, 14391449 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.1439
263.
263. B. De Boer, A. Hadipour, M. M. Mandoc, T. Van Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621625 (2005).
http://dx.doi.org/10.1002/adma.200401216
264.
264. R. Rousseau, V. De Renzi, R. Mazzarello, D. Marchetto, R. Biagi, S. Scandolo, and U. Del Pennino, J. Phys. Chem. B 110, 1086210872 (2006).
http://dx.doi.org/10.1021/jp061720g
265.
265. S. Bastide, R. Butruille, D. Cahen, A. Dutta, J. Libman, A. Shanzer, L. M. Sun, and A. Vilan, J. Phys. Chem. B 101, 26782684 (1997).
http://dx.doi.org/10.1021/jp9626935
266.
266. M. Bruening, E. Moons, D. Cahen, and A. Shanzer, J. Phys. Chem. 99, 83688373 (1995).
http://dx.doi.org/10.1021/j100020a073
267.
267. R. Cohen, N. Zenou, D. Cahen, and S. Yitzchaik, Chem. Phys. Lett. 279, 270274 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)01070-1
268.
268. A. Vilan, J. Ghabboun, and D. Cahen, J. Phys. Chem. B 107, 63606376 (2003).
http://dx.doi.org/10.1021/jp026779b
269.
269. C. H. Kuo, C. P. Liu, S. H. Lee, H. Y. Chang, W. C. Lin, Y. W. You, H. Y. Liao, and J. J. Shyue, Phys. Chem. Chem. Phys. 13, 1512215126 (2011).
http://dx.doi.org/10.1039/c1cp20590k
270.
270. S. R. Puniredd, I. Platzman, R. T. Tung, and H. Haick, J. Phys. Chem. C 114, 1867418678 (2010).
http://dx.doi.org/10.1021/jp107806z
271.
271. G. C. Herdt, D. R. Jung, and A. W. Czanderna, Prog. Surf. Sci. 50, 103129 (1995).
http://dx.doi.org/10.1016/0079-6816(95)00048-8
272.
272. B. de Boer, M. M. Frank, Y. J. Chabal, W. Jiang, E. Garfunkel, and Z. Bao, Langmuir 20, 15391542 (2004).
http://dx.doi.org/10.1021/la0356349
273.
273. W. R. Salaneck, M. Logdlund, J. Birgersson, P. Barta, R. Lazzaroni, and J. L. Bredas, Synth Met 85, 12191220 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80213-5
274.
274. A. V. Walker, T. B. Tighe, B. C. Haynie, S. Uppili, N. Winograd, and D. L. Allara, J. Phys. Chem. B 109, 1126311272 (2005).
http://dx.doi.org/10.1021/jp0506484
275.
275. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 15501552 (1999).
http://dx.doi.org/10.1126/science.286.5444.1550
276.
276. E. A. Speets, B. J. Ravoo, F. J. G. Roesthuis, F. Vroegindeweij, D. H. A. Blank, and D. N. Reinhoudt, Nano Lett. 4, 841 (2004).
http://dx.doi.org/10.1021/nl049774u
277.
277. H. Haick, M. Ambrico, J. Ghabboun, T. Ligonzo, and D. Cahen, Phys. Chem. Chem. Phys. 6, 45384541 (2004).
http://dx.doi.org/10.1039/b411490f
278.
278. M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger, Phys. Rev. B 52, 90719077 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.9071
279.
279. D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, Nature 408, 6769 (2000).
http://dx.doi.org/10.1038/35040518
280.
280. I. Amlani, A. M. Rawlett, L. A. Nagahara, and R. K. Tsui, Appl. Phys. Lett. 80, 27612763 (2002).
http://dx.doi.org/10.1063/1.1469655
281.
281. H. O. Finklea and D. D. Hanshew, J. Am. Chem. Soc. 114, 31733181 (1992).
http://dx.doi.org/10.1021/ja00035a001
282.
282. J. F. Smalley, S. W. Feldberg, C. E. D. Chidsey, M. R. Linford, M. D. Newton, and Y.-P. Liu, J. Phys. Chem. 99, 1314113149 (1995).
http://dx.doi.org/10.1021/j100035a016
283.
283. H. Hagenström, M. J. Esplandi, and D. M. Kolb, Langmuir 17, 839848 (2001).
http://dx.doi.org/10.1021/la001140p
284.
