1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electric field control of magnetism using BiFeO3-based heterostructures
Rent:
Rent this article for
Access full text Article
    J. T. Heron1,a), D. G. Schlom1,2 and R. Ramesh3,4,5,6
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
    2 Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
    3 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
    4 Department of Physics, University of California, Berkeley, California 94720, USA
    5 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
    6 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
    a) Author to whom correspondence should be addressed. Electronic mail: jth247@cornell.edu
    Appl. Phys. Rev. 1, 021303 (2014); http://dx.doi.org/10.1063/1.4870957
/content/aip/journal/apr2/1/2/10.1063/1.4870957
1.
1. K. Bernstein, R. K. Calvin III, W. Porod, A. Seabaugh, and J. Welser, Proc. IEEE 98, 2169 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2066530
2.
2. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
3.
3. D. D. Awschalom and M. E. Flatté, Nat. Phys. 3, 153 (2007).
http://dx.doi.org/10.1038/nphys551
4.
4. A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod, Science 311, 205 (2006).
http://dx.doi.org/10.1126/science.1120506
5.
5. D. Bhowmik, L. You, and S. Salahuddin, Nat. Nanotechnol. 9, 59 (2014).
http://dx.doi.org/10.1038/nnano.2013.241
6.
6. B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, Nat. Nanotechnol. 5, 266 (2010).
http://dx.doi.org/10.1038/nnano.2010.31
7.
7. A. Khitun, D. E. Nikonov, and K. L. Wang, J. Appl. Phys. 106, 123909 (2009).
http://dx.doi.org/10.1063/1.3267152
8.
8. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science 285, 867 (1999).
http://dx.doi.org/10.1126/science.285.5429.867
9.
9.Formed in 2002, Grandis (http://www.grandisinc.com) worked for several years to commercialize STT-RAM technology. In August 2011, Grandis was acquired by Samsung. D. McGrath, “Samsung buys MRAM developer Grandis” EETimes Aug, 2 2011 (http://www.eetimes.com/electronics-news/4218434/Samsung-buys-MRAM-developer-Grandis)
10.
10. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
11.
11. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.019
12.
12. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
13.
13. H. Liu, D. Bedau, D. Backes, J. A. Katine, J. Langer, and A. D. Kent, Appl. Phys. Lett. 97, 242510 (2010).
http://dx.doi.org/10.1063/1.3527962
14.
14. G. E. Rowlands, T. Rahman, J. A. Katine, J. Langer, A. Lyle, H. Zhao, J. G. Alzate, A. A. Kovalev, Y. Tserkovnyak, Z. M. Zeng, H. W. Jiang, K. Galatsis, Y. M. Huai, P. Khalili Amiri, K. L. Wang, I. N. Krivorotov, and J.-P. Wang, Appl. Phys. Lett. 98, 102509 (2011).
http://dx.doi.org/10.1063/1.3565162
15.
15. K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).
http://dx.doi.org/10.1080/00018730902920554
16.
16. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
17.
17. S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
18.
18. H. Schmid, J. Phys.: Condens. Matter 20, 434201 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434201
19.
19. H. Béa, M. Gajek, M. Bibes, and A. Barthélémy, J. Phys.: Condens. Matter 20, 434221 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434221
20.
20. C. Binek and B. Doudin, J. Phys.: Condens. Matter 17, L39 (2005).
http://dx.doi.org/10.1088/0953-8984/17/2/L06
21.
21. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
http://dx.doi.org/10.1088/0022-3727/38/8/R01
22.
22. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
23.
23. A. P. Pyatakov and A. K. Zvezdin, Phys.-Usp. 55, 557 (2012).
http://dx.doi.org/10.3367/UFNe.0182.201206b.0593
24.
24. D. Khomskii, Physics 2, 20 (2009).
http://dx.doi.org/10.1103/Physics.2.20
25.
25. J. Ma, J. Hu, Z. Li, and C. W. Nan, Adv. Mater. 23, 1062 (2011).
http://dx.doi.org/10.1002/adma.201003636
26.
26. N. X. Sun and G. Srinivasan, SPIN 2, 1240004 (2012).
http://dx.doi.org/10.1142/S2010324712400048
27.
27. C. A. F. Vaz, J. Phys.: Condens. Matter 24, 333201 (2012).
http://dx.doi.org/10.1088/0953-8984/24/33/333201
28.
28. P. Royen and K. Swars, Angew. Chem. 69, 779 (1957).
http://dx.doi.org/10.1002/ange.19570692407
29.
29. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
30.
