1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Modeling techniques for quantum cascade lasers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4863665
1.
1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
http://dx.doi.org/10.1126/science.264.5158.553
2.
2. B. S. Williams, Nat. Photonics 1, 517 (2007).
http://dx.doi.org/10.1038/nphoton.2007.166
3.
3. Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
http://dx.doi.org/10.1038/nphoton.2012.143
4.
4. K. Ohtani and H. Ohno, Appl. Phys. Lett. 82, 1003 (2003).
http://dx.doi.org/10.1063/1.1545151
5.
5. O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, Appl. Phys. Lett. 96, 141110 (2010).
http://dx.doi.org/10.1063/1.3385778
6.
6. M. Nobile, P. Klang, E. Mujagic, H. Detz, A. Andrews, W. Schrenk, and G. Strasser, Electron. Lett. 45, 1031 (2009).
http://dx.doi.org/10.1049/el.2009.1995
7.
7. C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 97, 261110 (2010).
http://dx.doi.org/10.1063/1.3532106
8.
8. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, Chem. Phys. Lett. 487, 1 (2010).
http://dx.doi.org/10.1016/j.cplett.2009.12.073
9.
9. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photonics 4, 99 (2010).
http://dx.doi.org/10.1038/nphoton.2009.263
10.
10. R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971).
11.
11. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, Electron. Lett. 32, 560 (1996).
http://dx.doi.org/10.1049/el:19960395
12.
12. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 98, 181102 (2011).
http://dx.doi.org/10.1063/1.3586773
13.
13. G. Scalari, D. Turčinková, J. Lloyd-Hughes, M. I. Amanti, M. Fischer, M. Beck, and J. Faist, Appl. Phys. Lett. 97, 081110 (2010).
http://dx.doi.org/10.1063/1.3481698
14.
14. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, Appl. Phys. Lett. 95, 061103 (2009).
http://dx.doi.org/10.1063/1.3193539
15.
15. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J. Fan, and C. F. Gmachl, Nat. Photonics 4, 95 (2010).
http://dx.doi.org/10.1038/nphoton.2009.262
16.
16. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).
http://dx.doi.org/10.1038/417156a
17.
17. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, Opt. Express 20, 3866 (2012).
http://dx.doi.org/10.1364/OE.20.003866
18.
18. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Nat. Photonics 3, 41 (2009).
http://dx.doi.org/10.1038/nphoton.2008.251
19.
19. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, Opt. Express 16, 3242 (2008).
http://dx.doi.org/10.1364/OE.16.003242
20.
20. M. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, Appl. Phys. Lett. 92, 201101 (2008).
http://dx.doi.org/10.1063/1.2919051
21.
21. R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, S. Katz, G. Boehm, M. C. Amann, and M. A. Belkin, Appl. Phys. Lett. 98, 151114 (2011).
http://dx.doi.org/10.1063/1.3579260
22.
22. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Opt. Express 21, 968 (2013).
http://dx.doi.org/10.1364/OE.21.000968
23.
23. K. Vijayraghavan, Y. Jiang, M. Jang, A. Jiang, K. Choutagunta, A. Vizbaras, F. Demmerle, G. Boehm, M. C. Amann, and M. A. Belkin, Nat. Commun. 4, 2021 (2013).
http://dx.doi.org/10.1038/ncomms3021
24.
24. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett. 101, 251121 (2012).
http://dx.doi.org/10.1063/1.4773189
25.
25. C. Jirauschek, A. Matyas, P. Lugli, and M.-C. Amann, Opt. Express 21, 6180 (2013).
http://dx.doi.org/10.1364/OE.21.006180
26.
26. N. Owschimikow, C. Gmachl, A. Belyanin, V. Kocharovsky, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, Phys. Rev. Lett. 90, 043902 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.043902
27.
27. A. Vizbaras, M. Anders, S. Katz, C. Grasse, G. Boehm, R. Meyer, M. A. Belkin, and M.-C. Amann, IEEE J. Quantum Electron. 47, 691 (2011).
http://dx.doi.org/10.1109/JQE.2011.2109372
28.
28. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, Appl. Phys. Lett. 100, 251104 (2012).
http://dx.doi.org/10.1063/1.4729042
29.
29. O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamošinuas, Opt. Express 14, 5335 (2006).
http://dx.doi.org/10.1364/OE.14.005335
30.
30. A. Bousseksou, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, Appl. Phys. Lett. 95, 091105 (2009).
http://dx.doi.org/10.1063/1.3202765
31.
31. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett. 99, 131106 (2011).
http://dx.doi.org/10.1063/1.3645016
32.
32. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, Nature 457, 174 (2009).
http://dx.doi.org/10.1038/nature07636
33.
33. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, Science 302, 1374 (2003).
http://dx.doi.org/10.1126/science.1090561
34.
34. M. Schubert and F. Rana, IEEE J. Quantum Electron. 42, 257 (2006).
http://dx.doi.org/10.1109/JQE.2005.863138
35.
