1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4861260
1.
1. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford, New York, 2005).
2.
2. K. Uchino, S. Nomura, L. E. Cross, S. J. Jang, and R. E. Newnham, “ Electrostrictive effect in lead magnesium niobate single crystals,” J. Appl. Phys. 51, 1142 (1980).
http://dx.doi.org/10.1063/1.327724
3.
3. K. Uchino, S. Nomura, L. E. Cross, R. E. Newnham, and S. J. Jang, “ Electrostrictive effect in perovskites and its transducer applications,” J. Mater. Sci. 16, 569 (1981).
http://dx.doi.org/10.1007/BF02402772
4.
4. L. E. Cross, S. J. Jang, R. E. Newnham, S. Nomura, and K. Uchino, “ Large electrostrictive effects in relaxor ferroelectrics,” Ferroelectrics 23, 187 (1980).
http://dx.doi.org/10.1080/00150198008018801
5.
5. S. Nomura, J. Kuwata, S. J. Jang, L. E. Cross, and R. E. Newnham, “ Electrostriction in Pb (Zn1/3Nb2/3)O3,” Mater. Res. Bull. 14, 769 (1979).
http://dx.doi.org/10.1016/0025-5408(79)90136-3
6.
6. S. J. Jang, K. Uchino, S. Nomura, and L. E. Cross, “ Electrostrictive behavior of lead magnesium niobate based ceramic dielectrics,” Ferroelectrics 27, 31 (1980).
http://dx.doi.org/10.1080/00150198008226059
7.
7. K. Uchino, L. E. Cross, R. E. Newnham, and S. Nomura, “ Electrostrictive effects in non-polar perovskites,” Phase Transitions 1, 333 (1980).
http://dx.doi.org/10.1080/01411598008218442
8.
8. Q. M. Zhang, V. Bharti, and X. Zhao, “ Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer,” Science 280, 2101 (1998).
http://dx.doi.org/10.1126/science.280.5372.2101
9.
9. Q. M. Zhang, H. Li, M. Poh, F. Xia, Z. Y. Cheng, H. Xu, and C. Huang, “ An all-organic composite actuator material with a high dielectric constant,” Nature 419, 284 (2002).
http://dx.doi.org/10.1038/nature01021
10.
10. Q. M. Zhang, J. Su, C. H. Kim, R. Ting, and R. Capps, “ An experimental investigation of electromechanical responses in a polyurethane elastomer,” J. Appl. Phys. 81, 2770 (1997).
http://dx.doi.org/10.1063/1.363981
11.
11. R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “ Electrostriction: Nonlinear electromechanical coupling in solid dielectrics,” J. Phys. Chem. B 101, 10141 (1997).
http://dx.doi.org/10.1021/jp971522c
12.
12. W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. Krüger, M. Lösche, and F. Kremer, “ Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers,” Nature 410, 447 (2001).
http://dx.doi.org/10.1038/35068522
13.
13. R. Pelrine, R. Kornbluh, and G. Kofod, “ High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223 (2000).
http://dx.doi.org/10.1002/1521-4095(200008)12:16<1223::AID-ADMA1223>3.0.CO;2-2
14.
14. R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, “ High-field deformation of elastomeric dielectrics for actuators,” Mater. Sci. Eng.: C 11, 89 (2000).
http://dx.doi.org/10.1016/S0928-4931(00)00128-4
15.
15. M. Zhenyi, J. I. Scheinbeim, J. W. Lee, and B. A. Newman, “ High field electrostrictive response of polymers,” J. Polym. Sci. B 32, 2721 (1994).
http://dx.doi.org/10.1002/polb.1994.090321618
16.
16. H. Jaffe and D. A. Berlincourt, “ Piezoelectric transducer materials,” Proc. IRE 53, 1372 (1965).
http://dx.doi.org/10.1109/PROC.1965.4253
17.
17. B. Jaffe, W. R. Cook, Jr, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971).
18.
18. S. E. Park and T. R. Shrout, “ Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804 (1997).
http://dx.doi.org/10.1063/1.365983
19.