284. A. Vilan, A. Shanzer, and D. Cahen, Nature 404, 166168 (2000).
http://dx.doi.org/10.1038/35004539
285.
285. A. Vilan and D. Cahen, Adv. Funct. Mater. 12, 795807 (2002).
http://dx.doi.org/10.1002/adfm.200290009
286.
286. K. Slowinski, R. V. Chamberlain, C. J. Miller, and M. Majda, J. Am. Chem. Soc. 119, 1191011919 (1997).
http://dx.doi.org/10.1021/ja971921l
287.
287. M. A. Rampi and G. M. Whitesides, Chem. Phys. 281, 373391 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00445-7
288.
288. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. 37, 550575 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
289.
289. P. M. S. John and H. G. Craighead, Appl. Phys. Lett. 68, 10221024 (1996).
http://dx.doi.org/10.1063/1.116216
290.
290. Y.-L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, Appl. Phys. Lett. 81, 562564 (2002).
http://dx.doi.org/10.1063/1.1493226
291.
291. Y.-L. Loo, D. V. Lang, J. A. Rogers, and J. W. P. Hsu, Nano Lett. 3, 913917 (2003).
http://dx.doi.org/10.1021/nl034207c
292.
292. L. Zuppiroli, L. Si-Ahmed, K. Kamaras, F. Nuesch, M. N. Bussac, D. Ades, A. Siove, E. Moons, and M. Gratzel, Euro. Phys. J. B 11, 505512 (1999).
http://dx.doi.org/10.1007/s100510050962
293.
293. Y. Selzer and D. Cahen, Adv. Mater. 13, 508 (2001).
http://dx.doi.org/10.1002/1521-4095(200104)13:7<508::AID-ADMA508>3.0.CO;2-8
294.
294. J. W. P. Hsu, Y. L. Loo, D. V. Lang, and J. A. Rogers, J. Vac. Sci. Technol. B 21, 19281935 (2003).
http://dx.doi.org/10.1116/1.1588641
295.
295. S. Lodha, P. Carpenter, and D. B. Janes, J. Appl. Phys. 99, 024510 (2006).
http://dx.doi.org/10.1063/1.2164530
296.
296. H. Haick, M. Ambrico, T. Ligonzo, R. T. Tung, and D. Cahen, J. Am. Chem. Soc. 128, 68546869 (2006).
http://dx.doi.org/10.1021/ja058224a
297.
297. W. Wang, J. Wang, M. Zhao, R. Liang, and J. Xu, J. Semicond. 33, 102004 (2012).
http://dx.doi.org/10.1088/1674-4926/33/10/102004
298.
298. V. Perebeinos and M. Newton, Chem. Phys. 319, 159166 (2005).
http://dx.doi.org/10.1016/j.chemphys.2005.04.041
299.
299. L. Segev, A. Salomon, A. Natan, D. Cahen, L. Kronik, F. Amy, C. K. Chan, and A. Kahn, Phys. Rev. B 74, 165323 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165323
300.
300. M. L. Sushko and A. L. Shluger, J. Phys. Chem. B 111, 40194025 (2007).
http://dx.doi.org/10.1021/jp0688557
301.
301. H. Haick, J. P. Pelz, T. Ligonzo, M. Ambrico, D. Cahen, W. Cai, C. Marginean, C. Tivarus, and R. T. Tung, Phys. Status Solidi A 203, 3438 (2006).
http://dx.doi.org/10.1002/pssa.200622381
302.
302. R. H. Williams, V. Montgomery, R. R. Varma, and A. McKinley, J. Phys. D 10, L253L256 (1977).
http://dx.doi.org/10.1088/0022-3727/10/18/002
303.
303. F. Hasegawa, M. Onomura, C. Mogi, and Y. Nannichi, Solid-State Electron. 31, 223228 (1988).
http://dx.doi.org/10.1016/0038-1101(88)90131-1
304.
304. M. A. Sobolewski and C. R. Helms, Appl. Phys. Lett. 54, 638640 (1989).
http://dx.doi.org/10.1063/1.100903
305.
305. K. Hattori and Y. Torii, Solid-State Electron. 34, 527531 (1991).
http://dx.doi.org/10.1016/0038-1101(91)90157-T
306.
306. J. Nakamura, H. Niu, and S. Kishino, Jpn. J. Appl. Phys., Part 1 32, 699703 (1993).
http://dx.doi.org/10.1143/JJAP.32.699
307.
