Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford, New York, 2005).
2. K. Uchino, S. Nomura, L. E. Cross, S. J. Jang, and R. E. Newnham, “ Electrostrictive effect in lead magnesium niobate single crystals,” J. Appl. Phys. 51, 1142 (1980).
3. K. Uchino, S. Nomura, L. E. Cross, R. E. Newnham, and S. J. Jang, “ Electrostrictive effect in perovskites and its transducer applications,” J. Mater. Sci. 16, 569 (1981).
4. L. E. Cross, S. J. Jang, R. E. Newnham, S. Nomura, and K. Uchino, “ Large electrostrictive effects in relaxor ferroelectrics,” Ferroelectrics 23, 187 (1980).
5. S. Nomura, J. Kuwata, S. J. Jang, L. E. Cross, and R. E. Newnham, “ Electrostriction in Pb (Zn1/3Nb2/3)O3,” Mater. Res. Bull. 14, 769 (1979).
6. S. J. Jang, K. Uchino, S. Nomura, and L. E. Cross, “ Electrostrictive behavior of lead magnesium niobate based ceramic dielectrics,” Ferroelectrics 27, 31 (1980).
7. K. Uchino, L. E. Cross, R. E. Newnham, and S. Nomura, “ Electrostrictive effects in non-polar perovskites,” Phase Transitions 1, 333 (1980).
8. Q. M. Zhang, V. Bharti, and X. Zhao, “ Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer,” Science 280, 2101 (1998).
9. Q. M. Zhang, H. Li, M. Poh, F. Xia, Z. Y. Cheng, H. Xu, and C. Huang, “ An all-organic composite actuator material with a high dielectric constant,” Nature 419, 284 (2002).
10. Q. M. Zhang, J. Su, C. H. Kim, R. Ting, and R. Capps, “ An experimental investigation of electromechanical responses in a polyurethane elastomer,” J. Appl. Phys. 81, 2770 (1997).
11. R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, “ Electrostriction: Nonlinear electromechanical coupling in solid dielectrics,” J. Phys. Chem. B 101, 10141 (1997).
12. W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. Krüger, M. Lösche, and F. Kremer, “ Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers,” Nature 410, 447 (2001).
13. R. Pelrine, R. Kornbluh, and G. Kofod, “ High-strain actuator materials based on dielectric elastomers,” Adv. Mater. 12, 1223 (2000).<1223::AID-ADMA1223>3.0.CO;2-2
14. R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, “ High-field deformation of elastomeric dielectrics for actuators,” Mater. Sci. Eng.: C 11, 89 (2000).
15. M. Zhenyi, J. I. Scheinbeim, J. W. Lee, and B. A. Newman, “ High field electrostrictive response of polymers,” J. Polym. Sci. B 32, 2721 (1994).
16. H. Jaffe and D. A. Berlincourt, “ Piezoelectric transducer materials,” Proc. IRE 53, 1372 (1965).
17. B. Jaffe, W. R. Cook, Jr, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971).
18. S. E. Park and T. R. Shrout, “ Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 1804 (1997).
19. S. E. Park and T. R. Shrout, “ Relaxor based ferroelectric single crystals for electro-mechanical actuators,” Mater. Res. Innovations 1, 20 (1997).
20. S. Zhang and F. Li, “ High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective,” J. Appl. Phys. 111, 031301 (2012).
21. F. Li, S. Zhang, Z. Xu, X. Wei, and T. R. Shrout, “ Critical property in relaxor-PbTiO3 single crystals—Shear piezoelectric response,” Adv. Funct. Mater. 21, 2118 (2011).
22. X. Li and H. Luo, “ The growth and properties of relaxor-based ferroelectric single crystals,” J. Am. Ceram. Soc. 93, 2915 (2010).
23. N. Luo, Y. Li, Z. Xia, and Q. Li, “ Progress in lead-based ferroelectric and antiferroelectric single crystals: Composition modification, crystal growth and properties,” CrystEngComm 14, 4547 (2012).
24. E. Fukada, “ History and recent progress in piezoelectric polymers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277 (2000).
25. T. Furukawa and N. Seo, “ Electrostriction as the origin of piezoelectricity in ferroelectric polymers,” Jpn. J. Appl. Phys., Part 1 29, 675 (1990).
26. F. Li, L. Jin, Z. Xu, D. Wang, and S. Zhang, “ Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals,” Appl. Phys. Lett. 102, 152910 (2013).
27. G. Viola, T. Saunders, X. Wei, K. B. Chong, H. Luo, M. J. Reece, and H. Yan, “ Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics,” J. Adv. Dielectr. 3, 1350007 (2013).