35. A. Taflove and S. C. Hagness, The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
36.
36. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Paris, 1988).
37.
37. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
38.
38. M. Cardona, Phys. Rev. 121, 752 (1961).
http://dx.doi.org/10.1103/PhysRev.121.752
39.
39. M. Sugawara, N. Okazaki, T. Fujii, and S. Yamazaki, Phys. Rev. B 48, 8102 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.8102
40.
40. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Pergamon Press, Oxford, 1977).
41.
41. B. Jonsson and S. T. Eng, IEEE J. Quantum Electron. 26, 2025 (1990).
http://dx.doi.org/10.1109/3.62122
42.
42. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, IEEE J. Quantum Electron. 29, 2731 (1993).
http://dx.doi.org/10.1109/3.248931
43.
43. C. Jirauschek, IEEE J. Quantum Electron. 45, 1059 (2009).
http://dx.doi.org/10.1109/JQE.2009.2020998
44.
44. S. Steiger, M. Povolotskyi, H.-H. Park, T. Kubis, and G. Klimeck, IEEE Trans. Nanotechnol. 10, 1464 (2011).
http://dx.doi.org/10.1109/TNANO.2011.2166164
45.
45. X. Gao, D. Botez, and I. Knezevic, Appl. Phys. Lett. 89, 191119 (2006).
http://dx.doi.org/10.1063/1.2387485
46.
46. X. Gao, D. Botez, and I. Knezevic, J. Appl. Phys. 101, 063101 (2007).
http://dx.doi.org/10.1063/1.2711153
47.
47. X. Gao, M. D'Souza, D. Botez, and I. Knezevic, J. Appl. Phys. 102, 113107 (2007).
http://dx.doi.org/10.1063/1.2820039
48.
48. X. Gao, D. Botez, and I. Knezevic, J. Appl. Phys. 103, 073101 (2008).
http://dx.doi.org/10.1063/1.2899963
49.
49. D. F. Nelson, R. C. Miller, and D. A. Kleinman, Phys. Rev. B 35, 7770 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.7770
50.
50. G. Liu and S.-L. Chuang, Phys. Rev. B 65, 165220 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165220
51.
51. U. Ekenberg, Phys. Rev. B 40, 7714 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.7714
52.
52. M. Braun and U. Rossler, J. Phys. C: Solid State Phys. 18, 3365 (1985).
http://dx.doi.org/10.1088/0022-3719/18/17/013
53.
53. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, Phys. Rev. B 50, 8663 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.8663
54.
54. H. Tanimoto, N. Yasuda, K. Taniguchi, and C. Hamaguchi, Jpn. J. Appl. Phys., Part 1 27, 563 (1988).
http://dx.doi.org/10.1143/JJAP.27.563
55.
55. O. Bonno and J.-L. Thobel, J. Appl. Phys. 104, 053719 (2008).
http://dx.doi.org/10.1063/1.2976170
56.
56. Y. Ando and T. Itoh, J. Appl. Phys. 61, 1497 (1987).
http://dx.doi.org/10.1063/1.338082
57.
57. E. Cassan, J. Appl. Phys. 87, 7931 (2000).
http://dx.doi.org/10.1063/1.373477
58.
58. W. R. Frensley, Heterostructures and Quantum Devices, VLSI Electronics: Microstructure Science, edited by W. R. Frensley and N. G. Einspruch (Academic Press, 1994).
59.
59. C. Juang, K. J. Kuhn, and R. B. Darling, Phys. Rev. B 41, 12047 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.12047
60.
60. D. Y. Ko and J. C. Inkson, Phys. Rev. B 38, 9945 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.9945
61.
61. J. H. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1997).
62.
62. S. Vatannia and G. Gildenblat, IEEE J. Quantum Electron. 32, 1093 (1996).
http://dx.doi.org/10.1109/3.502388
63.
63. J. -G. S. Demers and R. Maciejko, J. Appl. Phys. 90, 6120 (2001).
http://dx.doi.org/10.1063/1.1412584
64.
64. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992).
65.
65. J. D. Cooper, A. Valavanis, Z. Ikonić, P. Harrison, and J. E. Cunningham, J. Appl. Phys. 108, 113109 (2010).
http://dx.doi.org/10.1063/1.3512981
66.
66. H. Li, J. C. Cao, and H. C. Liu, Semicond. Sci. Technol. 23, 125040 (2008).
http://dx.doi.org/10.1088/0268-1242/23/12/125040
67.
67. V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 86, 211117 (2005).
http://dx.doi.org/10.1063/1.1937993
68.
68. C. Jirauschek, A. Matyas, and P. Lugli, J. Appl. Phys. 107, 013104 (2010).
http://dx.doi.org/10.1063/1.3276160
69.
69. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, Appl. Phys. Lett. 82, 3165 (2003).
http://dx.doi.org/10.1063/1.1571653
70.