307. J. Her, H. Lim, C. H. Kim, I. K. Han, J. I. Lee, and K. N. Kang, J. Korean Inst. Tel. Elec. 31A, 5663 (1994).
308.
308. H. Sawatari and O. Oda, J. Appl. Phys. 72, 50045006 (1992).
http://dx.doi.org/10.1063/1.352027
309.
309. C. J. Huang, J. Appl. Phys. 89, 65016505 (2001).
http://dx.doi.org/10.1063/1.1365057
310.
310. M. Biber, C. Termirci, and A. Turut, J. Vac. Sci. Technol. B 20, 1013 (2002).
http://dx.doi.org/10.1116/1.1426369
311.
311. M. Kobayashi, A. Kinoshita, K. Saraswat, H. S. P. Wong, and Y. Nishi, J. Appl. Phys. 105, 023702 (2009).
http://dx.doi.org/10.1063/1.3065990
312.
312. Y. Zhou, M. Ogawa, X. Han, and K. L. Wang, Appl. Phys. Lett. 93, 202105 (2008).
http://dx.doi.org/10.1063/1.3028343
313.
313. R. Wang, M. Xu, P. D. Ye, and R. Huang, J. Vac. Sci. Technol. B 29, 041206 (2011).
http://dx.doi.org/10.1116/1.3610972
314.
314. Z. Wu, W. Huang, C. Li, H. Lai, and S. Chen, IEEE Trans. Electron Devices 59, 13281331 (2012).
http://dx.doi.org/10.1109/TED.2012.2187455
315.
315. D. Connelly, C. Faulkner, P. A. Clifton, and D. E. Grupp, Appl. Phys. Lett. 88, 012105 (2006).
http://dx.doi.org/10.1063/1.2159096
316.
316. B. E. Coss, W. Y. Loh, R. M. Wallace, J. Kim, P. Majhi, and R. Jammy, Appl. Phys. Lett. 95, 222105 (2009).
http://dx.doi.org/10.1063/1.3263719
317.
317. S. Aydogan, M. Saglam, and A. Türüt, J. Phys. D: Condens. Matter 18, 26652676 (2006).
318.
318. A. A. Kumar, V. Rajagopal Reddy, V. Janardhanam, H. D. Yang, H. J. Yun, and C. J. Choi, J. Alloys Compd. 549, 1821 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.09.085
319.
319. M. Soylu and F. Yakuphanoglu, Superlattices Microstruct. 52, 470483 (2012).
http://dx.doi.org/10.1016/j.spmi.2012.05.022
320.
320. J. R. Waldrop, Appl. Phys. Lett. 53, 15181520 (1988).
http://dx.doi.org/10.1063/1.99943
321.
321. J. C. Costa, F. Williamson, T. J. Miller, K. Beyzavi, M. I. Nathan, D. S. L. Mui, S. Strite, and H. Morkoc, Appl. Phys. Lett. 58, 382384 (1991).
http://dx.doi.org/10.1063/1.104641
322.
322. H. Hasegawa, H. Ishii, and K. Koyanagi, Appl. Surf. Sci. 56–58, 317324 (1992).
http://dx.doi.org/10.1016/0169-4332(92)90250-2
323.
323. M. Cantile, L. Sorba, S. Yildirim, P. Faraci, G. Biasiol, A. Franciosi, T. J. Miller, and M. I. Nathan, Appl. Phys. Lett. 64, 988990 (1994).
http://dx.doi.org/10.1063/1.110927
324.
324. T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett. 91, 123123 (2007).
http://dx.doi.org/10.1063/1.2789701
325.
325. T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Express 1, 051406 (2008).
http://dx.doi.org/10.1143/APEX.1.051406
326.
326. R. R. Lieten, V. V. Afanas'ev, N. H. Thoan, S. Degroote, W. Walukiewicz, and G. Borghs, J. Electrochem. Soc. 158, H358H362 (2011).
http://dx.doi.org/10.1149/1.3545703
327.
327. R. R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, Appl. Phys. Lett. 92, 022106 (2008).
http://dx.doi.org/10.1063/1.2831918
328.
328. Y. Zhou, W. Han, Y. Wang, F. Xiu, J. Zou, R. K. Kawakami, and K. L. Wang, Appl. Phys. Lett. 96, 102103 (2010).
http://dx.doi.org/10.1063/1.3357423
329.