19. S. E. Park and T. R. Shrout, “ Relaxor based ferroelectric single crystals for electro-mechanical actuators,” Mater. Res. Innovations 1, 20 (1997).
http://dx.doi.org/10.1007/s100190050014
20.
20. S. Zhang and F. Li, “ High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective,” J. Appl. Phys. 111, 031301 (2012).
http://dx.doi.org/10.1063/1.3679521
21.
21. F. Li, S. Zhang, Z. Xu, X. Wei, and T. R. Shrout, “ Critical property in relaxor-PbTiO3 single crystals—Shear piezoelectric response,” Adv. Funct. Mater. 21, 2118 (2011).
http://dx.doi.org/10.1002/adfm.201002711
22.
22. X. Li and H. Luo, “ The growth and properties of relaxor-based ferroelectric single crystals,” J. Am. Ceram. Soc. 93, 2915 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.04107.x
23.
23. N. Luo, Y. Li, Z. Xia, and Q. Li, “ Progress in lead-based ferroelectric and antiferroelectric single crystals: Composition modification, crystal growth and properties,” CrystEngComm 14, 4547 (2012).
http://dx.doi.org/10.1039/c2ce06430h
24.
24. E. Fukada, “ History and recent progress in piezoelectric polymers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277 (2000).
http://dx.doi.org/10.1109/58.883516
25.
25. T. Furukawa and N. Seo, “ Electrostriction as the origin of piezoelectricity in ferroelectric polymers,” Jpn. J. Appl. Phys., Part 1 29, 675 (1990).
http://dx.doi.org/10.1143/JJAP.29.675
26.
26. F. Li, L. Jin, Z. Xu, D. Wang, and S. Zhang, “ Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals,” Appl. Phys. Lett. 102, 152910 (2013).
http://dx.doi.org/10.1063/1.4802792
27.
27. G. Viola, T. Saunders, X. Wei, K. B. Chong, H. Luo, M. J. Reece, and H. Yan, “ Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics,” J. Adv. Dielectr. 3, 1350007 (2013).
http://dx.doi.org/10.1142/S2010135X13500070
28.
28. L. E. Cross, “ Relaxor ferroelectrics,” Ferroelectrics 76, 241 (1987).
http://dx.doi.org/10.1080/00150198708016945
29.
29. Z. G. Ye, “ Relaxor ferroelectric complex perovskites: Structure, properties and phase transitions,” Key Eng. Mater. 155–156, 81 (1998).
http://dx.doi.org/10.4028/www.scientific.net/KEM.155-156.81
30.
30. Z. Kighelman, D. Damjanovic and N. Setter, “ Dielectric and electromechanical properties of ferroelectric-relaxor 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 thin film,” J. Appl. Phys. 90, 4682 (2001).
http://dx.doi.org/10.1063/1.1409573
31.
31. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford, New York, 1957).
32.
32. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford, New York, 1979).
33.
33. K. Rittenmyer, A. S. Bhalla, and L. E. Cross, “ Temperature dependence of the dielectric constant of KMnF3,” Ferroelectr., Lett. Sect. 9, 161 (1989).
http://dx.doi.org/10.1080/07315178908200768
34.
34. F. Li, S. Zhang, Z. Xu, D. Lin, J. Gao, Z. Li, and L. Wang, “ An efficient way to enhance output strain for shear mode Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals: Applying uniaxial stress perpendicular to polar direction,” Appl. Phys. Lett. 100, 192901 (2012).
http://dx.doi.org/10.1063/1.4712129
35.
35. J. Gao, Z. Xu, F. Li, C. Zhang, Z. Li, X. Wu, L. Wang, Y. Liu, G. Liu, and H. He, “ Pyroelectric properties of rhombohedral and tetragonal Pb(In1/2Nb1/2)O3- Pb(Mg1/3Nb2/3)O3- PbTiO3 crystals,” J. Appl. Phys. 110, 106101 (2011).
http://dx.doi.org/10.1063/1.3662951
36.
36.ANSI/IEEE Standard No. 176-1987, IEEE Standard on Piezoelectricity, IEEE, New York, 1987.
37.