70. A. Trellakis, A. Galick, A. Pacelli, and U. Ravaioli, J. Appl. Phys. 81, 7880 (1997).
http://dx.doi.org/10.1063/1.365396
71.
71. S. Kohen, B. S. Williams, and Q. Hu, J. Appl. Phys. 97, 053106 (2005).
http://dx.doi.org/10.1063/1.1855394
72.
72. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, Opt. Express 14, 11672 (2006).
http://dx.doi.org/10.1364/OE.14.011672
73.
73. P. Monk, Finite Element Methods for Maxwell's Equations (Oxford University Press, Oxford, 2003).
74.
74. A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, Opt. Express 17, 941 (2009).
http://dx.doi.org/10.1364/OE.17.000941
75.
75. N. Schulz, K. Bierwirth, F. Arndt, and U. Koster, IEEE Trans. Microwave Theory Tech. 38, 722 (1990).
http://dx.doi.org/10.1109/22.130966
76.
76. C. Jirauschek, Appl. Phys. Lett. 96, 011103 (2010).
http://dx.doi.org/10.1063/1.3284523
77.
77. C. Peng, G. Chen, T. Yang, S.-W. Park, and R. Martini, Semicond. Sci. Technol. 28, 105008 (2013).
http://dx.doi.org/10.1088/0268-1242/28/10/105008
78.
78. J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford, 2013).
79.
79. J. Butler and J. Zoroofchi, IEEE J. Quantum Electron. 10, 809 (1974).
http://dx.doi.org/10.1109/JQE.1974.1068102
80.
80. T. Ikegami, IEEE J. Quantum Electron. 8, 470 (1972).
http://dx.doi.org/10.1109/JQE.1972.1077091
81.
81. P. C. Kendall, D. A. Roberts, P. N. Robson, M. J. Adams, and M. J. Robertson, IEEE Photonics Technol. Lett. 5, 148 (1993).
http://dx.doi.org/10.1109/68.195986
82.
82. F. K. Reinhart, I. Hayashi, and M. B. Panish, J. Appl. Phys. 42, 4466 (1971).
http://dx.doi.org/10.1063/1.1659796
83.
83. D. Dietze, J. Darmo, and K. Unterrainer, IEEE J. Quantum Electron. 46, 618 (2010).
http://dx.doi.org/10.1109/JQE.2010.2047379
84.
84. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999).
85.
85. R. Bräuer and O. Bryngdahl, Appl. Opt. 33, 7875 (1994).
http://dx.doi.org/10.1364/AO.33.007875
86.
86. K. Chiang, Opt. Lett. 16, 714 (1991).
http://dx.doi.org/10.1364/OL.16.000714
87.
87. A. S. Sudbo, Pure Appl. Opt. 3, 381 (1994).
http://dx.doi.org/10.1088/0963-9659/3/3/021
88.
88. A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986).
89.
89. K. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, IEEE J. Quantum Electron. 38, 533 (2002).
http://dx.doi.org/10.1109/JQE.2002.1005404
90.
90. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, IEEE J. Quantum Electron. 44, 12 (2008).
http://dx.doi.org/10.1109/JQE.2007.907563
91.
91. D. Indjin, P. Harrison, R. W. Kelsall, and Z. Ikonić, J. Appl. Phys. 91, 9019 (2002).
http://dx.doi.org/10.1063/1.1474613
92.
92. K. Donovan, P. Harrison, and R. W. Kelsall, J. Appl. Phys. 89, 3084 (2001).
http://dx.doi.org/10.1063/1.1341216
93.
93. P. Slingerland, C. Baird, and R. H. Giles, Semicond. Sci. Technol. 27, 065009 (2012).
http://dx.doi.org/10.1088/0268-1242/27/6/065009
94.
94. A. Mirčetić, D. Indjin, Z. Ikonić, P. Harrison, V. Milanović, and R. W. Kelsall, J. Appl. Phys. 97, 084506 (2005).
http://dx.doi.org/10.1063/1.1882768
95.
95. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003).
96.
96. C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, Phys. Rev. A 75, 031802 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.031802
97.
97. V.-M. Gkortsas, C. Wang, L. Kuznetsova, L. Diehl, A. Gordon, C. Jirauschek, M. A. Belkin, A. Belyanin, F. Capasso, and F. X. Kärtner, Opt. Express 18, 13616 (2010).
http://dx.doi.org/10.1364/OE.18.013616
98.
98. C. R. Menyuk and M. A. Talukder, Phys. Rev. Lett. 102, 023903 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023903
99.
99. R. C. Iotti and F. Rossi, Appl. Phys. Lett. 76, 2265 (2000).
http://dx.doi.org/10.1063/1.126316
100.
100. R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, Appl. Phys. Lett. 79, 3920 (2001).
http://dx.doi.org/10.1063/1.1423777
101.
101. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 207 (2003).
http://dx.doi.org/10.1063/1.1590749
102.
102. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 84, 645 (2004).
http://dx.doi.org/10.1063/1.1644337
103.
103. F. Compagnone, A. di Carlo, and P. Lugli, Appl. Phys. Lett. 80, 920 (2002).
http://dx.doi.org/10.1063/1.1448664
104.
104. J. T. and J. C. Cao, Appl. Phys. Lett. 88, 061119 (2006).
http://dx.doi.org/10.1063/1.2172225
105.
105. A. Mátyás, M. Belkin, P. Lugli, and C. Jirauschek, Appl. Phys. Lett. 96, 201110 (2010).
http://dx.doi.org/10.1063/1.3430741
106.
106. A. Mátyás, P. Lugli, and C. Jirauschek, J. Appl. Phys. 110, 013108 (2011).
http://dx.doi.org/10.1063/1.3608116
107.
107. C. Jirauschek and P. Lugli, J. Appl. Phys. 105, 123102 (2009).
http://dx.doi.org/10.1063/1.3147943
108.
108. C. Jirauschek and P. Lugli, Phys. Status Solidi C 5, 221 (2008).
http://dx.doi.org/10.1002/pssc.200776566
109.
109. H. Li, J. C. Cao, Z. Y. Tan, Y. J. Han, X. G. Guo, S. L. Feng, H. Luo, S. R. Laframboise, and H. C. Liu, J. Phys. D: Appl. Phys. 42, 025101 (2009).
http://dx.doi.org/10.1088/0022-3727/42/2/025101
110.
110. O. Bonno, J.-L. Thobel, and F. Dessenne, J. Appl. Phys. 97, 043702 (2005).
http://dx.doi.org/10.1063/1.1840100
111.
111. S. Kumar and Q. Hu, Phys. Rev. B 80, 245316 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245316
112.
112. E. Dupont, S. Fathololoumi, and H. C. Liu, Phys. Rev. B 81, 205311 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205311
113.
113. R. Terazzi and J. Faist, New J. Phys. 12, 033045 (2010).
http://dx.doi.org/10.1088/1367-2630/12/3/033045
114.
114. R. C. Iotti and F. Rossi, Phys. Rev. Lett. 87, 146603 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.146603
115.
115. C. Weber, A. Wacker, and A. Knorr, Phys. Rev. B 79, 165322 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165322
116.
116. A. Wacker, Phys. Rev. B 66, 085326 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.085326
117.
117. F. Banit, S.-C. Lee, A. Knorr, and A. Wacker, Appl. Phys. Lett. 86, 041108 (2005).
http://dx.doi.org/10.1063/1.1851004
118.
118. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, Phys. Rev. B 79, 195323 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195323
119.
119. T. Schmielau and M. F. Pereira, Appl. Phys. Lett. 95, 231111 (2009).
http://dx.doi.org/10.1063/1.3272675
120.
120. T. Kubis and P. Vogl, Phys. Rev. B 83, 195304 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195304
121.
121. T. Schmielau and M. F. Pereira, Phys. Status Solidi B 246, 329 (2009).
http://dx.doi.org/10.1002/pssb.200880328
122.
122. A. Kolek, G. Haldas, and M. Bugajski, Appl. Phys. Lett. 101, 061110 (2012).
http://dx.doi.org/10.1063/1.4745013
123.
123. D. O. Winge, M. Lindskog, and A. Wacker, Appl. Phys. Lett. 101, 211113 (2012).
http://dx.doi.org/10.1063/1.4767373
124.
124. A. Wacker, M. Lindskog, and D. O. Winge, IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2239613
125.
125. H. Callebaut and Q. Hu, J. Appl. Phys. 98, 104505 (2005).
http://dx.doi.org/10.1063/1.2136420
126.
126. L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, Semicond. Sci. Technol. 25, 045025 (2010).
http://dx.doi.org/10.1088/0268-1242/25/4/045025
127.
127. S. L. Lu, L. Schrottke, S. W. Teitsworth, R. Hey, and H. T. Grahn, Phys. Rev. B 73, 033311 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.033311
128.
128. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, Nature 492, 229 (2012).
http://dx.doi.org/10.1038/nature11620
129.
129. M. A. Talukder and C. R. Menyuk, Appl. Phys. Lett. 95, 071109 (2009).
http://dx.doi.org/10.1063/1.3206741
130.
130. M. A. Talukder and C. R. Menyuk, Opt. Express 18, 5639 (2010).
http://dx.doi.org/10.1364/OE.18.005639
131.
131. R. C. Iotti, E. Ciancio, and F. Rossi, Phys. Rev. B 72, 125347 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125347
132.
132. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics (Wiley, Chichester, 1999).
133.
133. W. A. Harrison, Phys. Rev. 104, 1281 (1956).
http://dx.doi.org/10.1103/PhysRev.104.1281
134.
134. K. Hess, Advanced Theory of Semiconductor Devices (Wiley-IEEE Press, New York, 1999).
135.