329. W. Mönch, J. Appl. Phys. 111, 073706 (2012).
http://dx.doi.org/10.1063/1.3699180
330.
330. J. Hu, A. Nainani, Y. Sun, K. C. Saraswat, and H. S. Philip Wong, Appl. Phys. Lett. 99, 252104 (2011).
http://dx.doi.org/10.1063/1.3669414
331.
331. A. M. Roy, J. Lin, and K. C. Saraswat, IEEE Electron Device Lett. 33, 761763 (2012).
http://dx.doi.org/10.1109/LED.2012.2191386
332.
332. Y. Sakamoto, T. Sugino, T. Miyazaki, and J. Shirafuji, Electron. Lett. 31, 1104 (1995).
http://dx.doi.org/10.1049/el:19950756
333.
333. D. T. Quan and H. Hbib, Solid-State Electron. 36, 339344 (1993).
http://dx.doi.org/10.1016/0038-1101(93)90085-5
334.
334. T. Sugino, Y. Sakamoto, and J. Shirafuji, Jpn. J. Appl. Phys., Part 2 32, L239L242 (1993).
http://dx.doi.org/10.1143/JJAP.32.L239
335.
335. S. Kasai and H. Hasegawa, in IEEE International Conference on Indium Phosphide (1994), pp. 220223.
336.
336. Y. Gülen, K. Ejderha, Ç. Nuholu, and A. Turut, Microelectron. Eng. 88, 179182 (2011).
http://dx.doi.org/10.1016/j.mee.2010.10.009
337.
337. C. Gaonach, S. Cassette, M. A. Di Forte-Poisson, C. Brylinski, M. Champagne, and A. Tardella, Semicond. Sci. Technol. 5, 322327 (1990).
http://dx.doi.org/10.1088/0268-1242/5/4/008
338.
338. P. Kordos, M. Marso, R. Meyer, and H. Luth, J. Appl. Phys. 72, 23472355 (1992).
http://dx.doi.org/10.1063/1.351576
339.
339. S. A. Chambers, J. Vac. Sci. Technol. A 11, 860868 (1993).
http://dx.doi.org/10.1116/1.578318
340.
340. Y. Bing, J. C. Chen, and F. S. Choa, Mater. Res. Soc. Symp. Proc. 340, 259263 (1994).
http://dx.doi.org/10.1557/PROC-340-259
341.
341. K. Shiojima, K. Nishimura, T. Aoki, and F. Hyuga, J. Appl. Phys. 77, 390392 (1995).
http://dx.doi.org/10.1063/1.359335
342.
342. H. J. Gossmann and E. F. Schubert, Crit. Rev. Solid State Mater. Sci. 18, 167 (1993).
http://dx.doi.org/10.1080/10408439308243415
343.
343. A. V. Murel, A. V. Novikov, V. I. Shashkin, and D. V. Yurasov, Semiconductors 46, 13581361 (2012).
http://dx.doi.org/10.1134/S1063782612110140
344.
344. J. M. Shannon, Solid-State Electron. 19, 537543 (1976).
http://dx.doi.org/10.1016/0038-1101(76)90019-8
345.
345. S. J. Eglash, P. Shihong, M. Dang, W. E. Spicer, and D. M. Collins, Jpn. J. Appl. Phys. Suppl. 22-1, 431435 (1982).
346.
346. Z. J. Horvath, V. Van Tuyen, S. Franchi, A. Bosacchi, P. Frigeri, E. Gombia, R. Mosca, D. Pal, I. Kalmar, and B. Szentpali, Mater. Sci. Eng., B-Solid State Mater. Adv. Technol. 80, 248251 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00616-4
347.
347. T. Tamura, S. Ishibashi, K. Terakura, and H. Weng, Phys. Rev. B 80, 195302 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195302
348.
348. Y. Nishi, T. Yamauchi, T. Marukame, A. Kinoshita, J. Koga, and K. Kato, Phys. Rev. B 84, 115323 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115323
349.
349. J. D. Hwang, Y. L. Lin, and C. Y. Kung, Nanotechnology 24, 115709 (2013).
http://dx.doi.org/10.1088/0957-4484/24/11/115709
350.
350. G. A. Adegboyega, Phys. Status Solidi A 111, K31K35 (1989).
http://dx.doi.org/10.1002/pssa.2211110149
351.