37. D. Berlincourt and H. Jaffe, “ Elastic and piezoelectric coefficients of single-crystal barium titanate,” Phys. Rev. 111, 143 (1958).
http://dx.doi.org/10.1103/PhysRev.111.143
38.
38. S. T. Misture, S. M. Pilgrim, J. C. Hicks, C. T. Blue, E. A. Payzant, and C. R. Hubbard, “ Measurement of the electrostrictive coefficients of modified lead magnesium niobate using neutron powder diffraction,” Appl. Phys. Lett. 72, 1042 (1998).
http://dx.doi.org/10.1063/1.120944
39.
39. C. T. Blue, J. C. Hicks, and S. R. Winzer, “ Investigation of crystallographic and bulk strain in doped lead magnesium niobate,” J. Appl. Phys. 82, 3972 (1997).
http://dx.doi.org/10.1063/1.365705
40.
40. G. Zorn, W. Wersing, and H. Göbel, “ Comparison of piezoelectric constants of PZT ceramics with values calculated from electrostrictive coefficients,” Jpn. J. Appl. Phys., Part 1 24-2(Suppl.), 724 (1985).
41.
41. J. Zhao, A. E. Glazounov, Q. M. Zhang, and B. Toby, “ Neutron diffraction study of electrostrictive coefficients of prototype cubic phase of relaxor ferroelectric PbMg1/3Nb2/3O3,” Appl. Phys. Lett. 72, 1048 (1998).
http://dx.doi.org/10.1063/1.120960
42.
42. J. Toulouse and R. K. Pattnaik, “ Nonlinear electrostriction in the mixed ferroelectric KTa1-xNbxO3,” Phys. Rev. B 65, 024107 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.024107
43.
43. F. Craciun, “ Strong variation of electrostrictive coupling near an intermediate temperature of relaxor ferroelectrics,” Phys. Rev. B 81, 184111 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.184111
44.
44. L. Liang, Y. L. Li, L. Q. Chen, S. Y. Hu, and G. H. Lu, “ A thermodynamic free energy function for potassium niobate,” Appl. Phys. Lett. 94, 072904 (2009).
http://dx.doi.org/10.1063/1.3081418
45.
45. J. J. Wang, F. Y. Meng, X. Q. Ma, M. X. Xu, and L. Q. Chen, “ Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles,” J. Appl. Phys. 108, 034107 (2010).
http://dx.doi.org/10.1063/1.3462441
46.
46. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks Cole, Philadelphia, 1976).
47.
47. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, New York, 2004).
48.
48.Comments on the negative coefficient Q11. Negative Q11 was reported in fluorite crystals, as listed in Table II. The possible reasons of negative Q11 may relate to two aspects. First, there are some mistakes in determination of Q11 because the electric-field induced strain is quite small for fluorite crystals (low dielectric constant). Second, although the Eq. (18) can explain the positive coefficient Q11 for ionic crystals, in some cases the model for Eq. (18) may deviate from the real condition. Eq. (18) comes from the simplest rigid ion model, where only the interaction among nearest ions is considered and the crystal structure isn't taken into account.
49.
49. K. Uchino, S. Nomura, K. Vedam, R. E. Newnham, and L. E. Cross, “ Pressure dependence of the refractive index and dielectric constant in a fluoroperovskite, KMgF3,” Phys. Rev. B 29, 6921 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.6921
50.
50. R. A. Anderson, “ Mechanical stress in a dielectric solid from a uniform electric field,” Phys. Rev. B 33, 1302 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.1302
51.
51. M. J. Haun, E. S. Furman, J. Jang, and L. E. Cross, “ Thermodynamic theory of the lead zirconate-titanate solid solution system, part I-part V: Phenomenology,” Ferroelectrics 99, 13 (1989).
http://dx.doi.org/10.1080/00150198908221436
52.
52. A. W. Warner, M. Onoe, and G. A. Coquin, “ Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am. 42, 1223 (1967).
http://dx.doi.org/10.1121/1.1910709
53.
53. T. Yamada, “ Electromechanical properties of oxygen-octahedra ferroelectric crystals,” J. Appl. Phys. 43, 328 (1972).
http://dx.doi.org/10.1063/1.1661117
54.