135. C. Y. Chang and F. Kai, GaAs High-Speed Devices (John Wiley & Sons, New York, 1994).
136.
136. R. Nelander and A. Wacker, Phys. Status Solidi B 6, 579 (2009).
http://dx.doi.org/10.1002/pssc.200880318
137.
137. P. Lawaetz, Phys. Rev. 183, 730 (1969).
http://dx.doi.org/10.1103/PhysRev.183.730
138.
138. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).
http://dx.doi.org/10.1103/PhysRev.80.72
139.
139. C. Kittel and C. Y. Fong, Quantentheorie der Festkörper (Oldenbourg, München, 1988).
140.
140. B. S. Williams and Q. Hu, J. Appl. Phys. 90, 5504 (2001).
http://dx.doi.org/10.1063/1.1413951
141.
141. S. M. Goodnick and P. Lugli, Phys. Rev. B 37, 2578 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2578
142.
142. S.-H. Park, D. Ahn, and Y.-T. Lee, Jpn. J. Appl. Phys., Part 1 39, 6601 (2000).
http://dx.doi.org/10.1143/JJAP.39.6601
143.
143. R. Nelander and A. Wacker, Appl. Phys. Lett. 92, 081102 (2008).
http://dx.doi.org/10.1063/1.2884686
144.
144. F. Compagnone, M. Manenti, A. Di Carlo, and P. Lugli, Physica B 314, 336 (2002).
http://dx.doi.org/10.1016/S0921-4526(01)01448-X
145.
145. P. Lugli, C. Jacoboni, L. Reggiani, and P. Kocevar, Appl. Phys. Lett. 50, 1251 (1987).
http://dx.doi.org/10.1063/1.97925
146.
146. V. Spagnolo, M. Troccoli, G. Scamarcio, C. Gmachl, F. Capasso, A. Tredicucci, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, Appl. Phys. Lett. 78, 2095 (2001).
http://dx.doi.org/10.1063/1.1359146
147.
147. C. A. Evans, V. D. Jovanovic, D. Indjin, Z. Ikonic, and P. Harrison, IEEE J. Quantum Electron. 42, 857 (2006).
http://dx.doi.org/10.1109/JQE.2006.880116
148.
148. Y. B. Shi, Z. Aksamija, and I. Knezevic, J. Comput. Electron. 11, 144 (2012).
http://dx.doi.org/10.1007/s10825-012-0397-8
149.
149. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, Wien, 1989).
150.
150. M. Moško, A. Mošková, and V. Cambel, Phys. Rev. B 51, 16860 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.16860
151.
151. R. Nelander and A. Wacker, J. Appl. Phys. 106, 063115 (2009).
http://dx.doi.org/10.1063/1.3226072
152.
152. J. T. and J. C. Cao, Appl. Phys. Lett. 89, 211115 (2006).
http://dx.doi.org/10.1063/1.2397028
153.
153. M. Moško and A. Mošková, Semicond. Sci. Technol. 9, 478 (1994).
http://dx.doi.org/10.1088/0268-1242/9/5S/021
154.
154. S.-C. Lee and I. Galbraith, Phys. Rev. B 59, 15796 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.15796
155.
155. T. Kubis, C. Yeh, and P. Vogl, Phys. Status Solidi C 5, 232 (2008).
http://dx.doi.org/10.1002/pssc.200776591
156.
156. T. Kubis, S. R. Mehrotra, and G. Klimeck, Appl. Phys. Lett. 97, 261106 (2010).
http://dx.doi.org/10.1063/1.3524197
157.
157. C. Deutsch, H. Detz, T. Zederbauer, A. M. Andrews, P. Klang, T. Kubis, G. Klimeck, M. E. Schuster, W. Schrenk, G. Strasser, and K. Unterrainer, Opt. Express 21, 7209 (2013).
http://dx.doi.org/10.1364/OE.21.007209
158.
158. H. Brooks, Phys. Rev. 83, 879 (1951).
159.
159. E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).
http://dx.doi.org/10.1103/PhysRev.77.388
160.
160. J. B. Krieger and T. Meeks, Phys. Rev. B 8, 2780 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.2780
161.
161. D. Chattopadhyay and H. J. Queisser, Rev. Mod. Phys. 53, 745 (1981).
http://dx.doi.org/10.1103/RevModPhys.53.745
162.
162. H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934 (1987).
http://dx.doi.org/10.1063/1.98305
163.
163. R. F. Schnabel, R. Zimmermann, D. Bimberg, H. Nickel, R. Lösch, and W. Schlapp, Phys. Rev. B 46, 9873 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.9873
164.
164. P. Roblin, R. C. Potter, and A. Fathimulla, J. Appl. Phys. 79, 2502 (1996).
http://dx.doi.org/10.1063/1.361104
165.
165. R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997).
http://dx.doi.org/10.1063/1.365394
166.
166. B. R. Nag, Semicond. Sci. Technol. 19, 162 (2004).
http://dx.doi.org/10.1088/0268-1242/19/2/006
167.