351. Y. H. Wang, M. P. Houng, P. W. Sze, J. F. Chen, and A. Y. Cho, J. Appl. Phys. 71, 27602764 (1992).
http://dx.doi.org/10.1063/1.351050
352.
352. T. Teraji, S. Hara, H. Okushi, and K. Kajimura, Appl. Phys. Lett. 71, 689691 (1997).
http://dx.doi.org/10.1063/1.119831
353.
353. J.-S. Jang and T.-Y. Seong, J. Appl. Phys. 88, 30643066 (2000).
http://dx.doi.org/10.1063/1.1287236
354.
354. T. Tsuzuku, T. Sugimura, Y. Kasai, T. Inokuma, K. Iiyama, and S. Takamiya, Jpn. J. Appl. Phys., Part 1 39, 57885793 (2000).
http://dx.doi.org/10.1143/JJAP.39.5788
355.
355. H. Iwakuro, T. Inoue, and T. Kuroda, Jpn. J. Appl. Phys., Part 2 30, L255L257 (1991).
http://dx.doi.org/10.1143/JJAP.30.L255
356.
356. H. Iwakuro, M. Tokonami, T. Kuroda, S. Tamaki, and Y. Kitatsuji, Jpn. J. Appl. Phys., Part 1 32, 54875495 (1993).
http://dx.doi.org/10.1143/JJAP.32.5487
357.
357. A. Paccagnella and A. Callegari, Solid-State Electron. 34, 14091414 (1991).
http://dx.doi.org/10.1016/0038-1101(91)90037-Y
358.
358. A. Y. Polyakov, M. Stam, A. G. Milnes, A. E. Bochkarev, and S. J. Pearton, J. Appl. Phys. 71, 44114414 (1992).
http://dx.doi.org/10.1063/1.350780
359.
359. T. Sugino, Y. Sakamoto, T. Sumiguchi, K. Nomoto, and J. Shirafuji, Jpn. J. Appl. Phys., Part 2 32, L1196L1199 (1993).
http://dx.doi.org/10.1143/JJAP.32.L1196
360.
360. S. Ashok, H. Krautle, and H. Beneking, Appl. Phys. Lett. 45, 431433 (1984).
http://dx.doi.org/10.1063/1.95247
361.
361. R. Tyagi, T. P. Chow, J. M. Borrego, and K. A. Pisarczyk, Appl. Phys. Lett. 63, 651653 (1993).
http://dx.doi.org/10.1063/1.109979
362.
362. P. C. Srivastava, C. Colluza, S. Chandra, and U. P. Singh, Solid-State Electron. 37, 520522 (1994).
http://dx.doi.org/10.1016/0038-1101(94)90021-3
363.
363. A. Fricke, G. Stareev, T. Kummetz, D. Sowada, J. Mahnss, W. Kowalsky, and K. J. Ebeling, Appl. Phys. Lett. 65, 755757 (1994).
http://dx.doi.org/10.1063/1.112221
364.
364. E. Grusell, S. Berg, and L. P. Andersson, J. Electrochem. Soc. 127, 15731576 (1980).
http://dx.doi.org/10.1149/1.2129953
365.
365. S. Ashok, T. P. Chow, and B. J. Baliga, Appl. Phys. Lett. 42, 687689 (1983).
http://dx.doi.org/10.1063/1.94073
366.
366. X. C. Mu and S. J. Fonash, IEEE Electron Device Lett. 6, 410412 (1985).
http://dx.doi.org/10.1109/EDL.1985.26173
367.
367. Y. G. Wang and S. Ashok, Physica B 170, 513517 (1991).
http://dx.doi.org/10.1016/0921-4526(91)90168-E
368.
368. H. Thomas and J. K. Luo, Solid-State Electron. 35, 14011407 (1992).
http://dx.doi.org/10.1016/0038-1101(92)90074-M
369.
369. M. Yamada, C. J. Spindt, K. E. Miyano, P. L. Meissner, A. Herrera-Gomez, T. Kendelewicz, and W. E. Spicer, J. Appl. Phys. 71, 314317 (1992).
http://dx.doi.org/10.1063/1.350708
370.
370. Y. Q. Jia and G. G. Qin, Appl. Phys. Lett. 56, 641643 (1990).
http://dx.doi.org/10.1063/1.102723
371.
371. P. P. Sahay, M. Shamsuddin, and R. S. Srivastava, Solid-State Electron. 34, 727729 (1991).
http://dx.doi.org/10.1016/0038-1101(91)90009-N
372.