54. V. Sundar, J. F. Li, D. Viehland, and R. E. Newnham, “ Interferometric evaluation of electrostriction coefficients,” Mater. Res. Bull. 31, 555 (1996).
http://dx.doi.org/10.1016/S0025-5408(96)00036-0
55.
55. K. Rittenmyer, A. S. Bhalla, and L. E. Cross, “ Electrostriction in fluoride perovskites,” Mater. Lett. 7, 380 (1989).
http://dx.doi.org/10.1016/0167-577X(89)90075-X
56.
56. V. Sundar and R. E. Newnham, “ Electrostriction and polarization,” Ferroelectrics 135, 431 (1992).
http://dx.doi.org/10.1080/00150199208230043
57.
57. V. Sundar and R. E. Newnham, “ Converse method measurements of electrostriction coefficients in low-K dielectrics,” Mater. Res. Bull. 31, 545 (1996).
http://dx.doi.org/10.1016/S0025-5408(96)00035-9
58.
58. R. Srinivasan and K. Srinivasan, “ Strain dependence of static and high frequency dielectric constants of some alkali halides,” J. Phys. Chem. Solids 33, 1079 (1972).
http://dx.doi.org/10.1016/S0022-3697(72)80268-3
59.
59. A. D. B. Woods, W. Cochran, and B. N. Brockhouse, “ Lattice dynamics of alkali halide crystals,” Phys. Rev. 119, 980 (1960).
http://dx.doi.org/10.1103/PhysRev.119.980
60.
60. Q. M. Zhang, J. Zhao, T. Shrout, N. Kim, L. E. Cross, A. Amin, and B. M. Kulwicki, “ Characteristics of the electromechanical response and polarization of electric field biased ferroelectrics,” J. Appl. Phys. 77, 2549 (1995).
http://dx.doi.org/10.1063/1.358785
61.
61. V. S. Vikhnin, R. Blinc, and R. Pirc, “ Mechanisms of electrostriction and giant piezoelectric effect in relaxor ferroelectrics,” J. Appl. Phys. 93, 9947 (2003).
http://dx.doi.org/10.1063/1.1575915
62.
62. R. Pirc, R. Blinc and V. S. Vikhnin, “ Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics,” Phys. Rev. B 69, 212105 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.212105
63.
63. G. A. Samara, “ Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3,” Phys. Rev. 151, 378 (1966).
http://dx.doi.org/10.1103/PhysRev.151.378
64.
64. H. Uwe, H. Unoki, Y. Fujii, and T. Sakudo, “ Stress induced ferroelectricity in KTaO3,” Solid State Commun. 13, 737 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90356-6
65.
65. N. Setter and L. E. Cross, “ An optical study of the ferroelectric relaxors Pb(Mg1/3Nb2/3)O3, Pb(Sc1/2Ta1/2)O3, and Pb(Sc1/2Nb1/2)O3,” Ferroelectrics 37, 551 (1981).
http://dx.doi.org/10.1080/00150198108223483
66.
66. J. Kuwata, K. Uchino, and S. Nomura, “ Diffuse phase transition in lead zinc niobate,” Ferroelectrics 22, 863 (1978).
http://dx.doi.org/10.1080/00150197908239443
67.
67. K. Uchino, L. E. Cross, R. E. Newnham, and S. Nomura, “ Electrostrictive effects in antiferroelectric perovskites,” J. Appl. Phys. 52, 1455 (1981).
http://dx.doi.org/10.1063/1.329780
68.
68. S. Nomura, S. J. Jang, L. E. Cross, and R. E. Newnham, “ Structure and dielectric properties of materials in the solid solution system Pb(Mg1/3Nb2/3)O3:Pb(W1/2Mg1/2)O3,” J. Am. Ceram. Soc. 62, 485 (1979).
http://dx.doi.org/10.1111/j.1151-2916.1979.tb19111.x
69.
69. D. Damjanovic, “ Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics,” J. Appl. Phys. 82, 1788 (1997).
http://dx.doi.org/10.1063/1.365981
70.