167. S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. V. Falub, H. Sigg, D. Grützmacher, M. Giovannini, and J. Faist, Appl. Phys. Lett. 86, 062113 (2005).
http://dx.doi.org/10.1063/1.1862344
168.
168. A. E. Asch and G. L. Hall, Phys. Rev. 132, 1047 (1963).
http://dx.doi.org/10.1103/PhysRev.132.1047
169.
169. S. R. Mehrotra, A. Paul, and G. Klimeck, Appl. Phys. Lett. 98, 173503 (2011).
http://dx.doi.org/10.1063/1.3583983
170.
170. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, Phys. Rev. B 66, 125207 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.125207
171.
171. G. Klimeck, R. C. Bowen, T. B. Boykin, C. Salazar-Lazaro, T. A. Cwik, and A. Stoica, Superlattices Microstruct. 27, 77 (2000).
http://dx.doi.org/10.1006/spmi.1999.0797
172.
172. S. Krishnamurthy, A. Sher, and A.-B. Chen, Appl. Phys. Lett. 47, 160 (1985).
http://dx.doi.org/10.1063/1.96248
173.
173. P. Harrison, D. Indjin, and R. W. Kelsall, J. Appl. Phys. 92, 6921 (2002).
http://dx.doi.org/10.1063/1.1517747
174.
174. V. Spagnolo, G. Scamarcio, H. Page, and C. Sirtori, Appl. Phys. Lett. 84, 3690 (2004).
http://dx.doi.org/10.1063/1.1739518
175.
175. M. S. Vitiello, G. Scamarcio, V. Spagnolo, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 86, 111115 (2005).
http://dx.doi.org/10.1063/1.1886266
176.
176. R. C. Iotti and F. Rossi, Rep. Prog. Phys. 68, 2533 (2005).
http://dx.doi.org/10.1088/0034-4885/68/11/R02
177.
177. C. Jirauschek, Opt. Express 18, 25922 (2010).
http://dx.doi.org/10.1364/OE.18.025922
178.
178. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Express 13, 3331 (2005).
http://dx.doi.org/10.1364/OPEX.13.003331
179.
179. T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, J. Appl. Phys. 93, 1586 (2003).
http://dx.doi.org/10.1063/1.1535733
180.
180. J. Schwinger, J. Math. Phys. 2, 407 (1961).
http://dx.doi.org/10.1063/1.1703727
181.
181. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, Inc., Menlo Park, California, 1962).
182.
182. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
183.
183. B. K. Nikolić, S. Souma, L. P. Zrbo, and J. Sinova, Phys. Rev. Lett. 95, 046601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.046601
184.
184. K. Suzuki and S. Kurihara, e-print arXiv:cond-mat/0611013v2.
185.
185. T. Kubis and P. Vogl, Phys. Status Solidi C 5, 290 (2008).
http://dx.doi.org/10.1002/pssc.200776593
186.
186. Y. Xu, J.-S. Wang, W. Duan, B.-L. Gu, and B. Li, Phys. Rev. B 78, 224303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.224303
187.
187. T. Yamamoto and K. Watanabe, Phys. Rev. Lett. 96, 255503 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.255503
188.
188. M. Luisier, Phys. Rev. B 86, 245407 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.245407
189.
189. M. Luisier, A. Schenk, and W. Fichtner, J. Appl. Phys. 100, 043713 (2006).
http://dx.doi.org/10.1063/1.2244522
190.
190. V. N. Do, P. Dollfus, and V. L. Nguyen, J. Appl. Phys. 100, 093705 (2006).
http://dx.doi.org/10.1063/1.2364035
191.
191. Z. Chen, J. Wang, B. Wang, and D. Y. Xing, Phys. Lett. A 334, 436 (2005).
http://dx.doi.org/10.1016/j.physleta.2004.11.049
192.
192. Y. Ke, K. Xia, and H. Guo, Phys. Rev. Lett. 100, 166805 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.166805
193.
193. A. Bulusu and D. G. Walker, ASME J. Heat Transfer 129, 492 (2007).
http://dx.doi.org/10.1115/1.2709962
194.
194. S. Hong, V. Diep, S. Datta, and Y. P. Chen, Phys. Rev. B 86, 085131 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085131
195.
195. A. Wacker, Phys. Rep. 357, 1 (2002).
http://dx.doi.org/10.1016/S0370-1573(01)00029-1
196.
196. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, Phys. Rev. Lett. 95, 236802 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.236802
197.
197. H. Li and X. Q. Zhang, Phys. Lett. A 372, 4294 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.03.049
198.
198. T. Sato, K. Shizu, T. Kuga, K. Tanaka, and H. Kaji, Chem. Phys. Lett. 458, 152 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.084
199.
199. P. Damle, A. W. Ghosh, and S. Datta, Chem. Phys. 281, 171 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00496-2
200.