372. E. K. Kim, Y. J. Park, S.-K. Min, J.-G. Lee, and W. C. Choi, Ungyong Mulli 8, 132137 (1995).
373.
373. Z. M. Wang, Y. X. Zhang, K. Wu, M. H. Yuan, W. X. Chen, and G. G. Qin, Phys. Rev. B 51, 78787881 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.7878
374.
374. V. G. Bozhkov, V. A. Kagadei, and N. A. Torkhov, Izv. Vyssh. Uchebn. Zaved., Fiz. 40, 115121 (1997).
375.
375. R. L. van Meirhaeghe, W. H. Laflere, and F. Cardon, J. Appl. Phys. 76, 403406 (1994).
http://dx.doi.org/10.1063/1.357089
376.
376. S. A. Ding and Z. Xu, Chin. J. Semicond. 15, 367372 (1994).
377.
377. J. P. Sullivan, W. R. Graham, R. T. Tung, and F. Schrey, Appl. Phys. Lett. 62, 2804 (1993).
http://dx.doi.org/10.1063/1.109215
378.
378. J. J. Coleman, Appl. Phys. Lett. 31, 283285 (1977).
http://dx.doi.org/10.1063/1.89663
379.
379. V. Montgomery, R. H. Williams, and G. P. Srivastava, J. Phys. C 14, L191L194 (1981).
http://dx.doi.org/10.1088/0022-3719/14/8/005
380.
380. J. R. Waldrop, Appl. Phys. Lett. 47, 13011303 (1985).
http://dx.doi.org/10.1063/1.96312
381.
381. S. Hohenecker, T. U. Kampen, W. Braun, and D. R. T. Zahn, Surf. Sci. 433–435, 347351 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00132-6
382.
382. E. K. Kim, M. H. Son, Y. J. Park, J.-G. Lee, and S.-K. Min, J. Appl. Phys. 78, 42764278 (1995).
http://dx.doi.org/10.1063/1.359826
383.
383. M. Yamada, A. K. Wahi, T. Kendelewicz, and W. E. Spicer, Phys. Rev. B 45, 36003605 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.3600
384.
384. T. S. Huang and R. S. Fang, Solid-State Electron. 37, 14611466 (1994).
http://dx.doi.org/10.1016/0038-1101(94)90152-X
385.
385. H. Nobusawa and H. Ikoma, Jpn. J. Appl. Phys., Part 1 32, 37133719 (1993).
http://dx.doi.org/10.1143/JJAP.32.3713
386.
386. S. Meskinis, K. Slapikas, V. Grigaliunas, J. Matukas, and S. Smetona, Phys. Status Solidi A 180, 499505 (2000).
http://dx.doi.org/10.1002/1521-396X(200008)180:2<499::AID-PSSA499>3.0.CO;2-M
387.
387. M. Tao, D. Udeshi, N. Basit, E. Maldonado, and W. P. Kirk, Appl. Phys. Lett. 82, 15591561 (2003).
http://dx.doi.org/10.1063/1.1559418
388.
388. S.-H. Kim, T.-Y. Seong, and H.-K. Kim, Appl. Phys. Lett. 86, 022101 (2005).
http://dx.doi.org/10.1063/1.1839285
389.
389. Q. T. Zhao, U. Breuer, E. Rije, S. Lenk, and S. Mantl, Appl. Phys. Lett. 86, 062108 (2005).
http://dx.doi.org/10.1063/1.1863442
390.
390. K. Ikeda, Y. Yamashita, N. Sugiyama, N. Taoka, and S.-i. Takagi, Appl. Phys. Lett. 88, 152115 (2006).
http://dx.doi.org/10.1063/1.2191829
391.
391. H. Mazari, Z. Benamara, O. Bonnaud, and R. Olier, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 90, 171175 (2002).
http://dx.doi.org/10.1016/S0921-5107(01)00935-7
392.
392. J.-O. Song, J. S. Kwak, and T.-Y. Seong, Semicond. Sci. Technol. 21, L7L10 (2006).
http://dx.doi.org/10.1088/0268-1242/21/2/L01
393.
393. L. Geng, B. Magyari-Kope, Z. Y. Zhang, and Y. Nishi, IEEE Electron Device Lett. 29, 746749 (2008).
http://dx.doi.org/10.1109/LED.2008.2000647
394.