70. D. Damjanovic, “ Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys. 61, 1267 (1998).
http://dx.doi.org/10.1088/0034-4885/61/9/002
71.
71. V. Porokhonskyy, L. Jin, and D. Damjanovic, “ Separation of piezoelectric grain resonance and domain wall dispersion in Pb(Zr,Ti)O3 ceramics,” Appl. Phys. Lett. 94, 212906 (2009).
http://dx.doi.org/10.1063/1.3147166
72.
72. L. Jin, Z. He, and D. Damjanovic, “ Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties,” Appl. Phys. Lett. 95, 012905 (2009).
http://dx.doi.org/10.1063/1.3173198
73.
73. L. Jin, V. Porokhonskyy, and D. Damjanovic, “ Domain wall contributions in Pb(Zr,Ti)O3 ceramics at morphotropic phase boundary: A study of dielectric dispersion,” Appl. Phys. Lett. 96, 242902 (2010).
http://dx.doi.org/10.1063/1.3455328
74.
74. O. Noblanc and P. Gaucher, “ Influence of domain walls on piezoelectric and electrostrictive properties of PMN-PT (65/35) ceramics,” Ferroelectrics 160, 145 (1994).
http://dx.doi.org/10.1080/00150199408007704
75.
75. P. M. Weaver, M. G. Cain, and M. Stewart, “ Temperature dependence of strain-polarization coupling in ferroelectric ceramics,” Appl. Phys. Lett. 96, 142905 (2010).
http://dx.doi.org/10.1063/1.3367734
76.
76. D. H. Kang, Y. H. Lee, and K. H. Yoon, “ Phase transition, dielectric and electrostrictive behaviors in (1 − x)PYN–xPMN,” J. Mater. Res. 13, 984 (1998).
http://dx.doi.org/10.1557/JMR.1998.0138
77.
77. G. Haertling, “ PLZT electrooptic materials and applications-a review,” Ferroelectrics 75, 25 (1987).
http://dx.doi.org/10.1080/00150198708008208
78.
78. S. A. Sheets, A. N. Soukhojak, N. Ohashi, and Y. M. Chiang, “ Relaxor single crystals in the (Bi1/2Na1/2)1−xBaxZryTi1−yO3 system exhibiting high electrostrictive strain,” J. Appl. Phys. 90, 5287 (2001).
http://dx.doi.org/10.1063/1.1410325
79.
79. V. Bobnar, B. Malič, J. Holc, M. Kosec, R. Steinhausen, and H. Beige, “ Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 ceramic system,” J. Appl. Phys. 98, 024113 (2005).
http://dx.doi.org/10.1063/1.1989438
80.
80. J. Hao, W. Bai, W. Li, B. Shen, and J. Zhai, “ Phase transitions, relaxor behavior, and electrical properties in (1−x)(Bi0.5Na0.5)TiO3x(K0.5Na0.5)NbO3 lead-free piezoceramics,” J. Mater. Res. 27, 2943 (2012).
http://dx.doi.org/10.1557/jmr.2012.328
81.
81. S. T. Zhang, F. Yan, B. Yang, and W. Cao, “ Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 ceramics,” Appl. Phys. Lett. 97, 122901 (2010).
http://dx.doi.org/10.1063/1.3491839
82.
82. S. T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, and D. Damjanovic, “ High-strain lead-free antiferroelectric electrostrictors,” Adv. Mater. 21, 4716 (2009).
http://dx.doi.org/10.1002/adma.200901516
83.
83. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn III, W. Kim, K. K. Ahn, and J. S. Lee, “ Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics,” J. Appl. Phys. 113, 154102 (2013).
http://dx.doi.org/10.1063/1.4801893
84.
84. S. G. Lee, R. G. Monteiro, R. S. Feigelson, H. S. Lee, M. Lee, and S. E. Park, “ Growth and electrostrictive properties of Pb(Mg1/3Nb2/3)O3 crystals,” Appl. Phys. Lett. 74, 1030 (1999).
http://dx.doi.org/10.1063/1.123445
85.