30. Y. F. Popov, A. K. Zvezdin, G. P. Vorobev, A. M. Kadomtseva, V. A. Murashev, and D. N. Rakov, JETP Lett. 57, 69 (1993).
31.
31. C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Commun. 7, 701 (1969).
http://dx.doi.org/10.1016/0038-1098(69)90597-3
32.
32. F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci. 46, 698 (1990).
http://dx.doi.org/10.1107/S0108768190006887
33.
33. J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8, 1073 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90262-0
34.
34. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).
http://dx.doi.org/10.1088/0022-3719/15/23/020
35.
35. G. A. Smolenskii, V. M. Yudin, E. S. Sher, and Y. E. Stolypin, Sov. Phys. JETP 16, 622 (1963).
36.
36. C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401R (2005).
http://dx.doi.org/10.1103/PhysRevB.71.060401
37.
37. R. Seshadri and N. A. Hill, Chem. Mater. 13, 2892 (2001).
http://dx.doi.org/10.1021/cm010090m
38.
38. D. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.01.238
39.
39. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980).
http://dx.doi.org/10.1088/0022-3719/13/10/012
40.
40. I. E. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90076-3
41.
41. I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).
42.
42. T. Moriya, Phys. Rev. 120, 91 (1960).
http://dx.doi.org/10.1103/PhysRev.120.91
43.
43. C. Ederer and C. J. Fennie, J. Phys.: Condens. Matter 20, 434219 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434219
44.
44. C. J. Fennie, Phys. Rev. Lett. 100, 167203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.167203
45.
45. S. K. Streiffer, C. B. Parker, A. E. Romanov, M. J. Lefevre, L. Zhao, J. S. Speck, W. Pompe, C. M. Foster, and G. R. Bai, J. Appl. Phys. 83, 2742 (1998).
http://dx.doi.org/10.1063/1.366632
46.
46. N. Balke, I. Bdikin, S. V. Kalinin, and A. L. Kholkin, J. Am. Ceram. Soc. 92, 1629 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03240.x
47.
47. L. W. Martin, Y. H. Chu, and R. Ramesh, Mater. Sci. Eng., R 68, 89 (2010).
http://dx.doi.org/10.1016/j.mser.2010.03.001
48.
48. L. W. Martin, Y. H. Chu, M. B. Holcomb, M. Huijben, P. Yu, S.-J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nano Lett. 8, 2050 (2008).
http://dx.doi.org/10.1021/nl801391m
49.
49. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
50.
50. J. C. S. Kools, IEEE Trans. Magn. 32, 3165 (1996).
http://dx.doi.org/10.1109/20.508381
51.
51. S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O'Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, J. Appl. Phys. 85, 5828 (1999).
http://dx.doi.org/10.1063/1.369932
52.
52. J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
53.
53. A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00453-9
54.
54. M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001).
http://dx.doi.org/10.1016/S0304-8853(01)00421-8
55.
55. J. Stöhr and H. C. Siegmann, Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, New York, 2006).
56.
56. C. Binek, Ising-Type Antiferromagnets, Springer Tracts in Modern Physics Vol. 196 (Springer-Verlag, Berlin, 2003), p. 55.
57.
57. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
58.
58. E. C. Stoner and E. P. Wohlfarth, Nature 160, 650 (1947).
http://dx.doi.org/10.1038/160650a0
59.
59. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc., A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
60.
60. A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.3679
61.
61. A. P. Malozemoff, J. Appl. Phys. 63, 3874 (1988).
http://dx.doi.org/10.1063/1.340591
62.
62. A. P. Malozemoff, Phys. Rev. B 37, 7673 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.7673
63.
63. D. Schumacher, A. Steffen, J. Voigt, J. Schubert, and Th. Bruckel, Phys. Rev. B 88, 144427 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.144427
64.
64. D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, J. Appl. Phys. 62, 3047 (1987).
http://dx.doi.org/10.1063/1.339367
65.
65. F. Radu and H. Zabel, Magnetic Heterostructures, Springer Tracts in Modern Physics Vol. 227, edited by H. Zabel and S. D. Bader (Springer-Verlag, Berlin, 2007), p. 97.
66.
66. M. Daraktchiev, G. Catalan, and J. F. Scott, Ferroelectrics 375, 122 (2008).
http://dx.doi.org/10.1080/00150190802437969
67.
67. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
http://dx.doi.org/10.1002/adma.200802849
68.
68. D. Lebeugle, A. Mougin, M. Viret, D. Colson, J. Allibe, H. Béa, E. Jacquet, C. Deranlot, M. Bibes, and A. Barthélémy, Phys. Rev. B 81, 134411 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.134411
69.