394. M. Sinha, E. F. Chor, and Y. C. Yeo, Appl. Phys. Lett. 92, 222114 (2008).
http://dx.doi.org/10.1063/1.2940596
395.
395. S. M. Koh, X. Wang, T. Thanigaivelan, T. Henry, Y. Erokhin, G. S. Samudra, and Y. C. Yeo, J. Appl. Phys. 110, 073703 (2011).
http://dx.doi.org/10.1063/1.3645018
396.
396. M. Mueller, Q. T. Zhao, C. Urban, C. Sandow, D. Buca, S. Lenk, S. Estévez, and S. Mantl, Mater. Sci. Eng., B 154–155, 168171 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.09.037
397.
397. Y. Guo, X. An, R. Huang, C. Fan, and X. Zhang, Appl. Phys. Lett. 96, 143502 (2010).
http://dx.doi.org/10.1063/1.3378878
398.
398. J. Chan, N. Y. Martinez, J. J. D. Fitzgerald, A. V. Walker, R. A. Chapman, D. Riley, A. Jain, C. L. Hinkle, and E. M. Vogel, Appl. Phys. Lett. 99, 012114 (2011).
http://dx.doi.org/10.1063/1.3609874
399.
399. N. Reckinger, C. Poleunis, E. Dubois, C. Augustin Duu, X. Tang, A. Delcorte, and J. P. Raskin, Appl. Phys. Lett. 99, 012110 (2011).
http://dx.doi.org/10.1063/1.3608159
400.
400. Y. Li, W. Long, and R. T. Tung, Solid State Commun. 151, 16411644 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.08.017
401.
401. Y. Tong, B. Liu, P. S. Y. Lim, and Y. C. Yeo, IEEE Electron Device Lett. 33, 773775 (2012).
http://dx.doi.org/10.1109/LED.2012.2191760
402.
402. Z. Li, X. An, M. Li, Q. Yun, M. Lin, M. Li, X. Zhang, and R. Huang, IEEE Electron Device Lett. 33, 16871689 (2012).
http://dx.doi.org/10.1109/LED.2012.2220954
403.
403. M. Koike, Y. Kamimuta, and T. Tezuka, Appl. Phys. Lett. 102, 032108 (2013).
http://dx.doi.org/10.1063/1.4789437
404.
404. X. Guo, Y. Tang, Y. L. Jiang, X. P. Qu, G. P. Ru, D. W. Zhang, D. Deduytsche, and C. Detavernier, Microelectron. Eng. 106, 121 (2013).
http://dx.doi.org/10.1016/j.mee.2013.01.006
405.
405. J. Ivanco, H. Kobayashi, J. Almeida, and G. Margaritondo, J. Appl. Phys. 87, 795800 (2000).
http://dx.doi.org/10.1063/1.371943
406.
406. C. Marinelli, L. Sorba, M. Lazzarino, D. Kumar, E. Pelucchi, B. H. Muller, D. Orani, S. Rubini, A. Franciosi, S. De Franceshi, and F. Beltran, J. Vac. Sci. Technol. B 18, 21192127 (2000).
http://dx.doi.org/10.1116/1.1306333
407.
407. P. Kalra, N. Vora, P. Majhi, P. Y. Hung, H. H. Tseng, R. Jammy, and T. J. K. Liu, Electrochem. Solid-State Lett. 12, H1H3 (2009).
http://dx.doi.org/10.1149/1.3002394
408.
408. M. W. Allen and S. M. Durbin, Appl. Phys. Lett. 92, 122110 (2008).
http://dx.doi.org/10.1063/1.2894568
409.
409. L. J. Brillson, Y. Dong, D. Doutt, D. C. Look, and Z. Q. Fang, Physica B 404, 47684773 (2009).
http://dx.doi.org/10.1016/j.physb.2009.08.151
410.
410. L. J. Brillson, Y. Dong, F. Tuomisto, B. G. Svensson, A. Y. Kuznetsov, D. Doutt, H. L. Mosbacker, G. Cantwell, J. Zhang, J. J. Song, Z. Q. Fang, and D. C. Look, J. Vac. Sci. Technol. B 30, 050801 (2012).
http://dx.doi.org/10.1116/1.4732531
411.
411. J. C. Costa, T. J. Miller, F. Williamson, and M. I. Nathan, J. Appl. Phys. 70, 21732184 (1991).
http://dx.doi.org/10.1063/1.349456
412.