200. T. Kubis and P. Vogl, Laser Phys. 19, 762 (2009).
http://dx.doi.org/10.1134/S1054660X0904032X
201.
201. S. Birner, C. Schindler, P. Greck, M. Sabathil, and P. Vogl, J. Comput. Electron. 8, 267 (2009).
http://dx.doi.org/10.1007/s10825-009-0293-z
202.
202. J. Z. Huang, W. C. Chew, J. Peng, C.-Y. Yam, L. J. Jiang, and G.-H. Chen, IEEE Trans. Electron Devices 60, 2111 (2013).
http://dx.doi.org/10.1109/TED.2013.2260546
203.
203. S. R. Mehrotra, S. Kim, T. Kubis, M. Povolotskyi, M. S. Lundstrom, and G. Klimeck, IEEE Trans. Electron Devices 60, 2171 (2013).
http://dx.doi.org/10.1109/TED.2013.2263806
204.
204. Z. Jiang, M. A. Kuroda, Y. Tan, D. M. Newns, M. Povolotskyi, T. B. Boykin, T. Kubis, and G. Klimeck, Appl. Phys. Lett. 102, 193501 (2013).
http://dx.doi.org/10.1063/1.4804601
205.
205. K. S. Thygesen and A. Rubio, Phys. Rev. B 77, 115333 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115333
206.
206. S.-C. Lee and A. Wacker, Phys. Rev. B 66, 245314 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.245314
207.
207. N. Vukmirović, D. Indjin, Z. Ikonić, and P. Harrison, IEEE Photonics Technol. Lett. 20, 129 (2008).
http://dx.doi.org/10.1109/LPT.2007.912533
208.
208. L. Zeng, Y. He, M. Povolotsky, X. Liu, G. Klimeck, and T. Kubis, J. Appl. Phys. 113, 213707 (2013).
http://dx.doi.org/10.1063/1.4809638
209.
209. H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996).
210.
210. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, Inc., New York, 1971).
211.
211. G. D. Mahan, Many-Particle Physics, edited by J. T. Devreese, R. P. Evrard, S. Lundquist, G. D. Mahan, and N. H. March (Plenum Press, New York, 2000).
212.
212. J. D. Jackson, Classical Electrodynamics (Wiley & Sons, New York, 1999).
213.
213. D. Z.-Y. Ting, E. T. Yu, and T. C. McGill, Phys. Rev. B 45, 3583 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.3583
214.
214. S.-C. Lee, F. Banit, M. Woerner, and A. Wacker, Phys. Rev. B 73, 245320 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245320
215.
215. N. Vukmirović, Z. Ikonić, D. Indjin, and P. Harrison, Phys. Rev. B 76, 245313 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245313
216.
216. E. M. Lifschitz and L. P. Pitajewski, Physical Kinetics, Course of Theoretical Physics, Vol. 10 (Elsevier, Oxford, 2008).
217.
217. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.645
218.
218. B. K. Ridley, Quantum Processes in Semiconductors (Oxford Science Publications, Oxford, 1982).
219.
219. T. Kubis, “ Quantum transport in semiconductor nanostructures,” Ph.D. thesis (Technische Universität München, 2009); available at http://nanohub.org/resources/8612.
220.
220. A. Svizhenko and M. P. Anantram, Phys. Rev. B 72, 085430 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085430
221.
221. S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K. Masaki, and U. Ravaioli, J. Appl. Phys. 79, 911 (1996).
http://dx.doi.org/10.1063/1.360871
222.
222. G. H. Kruithof, T. M. Klapwijk, and S. Bakker, Phys. Rev. B 43, 6642 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.6642
223.
223. L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
224.
224. U. von Barth and B. Holm, Phys. Rev. B 54, 8411 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.8411
225.
225. B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.2108
226.
226. S. Agarwal, M. Povolotskyi, T. Kubis, and G. Klimeck, J. Comput. Electron. 9, 252 (2010).
http://dx.doi.org/10.1007/s10825-010-0338-3
227.
227. M. Büttiker, Phys. Rev. B 33, 3020 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.3020
228.
228. H. Mera, M. Lannoo, C. Li, N. Cavassilas, and M. Bescond, Phys. Rev. B 86, 161404 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.161404
229.
229. G. Klimeck, R. Lake, C. L. Fernando, R. C. Bowen, D. Blanks, M. Leng, T. Moise, Y. C. Kao, and W. R. Frensley, in Proceedings of the International Conference on Quantum Devices and Circuits: Alexandria, Egypt, 4–7 June 1996, edited by K. Ismail, S. Bandyopadhyay, and J. P. Leburton (Alexandria, Egypt, 1996).
230.
230. M. Luisier and G. Klimeck, Phys. Rev. B 80, 155430 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155430
231.
231. Landolt-Börnstein, edited by O. Madelung, Semiconductors: Intrinsic Properties of Group IV Elements and III–V, II–VI and I–VII Compounds (Springer, Berlin, 1987).
232.
232. A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, Mater. Sci. Eng., B 147, 152 (2008).
http://dx.doi.org/10.1016/j.mseb.2007.08.012
233.
233. K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, Opt. Express 20, 20647 (2012).
http://dx.doi.org/10.1364/OE.20.020647
234.
234. H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, Appl. Phys. Lett. 94, 151109 (2009).
http://dx.doi.org/10.1063/1.3119312
235.
235. A. Gordon and D. Majer, Phys. Rev. B 80, 195317 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195317
236.
236. Z. Aksamija and U. Ravaioli, J. Appl. Phys. 105, 083722 (2009).
http://dx.doi.org/10.1063/1.3116544
237.
237. A. Matyas, P. Lugli, and C. Jirauschek, Appl. Phys. Lett. 102, 011101 (2013).
http://dx.doi.org/10.1063/1.4773516
238.
238. I. Bhattacharya, C. W. I. Chan, and Q. Hu, Appl. Phys. Lett. 100, 011108 (2012).
http://dx.doi.org/10.1063/1.3675452
239.
239. J. S. Bhat, S. S. Kubakaddi, and B. G. Mulimani, J. Appl. Phys. 72, 4966 (1992).
http://dx.doi.org/10.1063/1.352067
240.
240. A. Wacker, G. Bastard, F. Carosella, R. Ferreira, and E. Dupont, Phys. Rev. B 84, 205319 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205319
241.
241. A. Mátyás, T. Kubis, P. Lugli, and C. Jirauschek, Physica E 42, 2628 (2010).
http://dx.doi.org/10.1016/j.physe.2009.12.028
242.
242. W. Freeman and G. Karunasiri, Phys. Rev. B 85, 195326 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195326
243.
243. F. Sudradjat, W. Zhang, K. Driscoll, Y. Liao, A. Bhattacharyya, C. Thomidis, L. Zhou, D. J. Smith, T. D. Moustakas, and R. Paiella, J. Appl. Phys. 108, 103704 (2010).
http://dx.doi.org/10.1063/1.3511334
244.
244. C. Gmachl, H. M. Ng, and A. Y. Cho, Appl. Phys. Lett. 77, 334 (2000).
http://dx.doi.org/10.1063/1.126968
245.
245. V. D. Jovanović, D. Indjin, Z. Ikonić, and P. Harrison, Appl. Phys. Lett. 84, 2995 (2004).
http://dx.doi.org/10.1063/1.1707219
246.
246. E. Bellotti, K. Driscoll, T. D. Moustakas, and R. Paiella, J. Appl. Phys. 105, 113103 (2009).
http://dx.doi.org/10.1063/1.3137203
247.
247. G. Sun, R. A. Soref, and J. B. Khurgin, Superlattices Microstruct. 37, 107 (2005).
http://dx.doi.org/10.1016/j.spmi.2004.09.046
248.
248. H. Yasuda, T. Kubis, I. Hosako, and K. Hirakawa, J. Appl. Phys. 111, 083105 (2012).
http://dx.doi.org/10.1063/1.4704389
249.
249. S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonic, R. W. Kelsall, P. Harrison, D. D. Arnone, and C. R. Pidgeon, Appl. Phys. Lett. 81, 1543 (2002).
http://dx.doi.org/10.1063/1.1501759
250.
250. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, and E. Müller, Science 290, 2277 (2000).
http://dx.doi.org/10.1126/science.290.5500.2277
251.
251. Z. Ikonić, P. Harrison, and R. W. Kelsall, J. Appl. Phys. 96, 6803 (2004).
http://dx.doi.org/10.1063/1.1805727
252.
252. Z. Ikonić, R. W. Kelsall, and P. Harrison, Phys. Rev. B 69, 235308 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.235308
253.
253. L. Friedman, G. Sun, and R. A. Soref, Appl. Phys. Lett. 78, 401 (2001).
http://dx.doi.org/10.1063/1.1341221
254.
254. K. Driscoll and R. Paiella, J. Appl. Phys. 102, 093103 (2007).
http://dx.doi.org/10.1063/1.2803896
255.
255. L. Lever, A. Valavanis, C. A. Evans, Z. Ikonić, and R. W. Kelsall, Appl. Phys. Lett. 95, 131103 (2009).
http://dx.doi.org/10.1063/1.3237177
256.
256. M. de Seta, G. Capellini, Y. Busby, F. Evangelisti, M. Ortolani, M. Virgilio, G. Grosso, G. Pizzi, A. Nucara, and S. Lupi, Appl. Phys. Lett. 95, 051918 (2009).
http://dx.doi.org/10.1063/1.3198204
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4863665
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4863665
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4863665
2014-02-21
2014-09-21

Abstract

Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4863665.html;jsessionid=2fm3lm9a1280.x-aip-live-06?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4863665&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Modeling techniques for quantum cascade lasers
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4863665
10.1063/1.4863665
SEARCH_EXPAND_ITEM