69. D. Lebeugle, A. Mougin, M. Viret, D. Colson, and L. Ranno, Phys. Rev. Lett. 103, 257601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257601
70.
70. H. Béa, M. Bibes, F. Ott, B. Dupé, X.-H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, and A. Barthélémy, Phys. Rev. Lett. 100, 017204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.017204
71.
71. J. T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Y. Yang, D. E. Nikonov, Y.-H. Chu, S. Salahuddin, and R. Ramesh, Phys. Rev. Lett. 107, 217202 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.217202
72.
72. M. Trassin, J. D. Clarkson, S. R. Bowden, J. Liu, J. T. Heron, R. J. Paull, E. Arenholz, D. T. Pierce, and J. Unguris, Phys. Rev. B 87, 134426 (2012).
http://dx.doi.org/10.1103/PhysRevB.87.134426
73.
73. P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kao, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027201
74.
74. L. You, B. Wang, X. Zou, Z.-S. Lim, Y. Zhou, H. Ding, L. Chen, and J. Wang, Phys. Rev. B 88, 184426 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184426
75.
75. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nature Mater. 5, 823 (2006).
http://dx.doi.org/10.1038/nmat1731
76.
76. Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L. W. Martin, Y.-H. Chu, J. F. Scott, and R. Ramesh, Phys. Rev. Lett. 108, 067203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.067203
77.
77. Y.-H. Chu, Q. He, C.-H. Yang, P. Yu, L. W. Martin, P. Shafer, and R. Ramesh, Nano Lett. 9, 1726 (2009).
http://dx.doi.org/10.1021/nl900723j
78.
78. R. C. O'Handely, Solid State Commun. 21, 1119 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90321-0
79.
79. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Nature Mater. 9, 756 (2010).
http://dx.doi.org/10.1038/nmat2803
80.
80. J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M. Bibes, and A. Barthélémy, Nano Lett. 12, 1141 (2012).
http://dx.doi.org/10.1021/nl202537y
81.
81. M. P. Cruz, Y.-H. Chu, J. X. Zhang, P. L. Yang, F. Zavaliche, Q. He, P. Shafer, L. Q. Chen, and R. Ramesh, Phys. Rev. Lett. 99, 217601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.217601
82.
82. T. L. Qu, Y. G. Zhao, P. Yu, H. C. Zhao, S. Zhang, and L. F. Yang, Appl. Phys. Lett. 100, 242410 (2012).
http://dx.doi.org/10.1063/1.4729408
83.
83. S. M. Wu, S. A. Cybart, D. Yi, J. M. Parker, R. Ramesh, and R. C. Dynes, Phys. Rev. Lett. 110, 067202 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.067202
84.
84. M. J. Calderon, S. Liang, R. Yu, J. Salafranca, S. Dong, S. Yunoki, L. Brey, A. Moreo, and E. Dagotto, Phys. Rev. B 84, 024422 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024422
85.
85. G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Phys. Rev. B 65, 134402 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.134402
86.
86. B. Dabrowski, L. Gladczuk, A. Wisniewski, Z. Bukowski, R. Dybzinski, A. Szewczyk, M. Gutowska, S. Kolesnik, C. W. Kimball, and H. Szymczak, J. Appl. Phys. 87, 3011 (2000).
http://dx.doi.org/10.1063/1.372292
87.
87. W. Ratcliff II, Z. Yamani, V. Anbusathaiah, T. R. Gao, P. A. Kienzle, H. Cao, and I. Takeuchi, Phys. Rev. B 87, 140405 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.140405
88.
88. D. Lebeugle, D. Colson, A. Forget, M. Viret, A. M. Bataille, and A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.227602
89.
89. S. Lee, W. Ratcliff II, S.-W. Cheong, and V. Kiryukhin, Appl. Phys. Lett. 92, 192906 (2008).
http://dx.doi.org/10.1063/1.2930678
90.
90. V. Laukhin, V. Skumryev, X. Marti, D. Hrabovsky, F. Sanchez, M. V. Garcia-Cuenca, C. Ferrater, M. Varela, U. Luders, J. F. Bobo, and J. Fontcuberta, Phys. Rev. Lett. 97, 227201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.227201
91.
91. J. X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y. H. Chu, and R. Ramesh, Phys. Rev. Lett. 107, 147602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.147602
92.
92. Y.-H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nature Mater. 7, 478 (2008).
http://dx.doi.org/10.1038/nmat2184
93.
93. P. Shafer, F. Zavaliche, Y.-H. Chu, P.-L. Yang, M. P. Cruz, and R. Ramesh, Appl. Phys. Lett. 90, 202909 (2007).
http://dx.doi.org/10.1063/1.2741046
94.