28. L. E. Cross, “ Relaxor ferroelectrics,” Ferroelectrics 76, 241 (1987).
29. Z. G. Ye, “ Relaxor ferroelectric complex perovskites: Structure, properties and phase transitions,” Key Eng. Mater. 155–156, 81 (1998).
30. Z. Kighelman, D. Damjanovic and N. Setter, “ Dielectric and electromechanical properties of ferroelectric-relaxor 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 thin film,” J. Appl. Phys. 90, 4682 (2001).
31. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford, New York, 1957).
32. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford, New York, 1979).
33. K. Rittenmyer, A. S. Bhalla, and L. E. Cross, “ Temperature dependence of the dielectric constant of KMnF3,” Ferroelectr., Lett. Sect. 9, 161 (1989).
34. F. Li, S. Zhang, Z. Xu, D. Lin, J. Gao, Z. Li, and L. Wang, “ An efficient way to enhance output strain for shear mode Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals: Applying uniaxial stress perpendicular to polar direction,” Appl. Phys. Lett. 100, 192901 (2012).
35. J. Gao, Z. Xu, F. Li, C. Zhang, Z. Li, X. Wu, L. Wang, Y. Liu, G. Liu, and H. He, “ Pyroelectric properties of rhombohedral and tetragonal Pb(In1/2Nb1/2)O3- Pb(Mg1/3Nb2/3)O3- PbTiO3 crystals,” J. Appl. Phys. 110, 106101 (2011).
36.ANSI/IEEE Standard No. 176-1987, IEEE Standard on Piezoelectricity, IEEE, New York, 1987.
37. D. Berlincourt and H. Jaffe, “ Elastic and piezoelectric coefficients of single-crystal barium titanate,” Phys. Rev. 111, 143 (1958).
38. S. T. Misture, S. M. Pilgrim, J. C. Hicks, C. T. Blue, E. A. Payzant, and C. R. Hubbard, “ Measurement of the electrostrictive coefficients of modified lead magnesium niobate using neutron powder diffraction,” Appl. Phys. Lett. 72, 1042 (1998).
39. C. T. Blue, J. C. Hicks, and S. R. Winzer, “ Investigation of crystallographic and bulk strain in doped lead magnesium niobate,” J. Appl. Phys. 82, 3972 (1997).
40. G. Zorn, W. Wersing, and H. Göbel, “ Comparison of piezoelectric constants of PZT ceramics with values calculated from electrostrictive coefficients,” Jpn. J. Appl. Phys., Part 1 24-2(Suppl.), 724 (1985).
41. J. Zhao, A. E. Glazounov, Q. M. Zhang, and B. Toby, “ Neutron diffraction study of electrostrictive coefficients of prototype cubic phase of relaxor ferroelectric PbMg1/3Nb2/3O3,” Appl. Phys. Lett. 72, 1048 (1998).
42. J. Toulouse and R. K. Pattnaik, “ Nonlinear electrostriction in the mixed ferroelectric KTa1-xNbxO3,” Phys. Rev. B 65, 024107 (2001).
43. F. Craciun, “ Strong variation of electrostrictive coupling near an intermediate temperature of relaxor ferroelectrics,” Phys. Rev. B 81, 184111 (2010).
44. L. Liang, Y. L. Li, L. Q. Chen, S. Y. Hu, and G. H. Lu, “ A thermodynamic free energy function for potassium niobate,” Appl. Phys. Lett. 94, 072904 (2009).
45. J. J. Wang, F. Y. Meng, X. Q. Ma, M. X. Xu, and L. Q. Chen, “ Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles,” J. Appl. Phys. 108, 034107 (2010).
46. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks Cole, Philadelphia, 1976).
47. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, New York, 2004).
48.Comments on the negative coefficient Q11. Negative Q11 was reported in fluorite crystals, as listed in Table II. The possible reasons of negative Q11 may relate to two aspects. First, there are some mistakes in determination of Q11 because the electric-field induced strain is quite small for fluorite crystals (low dielectric constant). Second, although the Eq. (18) can explain the positive coefficient Q11 for ionic crystals, in some cases the model for Eq. (18) may deviate from the real condition. Eq. (18) comes from the simplest rigid ion model, where only the interaction among nearest ions is considered and the crystal structure isn't taken into account.
49. K. Uchino, S. Nomura, K. Vedam, R. E. Newnham, and L. E. Cross, “ Pressure dependence of the refractive index and dielectric constant in a fluoroperovskite, KMgF3,” Phys. Rev. B 29, 6921 (1984).