412. L. Sorba, G. Bratina, G. Ceccone, A. Antonini, J. F. Walker, M. Micovic, and A. Franciosi, Phys. Rev. B 43, 24502453 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.2450
413.
413. K. Koyanagi, S. Kasai, and H. Hasegawa, Jpn. J. Appl. Phys. Pt. 1 32, 502510 (1993).
http://dx.doi.org/10.1143/JJAP.32.502
414.
414. T. dell'Orto, J. Almeida, A. Terrasi, M. Marsi, C. Coluzza, G. Margaritondo, and P. Perfetti, Phys. Rev. B 50, 1818918193 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.18189
415.
415. Z. Chen, S. N. Mohammad, and H. Morkoç, Phys. Rev. B 53, 38793884 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.3879
416.
416. Y. Li, W. Long, and R. T. Tung, Appl. Surf. Sci. 284, 720 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.07.162
417.
417. W. Long, Y. Li, and R. T. Tung, Surf. Sci. 610, 4852 (2013).
http://dx.doi.org/10.1016/j.susc.2013.01.006
418.
418. W. Long, Y. Li, and R. T. Tung, “Schottky barrier height systematics studied by partisan interlayer,” Thin Solid Films (in press).
http://dx.doi.org/10.1016/j.tsf.2013.10.075
419.
419. M. Gurnett, J. B. Gustafsson, L. J. Holleboom, K. O. Magnusson, S. M. Widstrand, L. S. O. Johansson, M. K.-J. Johansson, and S. M. Gray, Phys. Rev. B 71, 195408 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195408
420.
420. E. Kaxiras, Phys. Rev. B 43, 6824 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.6824
421.
421. P. Hutchison, M. M. R. Evans, and J. Nogami, Surf. Sci. 411, 99110 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00335-5
422.
422. O. Kubo, A. A. Saranin, A. V. Zotov, T. Harada, T. Kobayashi, N. Yamaoka, J.-T. Ryu, M. Katayama, and K. Oura, Jpn. J. Appl. Phys., Part 1 39, 3740 (2000).
http://dx.doi.org/10.1143/JJAP.39.3740
423.
423. R. Shaltaf, E. Mete, and S. Ellialtioglu, Phys. Rev. B 69, 125417 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.125417
424.
424. J. Zegenhagen, M. S. Hybertsen, P. E. Freeland, and J. R. Patel, Phys. Rev. B 38, 78857888 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7885
425.
425. A. Kawazu and H. Sakama, Phys. Rev. B 37, 27042706 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2704
426.
426. M. Y. Lai and Y. L. Wang, Phys. Rev. B 60, 17641770 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.1764
427.
427. P. Kumar, J. Kuyyalil, M. Kumar, and S. M. Shivaprasad, Solid State Commun. 151, 17581762 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.08.033
428.
428. M. A. Olmstead, R. D. Bringans, R. I. G. Uhrberg, and R. Z. Bachrach, Phys. Rev. B 34, 60416044 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.6041
429.
429. R. I. G. Uhrberg, R. D. Bringans, M. A. Olmstead, R. Z. Bachrach, and J. E. Northrup, Phys. Rev. B 35, 39453951 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.3945
430.
430. R. L. Headrick and W. R. Graham, Phys. Rev. B 37, 10511054 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.1051
431.
431. J. P. Lacharme, N. Benazzi, and C. A. Sebenne, Surf. Sci. 433–435, 415419 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00450-1
432.
432. A. Papageorgopoulos, A. Corner, M. Kamaratos, and C. A. Papageorgopoulos, Phys. Rev. B 55, 44354441 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.4435
433.
433. S. Rivillon, F. Amy, Y. J. Chabal, and M. M. Frank, Appl. Phys. Lett. 85, 25832585 (2004).
http://dx.doi.org/10.1063/1.1796536
434.
434. B. J. Eves and G. P. Lopinski, Surf. Sci. 579, 89 (2005).
http://dx.doi.org/10.1016/j.susc.2005.02.006
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4858400
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4858400
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4858400
2014-01-13
2014-09-16

Abstract

The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4858400.html;jsessionid=1012vw5k54p6.x-aip-live-06?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4858400&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2

Most read this month

Article
content/aip/journal/apr2
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The physics and chemistry of the Schottky barrier height
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4858400
10.1063/1.4858400
SEARCH_EXPAND_ITEM