94. L. You, E. Liang, R. Guo, D. Wu, K. Yao, L. Chen, and J. Wang, Appl. Phys. Lett. 97, 062910 (2010).
http://dx.doi.org/10.1063/1.3479911
95.
95. F. Johann, A. Morelli, and I. Vrejoiu, Phys. Status Solidi 249, 2278 (2012).
http://dx.doi.org/10.1002/pssb.201248329
96.
96. S. H. Baek, H. W. Jang, C. M. Folkman, Y. L. Li, B. Winchester, J. X. Zhang, Q. He, Y. H. Chu, C. T. Nelson, M. S. Rzchowski, X. Q. Pan, R. Ramesh, L. Q. Chen, and C. B. Eom, Nature Mater. 9, 309 (2010).
http://dx.doi.org/10.1038/nmat2703
97.
97. N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y. H. Chu, A. P. Baddorf, L. Q. Chen, R. Ramesh, and S. V. Kalinin, Nat. Nanotechnol. 4, 868 (2009).
http://dx.doi.org/10.1038/nnano.2009.293
98.
98. K. Ashraf and S. Salahuddin, J. Appl. Phys. 112, 074102 (2012).
http://dx.doi.org/10.1063/1.4754800
99.
99. T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).
http://dx.doi.org/10.1109/TMAG.1975.1058782
100.
100. B. H. Miller and E. Dan Dahlberg, Appl. Phys. Lett. 69, 3932 (1996).
http://dx.doi.org/10.1063/1.117574
101.
101. Y. H. Chu, Q. Zhan, C.-H. Yang, M. P. Cruz, L. W. Martin, T. Zhao, P. Yu, R. Ramesh, P. T. Joseph, I. N. Lin, W. Tian, and D. G. Schlom, Appl. Phys. Lett. 92, 102909 (2008).
http://dx.doi.org/10.1063/1.2897304
102.
102. Y. H. Chu, T. Zhao, M. P. Cruz, Q. Zhan, P. L. Yang, L. W. Martin, M. Huijben, C. H. Yang, F. Zavaliche, H. Zheng, and R. Ramesh, Appl. Phys. Lett. 90, 252906 (2007).
http://dx.doi.org/10.1063/1.2750524
103.
103. H. Li, X. Hu, Y. Wei, Z. Yu, X. Zhang, R. Droopad, A. A. Demkov, J. Edwards, K. Moore, W. Ooms, J. Kulik, and P. Fejes, J. Appl. Phys. 93, 4521 (2003).
http://dx.doi.org/10.1063/1.1562001
104.
104. M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L.-P. Wang, M. Bedzyk, D. A. Muller, L.-Q. Chen, J. Levy, and D. G. Schlom, Science 324, 367370 (2009).
http://dx.doi.org/10.1126/science.1169678
105.
105. S. Couet, M. Bisht, M. Trekels, M. Menghini, C. Petermann, M. J. Van Bael, J.-P. Locquet, R. Rüffer, A. Vantomme, and K. Temst, Adv. Funct. Mater. 24, 71 (2014).
http://dx.doi.org/10.1002/adfm.201301160
106.
106. R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, and V. G. Keramidas, Appl. Phys. Lett. 61, 1537 (1992).
http://dx.doi.org/10.1063/1.107488
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4870957
Loading
/content/aip/journal/apr2/1/2/10.1063/1.4870957
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/2/10.1063/1.4870957
2014-04-22
2014-09-16

Abstract

Conventional CMOS based logic and magnetic based data storage devices require the shuttling of electrons for data processing and storage. As these devices are scaled to increasingly smaller dimensions in the pursuit of speed and storage density, significant energy dissipation in the form of heat has become a center stage issue for the microelectronics industry. By taking advantage of the strong correlations between ferroic orders in multiferroics, specifically the coupling between ferroelectric and magnetic orders (magnetoelectricity), new device functionalities with ultra-low energy consumption can be envisioned. In this article, we review the advances and highlight challenges toward this goal with a particular focus on the room temperature magnetoelectric multiferroic, BiFeO, exchange coupled to a ferromagnet. We summarize our understanding of the nature of exchange coupling and the mechanisms of the voltage control of ferromagnetism observed in these heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/2/1.4870957.html;jsessionid=39ksoako2rpri.x-aip-live-03?itemId=/content/aip/journal/apr2/1/2/10.1063/1.4870957&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2

Most read this month

Article
content/aip/journal/apr2
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electric field control of magnetism using BiFeO3-based heterostructures
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4870957
10.1063/1.4870957
SEARCH_EXPAND_ITEM