50. R. A. Anderson, “ Mechanical stress in a dielectric solid from a uniform electric field,” Phys. Rev. B 33, 1302 (1986).
51. M. J. Haun, E. S. Furman, J. Jang, and L. E. Cross, “ Thermodynamic theory of the lead zirconate-titanate solid solution system, part I-part V: Phenomenology,” Ferroelectrics 99, 13 (1989).
52. A. W. Warner, M. Onoe, and G. A. Coquin, “ Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am. 42, 1223 (1967).
53. T. Yamada, “ Electromechanical properties of oxygen-octahedra ferroelectric crystals,” J. Appl. Phys. 43, 328 (1972).
54. V. Sundar, J. F. Li, D. Viehland, and R. E. Newnham, “ Interferometric evaluation of electrostriction coefficients,” Mater. Res. Bull. 31, 555 (1996).
55. K. Rittenmyer, A. S. Bhalla, and L. E. Cross, “ Electrostriction in fluoride perovskites,” Mater. Lett. 7, 380 (1989).
56. V. Sundar and R. E. Newnham, “ Electrostriction and polarization,” Ferroelectrics 135, 431 (1992).
57. V. Sundar and R. E. Newnham, “ Converse method measurements of electrostriction coefficients in low-K dielectrics,” Mater. Res. Bull. 31, 545 (1996).
58. R. Srinivasan and K. Srinivasan, “ Strain dependence of static and high frequency dielectric constants of some alkali halides,” J. Phys. Chem. Solids 33, 1079 (1972).
59. A. D. B. Woods, W. Cochran, and B. N. Brockhouse, “ Lattice dynamics of alkali halide crystals,” Phys. Rev. 119, 980 (1960).
60. Q. M. Zhang, J. Zhao, T. Shrout, N. Kim, L. E. Cross, A. Amin, and B. M. Kulwicki, “ Characteristics of the electromechanical response and polarization of electric field biased ferroelectrics,” J. Appl. Phys. 77, 2549 (1995).
61. V. S. Vikhnin, R. Blinc, and R. Pirc, “ Mechanisms of electrostriction and giant piezoelectric effect in relaxor ferroelectrics,” J. Appl. Phys. 93, 9947 (2003).
62. R. Pirc, R. Blinc and V. S. Vikhnin, “ Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics,” Phys. Rev. B 69, 212105 (2004).
63. G. A. Samara, “ Pressure and temperature dependences of the dielectric properties of the perovskites BaTiO3 and SrTiO3,” Phys. Rev. 151, 378 (1966).
64. H. Uwe, H. Unoki, Y. Fujii, and T. Sakudo, “ Stress induced ferroelectricity in KTaO3,” Solid State Commun. 13, 737 (1973).
65. N. Setter and L. E. Cross, “ An optical study of the ferroelectric relaxors Pb(Mg1/3Nb2/3)O3, Pb(Sc1/2Ta1/2)O3, and Pb(Sc1/2Nb1/2)O3,” Ferroelectrics 37, 551 (1981).
66. J. Kuwata, K. Uchino, and S. Nomura, “ Diffuse phase transition in lead zinc niobate,” Ferroelectrics 22, 863 (1978).
67. K. Uchino, L. E. Cross, R. E. Newnham, and S. Nomura, “ Electrostrictive effects in antiferroelectric perovskites,” J. Appl. Phys. 52, 1455 (1981).
68. S. Nomura, S. J. Jang, L. E. Cross, and R. E. Newnham, “ Structure and dielectric properties of materials in the solid solution system Pb(Mg1/3Nb2/3)O3:Pb(W1/2Mg1/2)O3,” J. Am. Ceram. Soc. 62, 485 (1979).
69. D. Damjanovic, “ Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics,” J. Appl. Phys. 82, 1788 (1997).
70. D. Damjanovic, “ Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys. 61, 1267 (1998).
71. V. Porokhonskyy, L. Jin, and D. Damjanovic, “ Separation of piezoelectric grain resonance and domain wall dispersion in Pb(Zr,Ti)O3 ceramics,” Appl. Phys. Lett. 94, 212906 (2009).
72. L. Jin, Z. He, and D. Damjanovic, “ Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties,” Appl. Phys. Lett. 95, 012905 (2009).
73. L. Jin, V. Porokhonskyy, and D. Damjanovic, “ Domain wall contributions in Pb(Zr,Ti)O3 ceramics at morphotropic phase boundary: A study of dielectric dispersion,” Appl. Phys. Lett. 96, 242902 (2010).