85. A. L. Kholkin, E. K. Akdogan, A. Safari, P. F. Chauvy, and N. Setter, “ Characterization of the effective electrostriction coefficients in ferroelectric thin films,” J. Appl. Phys. 89, 8066 (2001).
http://dx.doi.org/10.1063/1.1371002
86.
86. A. Kvasov and A. K. Tagantsev, “ Positive effective Q12 electrostrictive coefficient in perovskites,” J. Appl. Phys. 112, 094106 (2012).
http://dx.doi.org/10.1063/1.4764046
87.
87. P. M. Weaver, M. G. Cain, and M. Stewart, “ Temperature dependence of high field electromechanical coupling in ferroelectric ceramics,” J. Phys. D: Appl. Phys. 43, 165404 (2010).
http://dx.doi.org/10.1088/0022-3727/43/16/165404
88.
88. X. Li, S. G. Lu, X. Z. Chen, H. Gu, X. S. Qian, and Q. M. Zhang, “ Pyroelectric and electrocaloric materials,” J. Mater. Chem. C 1, 23 (2013).
http://dx.doi.org/10.1039/c2tc00283c
89.
89. I. Jankowska-Sumara, K. Roleder, A. Majchrowski, and J. Zmija, “ Nonlinear electrostrictive properties of PbZrO3:Sn single crystals with antiferroelectric phase transitions,” J. Adv. Dielectr. 1, 223 (2011).
http://dx.doi.org/10.1142/S2010135X11000252
90.
90. W. Pan, Q. Zhang, A. S. Bhalla, and L. E. Cross, “ Field-induced strain in single-crystal BaTiO3,” J. Am. Ceram. Soc. 71, C302 (1988).
91.
91. G. R. Barsch, B. N. N. Achar, and L. E. Cross, “ Phenomenological theory of the temperature variation of electrostriction of ferroelectrics in the paraelectric phase,” Ferroelectrics 35, 191 (1981).
http://dx.doi.org/10.1080/00150198108017685
92.
92.For and coefficient, the superscripts C and R denote that the electrostrictive coefficients are measured in the standard coordinate system of cubic and rhombohedral phase of perovskite crystals (see details in the Appendix).
93.
93. J. Yin, B. Jiang, and W. Cao, “ Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3-0.45PbTiO3 single crystal with designed multidomains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 285 (2000).
http://dx.doi.org/10.1109/58.818772
94.
94. R. Zhang, B. Jiang, W. Cao, and A. Amin, “ Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal,” J. Mater. Sci. Lett. 21, 1877 (2002).
http://dx.doi.org/10.1023/A:1021573431692
95.
95. R. Zhang, B. Jiang, W. Jiang, and W. Cao, “ Complete set of properties of 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal with engineered domains,” Mater. Lett. 57, 1305 (2003).
http://dx.doi.org/10.1016/S0167-577X(02)00976-X
96.
96. S. Zhang, L. Lebrun, C. A. Randall, and T. R. Shrout, “ Orientation dependence properties of modified tetragonal 0.88Pb(Zn1/3Nb2/3)O3–0.12PbTiO3 single crystals,” Phys. Status Solidi A 202, 151 (2005).
http://dx.doi.org/10.1002/pssa.200406900
97.
97. H. Cao, V. H. Schmidt, R. Zhang, W. Cao, and H. Luo, “ Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystal,” J. Appl. Phys. 96, 549 (2004).
http://dx.doi.org/10.1063/1.1712020
98.
98. , the superscript * denotes that the electrostrictive coefficients are measured in a new coordinate system (after axis transformation). denotes that it is measured in standard coordinate. The standard coordinate systems of , , symmetries are listed in the Appendix.
99.
99. X. B. Ren, “ Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching,” Nature Mater. 3, 91 (2004).
http://dx.doi.org/10.1038/nmat1051
100.
100. E. Burcsu, G. Ravichandran, and K. Bhattacharya, “ Large strain electrostrictive actuation in barium titanate,” Appl. Phys. Lett. 77, 1698 (2000).
http://dx.doi.org/10.1063/1.1308533
101.
101. E. Burcsu, G. Ravichandran, and K. Bhattacharya, “ Large electrostrictive actuation of barium titanate single crystals,” J. Mech. Phys. Solids 52, 823 (2004).
http://dx.doi.org/10.1016/j.jmps.2003.08.001
102.
102. D. Damjanovic, “ Hysteresis in piezoelectric and ferroelectric materials,” in Science of Hysteresis, edited by G. Bertotti and I. Mayergoyz (Elsevier, Amsterdam, 2005), Vol. III, pp. 337465.
103.
103. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, “ Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals,” J. Appl. Phys. 108, 034106 (2010)
http://dx.doi.org/10.1063/1.3466978
104.
104. F. Li, S. Zhang, Z. Li, and Z. Xu, “ Recent development on relaxor-PbTiO3 single crystals: The origin of high piezoelectric response,” Progress in Physics 32, 178 (2012) (in Chinese).
http://dx.doi.org/10.1000-0542(2012)04-0178-21
105.
105. W. Liu and X. Ren, “ Large piezoelectric effect in Pb-free ceramics,” Phys. Rev. Lett. 103, 257602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257602
106.
106. D. Damjanovic, “ A morphotropic phase boundary system based on polarization rotation and polarization extension,” Appl. Phys. Lett. 97, 062906 (2010).
http://dx.doi.org/10.1063/1.3479479
107.
107. M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. Wu, “ Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545 (2008).
http://dx.doi.org/10.1038/nature06459
108.
108. D. Damjanovic, “ Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics,” J. Am. Ceram. Soc. 88, 2663 (2005).
http://dx.doi.org/10.1111/j.1551-2916.2005.00671.x
109.
109. L. E. Cross, “ Ferroelectric ceramics: Tailoring properties for specific applications,” in Ferroelectric Ceramics, edited by N. Setter and E. L. Colla (Birkhäuser, Basel, 1993), pp. 185.
110.
110. L. Eyraud, B. Guiffard, L. Lebrun, and D. Guyomar, “ Interpretation of the softening effect in PZT ceramics near the morphotropic phase boundary,” Ferroelectrics 330, 51 (2006).
http://dx.doi.org/10.1080/00150190600605510
111.
111. N. Setter and L. E. Cross, “ The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys. 51, 4356 (1980).
http://dx.doi.org/10.1063/1.328296
112.
112. N. Setter and L. E. Cross, “ The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” J. Mater. Sci. 15, 2478 (1980).
http://dx.doi.org/10.1007/BF00550750
113.
113. M. Davis, M. Budimir, D. Damjanovic, and N. Setter, “ Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics,” J. Appl. Phys. 101, 054112 (2007).
http://dx.doi.org/10.1063/1.2653925
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4861260
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4861260
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4861260
2014-01-15
2014-09-20

Abstract

Electrostriction plays an important role in the electromechanical behavior of ferroelectrics and describes a phenomenon in dielectrics where the strain varies proportional to the square of the electric field/polarization. Perovskite ferroelectrics demonstrating high piezoelectric performance, including BaTiO, Pb(Zr Ti)O, and relaxor-PbTiO materials, have been widely used in various electromechanical devices. To improve the piezoelectric activity of these materials, efforts have been focused on the ferroelectric phase transition regions, including shift the composition to the morphotropic phase boundary or shift polymorphic phase transition to room temperature. However, there is not much room left to further enhance the piezoelectric response in perovskite solid solutions using this approach. With the purpose of exploring alternative approaches, the electrostrictive effect is systematically surveyed in this paper. Initially, the techniques for measuring the electrostrictive effect are given and compared. Second, the origin of electrostriction is discussed. Then, the relationship between the electrostriction and the microstructure and macroscopic properties is surveyed. The electrostrictive properties of ferroelectric materials are investigated with respect to temperature, composition, phase, and orientation. The relationship between electrostriction and piezoelectric activity is discussed in detail for perovskite ferroelectrics to achieve new possibilities for piezoelectric enhancement. Finally, future perspectives for electrostriction studies are proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4861260.html;jsessionid=hgmwqg17w5jl.x-aip-live-06?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4861260&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2

Most read this month

Article
content/aip/journal/apr2
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4861260
10.1063/1.4861260
SEARCH_EXPAND_ITEM