74. O. Noblanc and P. Gaucher, “ Influence of domain walls on piezoelectric and electrostrictive properties of PMN-PT (65/35) ceramics,” Ferroelectrics 160, 145 (1994).
75. P. M. Weaver, M. G. Cain, and M. Stewart, “ Temperature dependence of strain-polarization coupling in ferroelectric ceramics,” Appl. Phys. Lett. 96, 142905 (2010).
76. D. H. Kang, Y. H. Lee, and K. H. Yoon, “ Phase transition, dielectric and electrostrictive behaviors in (1 − x)PYN–xPMN,” J. Mater. Res. 13, 984 (1998).
77. G. Haertling, “ PLZT electrooptic materials and applications-a review,” Ferroelectrics 75, 25 (1987).
78. S. A. Sheets, A. N. Soukhojak, N. Ohashi, and Y. M. Chiang, “ Relaxor single crystals in the (Bi1/2Na1/2)1−xBaxZryTi1−yO3 system exhibiting high electrostrictive strain,” J. Appl. Phys. 90, 5287 (2001).
79. V. Bobnar, B. Malič, J. Holc, M. Kosec, R. Steinhausen, and H. Beige, “ Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 ceramic system,” J. Appl. Phys. 98, 024113 (2005).
80. J. Hao, W. Bai, W. Li, B. Shen, and J. Zhai, “ Phase transitions, relaxor behavior, and electrical properties in (1−x)(Bi0.5Na0.5)TiO3x(K0.5Na0.5)NbO3 lead-free piezoceramics,” J. Mater. Res. 27, 2943 (2012).
81. S. T. Zhang, F. Yan, B. Yang, and W. Cao, “ Phase diagram and electrostrictive properties of Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 ceramics,” Appl. Phys. Lett. 97, 122901 (2010).
82. S. T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, and D. Damjanovic, “ High-strain lead-free antiferroelectric electrostrictors,” Adv. Mater. 21, 4716 (2009).
83. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn III, W. Kim, K. K. Ahn, and J. S. Lee, “ Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics,” J. Appl. Phys. 113, 154102 (2013).
84. S. G. Lee, R. G. Monteiro, R. S. Feigelson, H. S. Lee, M. Lee, and S. E. Park, “ Growth and electrostrictive properties of Pb(Mg1/3Nb2/3)O3 crystals,” Appl. Phys. Lett. 74, 1030 (1999).
85. A. L. Kholkin, E. K. Akdogan, A. Safari, P. F. Chauvy, and N. Setter, “ Characterization of the effective electrostriction coefficients in ferroelectric thin films,” J. Appl. Phys. 89, 8066 (2001).
86. A. Kvasov and A. K. Tagantsev, “ Positive effective Q12 electrostrictive coefficient in perovskites,” J. Appl. Phys. 112, 094106 (2012).
87. P. M. Weaver, M. G. Cain, and M. Stewart, “ Temperature dependence of high field electromechanical coupling in ferroelectric ceramics,” J. Phys. D: Appl. Phys. 43, 165404 (2010).
88. X. Li, S. G. Lu, X. Z. Chen, H. Gu, X. S. Qian, and Q. M. Zhang, “ Pyroelectric and electrocaloric materials,” J. Mater. Chem. C 1, 23 (2013).
89. I. Jankowska-Sumara, K. Roleder, A. Majchrowski, and J. Zmija, “ Nonlinear electrostrictive properties of PbZrO3:Sn single crystals with antiferroelectric phase transitions,” J. Adv. Dielectr. 1, 223 (2011).
90. W. Pan, Q. Zhang, A. S. Bhalla, and L. E. Cross, “ Field-induced strain in single-crystal BaTiO3,” J. Am. Ceram. Soc. 71, C302 (1988).
91. G. R. Barsch, B. N. N. Achar, and L. E. Cross, “ Phenomenological theory of the temperature variation of electrostriction of ferroelectrics in the paraelectric phase,” Ferroelectrics 35, 191 (1981).
92.For and coefficient, the superscripts C and R denote that the electrostrictive coefficients are measured in the standard coordinate system of cubic and rhombohedral phase of perovskite crystals (see details in the Appendix).
93. J. Yin, B. Jiang, and W. Cao, “ Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3-0.45PbTiO3 single crystal with designed multidomains,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 285 (2000).
94. R. Zhang, B. Jiang, W. Cao, and A. Amin, “ Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal,” J. Mater. Sci. Lett. 21, 1877 (2002).
95. R. Zhang, B. Jiang, W. Jiang, and W. Cao, “ Complete set of properties of 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal with engineered domains,” Mater. Lett. 57, 1305 (2003).
96. S. Zhang, L. Lebrun, C. A. Randall, and T. R. Shrout, “ Orientation dependence properties of modified tetragonal 0.88Pb(Zn1/3Nb2/3)O3–0.12PbTiO3 single crystals,” Phys. Status Solidi A 202, 151 (2005).
97. H. Cao, V. H. Schmidt, R. Zhang, W. Cao, and H. Luo, “ Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystal,” J. Appl. Phys. 96, 549 (2004).
98. , the superscript * denotes that the electrostrictive coefficients are measured in a new coordinate system (after axis transformation). denotes that it is measured in standard coordinate. The standard coordinate systems of , , symmetries are listed in the Appendix.
99. X. B. Ren, “ Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching,” Nature Mater. 3, 91 (2004).
100. E. Burcsu, G. Ravichandran, and K. Bhattacharya, “ Large strain electrostrictive actuation in barium titanate,” Appl. Phys. Lett. 77, 1698 (2000).
101. E. Burcsu, G. Ravichandran, and K. Bhattacharya, “ Large electrostrictive actuation of barium titanate single crystals,” J. Mech. Phys. Solids 52, 823 (2004).
102. D. Damjanovic, “ Hysteresis in piezoelectric and ferroelectric materials,” in Science of Hysteresis, edited by G. Bertotti and I. Mayergoyz (Elsevier, Amsterdam, 2005), Vol. III, pp. 337465.
103. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, “ Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals,” J. Appl. Phys. 108, 034106 (2010)
104. F. Li, S. Zhang, Z. Li, and Z. Xu, “ Recent development on relaxor-PbTiO3 single crystals: The origin of high piezoelectric response,” Progress in Physics 32, 178 (2012) (in Chinese).
105. W. Liu and X. Ren, “ Large piezoelectric effect in Pb-free ceramics,” Phys. Rev. Lett. 103, 257602 (2009).
106. D. Damjanovic, “ A morphotropic phase boundary system based on polarization rotation and polarization extension,” Appl. Phys. Lett. 97, 062906 (2010).
107. M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. Wu, “ Origin of morphotropic phase boundaries in ferroelectrics,” Nature 451, 545 (2008).
108. D. Damjanovic, “ Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics,” J. Am. Ceram. Soc. 88, 2663 (2005).
109. L. E. Cross, “ Ferroelectric ceramics: Tailoring properties for specific applications,” in Ferroelectric Ceramics, edited by N. Setter and E. L. Colla (Birkhäuser, Basel, 1993), pp. 185.
110. L. Eyraud, B. Guiffard, L. Lebrun, and D. Guyomar, “ Interpretation of the softening effect in PZT ceramics near the morphotropic phase boundary,” Ferroelectrics 330, 51 (2006).
111. N. Setter and L. E. Cross, “ The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys. 51, 4356 (1980).
112. N. Setter and L. E. Cross, “ The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” J. Mater. Sci. 15, 2478 (1980).
113. M. Davis, M. Budimir, D. Damjanovic, and N. Setter, “ Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics,” J. Appl. Phys. 101, 054112 (2007).

Data & Media loading...


Article metrics loading...



Electrostriction plays an important role in the electromechanical behavior of ferroelectrics and describes a phenomenon in dielectrics where the strain varies proportional to the square of the electric field/polarization. Perovskite ferroelectrics demonstrating high piezoelectric performance, including BaTiO, Pb(Zr Ti)O, and relaxor-PbTiO materials, have been widely used in various electromechanical devices. To improve the piezoelectric activity of these materials, efforts have been focused on the ferroelectric phase transition regions, including shift the composition to the morphotropic phase boundary or shift polymorphic phase transition to room temperature. However, there is not much room left to further enhance the piezoelectric response in perovskite solid solutions using this approach. With the purpose of exploring alternative approaches, the electrostrictive effect is systematically surveyed in this paper. Initially, the techniques for measuring the electrostrictive effect are given and compared. Second, the origin of electrostriction is discussed. Then, the relationship between the electrostriction and the microstructure and macroscopic properties is surveyed. The electrostrictive properties of ferroelectric materials are investigated with respect to temperature, composition, phase, and orientation. The relationship between electrostriction and piezoelectric activity is discussed in detail for perovskite ferroelectrics to achieve new possibilities for piezoelectric enhancement. Finally, future perspectives for electrostriction studies are proposed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd