1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Ice-templated structures for biomedical tissue repair: From physics to final scaffolds
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/2/10.1063/1.4871083
1.
1. P. V. Hobbs, Ice Physics (Oxford University Press, Oxford, 1974).
2.
2. H. F. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, and A. I. Cooper, Nature Mater. 4(10 ), 787 (2005).
http://dx.doi.org/10.1038/nmat1487
3.
3. S. Deville, J. Adrien, E. Maire, M. Scheel, and M. Di Michiel, Acta Mater. 61(6 ), 2077 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.12.027
4.
4. S. Deville, E. Saiz, and A. P. Tomsia, Biomaterials 27(32 ), 5480 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2006.06.028
5.
5. E. Munch, E. Saiz, A. P. Tomsia, and S. Deville, J. Am. Ceram. Soc. 92(7 ), 1534 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03087.x
6.
6. J. Zheng, D. Salamon, L. Lefferts, M. Wessling, and L. Winnubst, Microporous Mesoporous Mater. 134, 216 (2010).
http://dx.doi.org/10.1016/j.micromeso.2010.05.012
7.
7. S. Yoshida, Y. Kimura, I. Ogino, and S. R. Mukai, J. Chem. Eng. Jpn. 46(9 ), 616 (2013).
http://dx.doi.org/10.1252/jcej.13we064
8.
8. I. V. Yannas, Biomaterials 34(2 ), 321 (2013).
http://dx.doi.org/10.1016/j.biomaterials.2012.10.006
9.
9. C. M. Murphy, M. G. Haugh, and F. J. O'Brien, Biomaterials 31(3 ), 461 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2009.09.063
10.
10. S. R. Caliari and B. A. C. Harley, Biomaterials 32(23 ), 5330 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2011.04.021
11.
11. J. Araujo, N. Davidenko, R. E. Cameron, and S. M. Best, “ Novel porous scaffolds of pH responsive chitosan/carrageenan-based polyelectrolyte complexes for tissue engineering,” J. Biomed. Mater. Res., Part A (to be published).
http://dx.doi.org/10.1002/jbm.a.35128
12.
12. N. Davidenko, J. J. Campbell, E. S. Thian, C. J. Watson, and R. E. Cameron, Acta Biomater. 6(10 ), 3957 (2010).
http://dx.doi.org/10.1016/j.actbio.2010.05.005
13.
13. L. M. Mullen, S. M. Best, R. A. Brooks, S. Ghose, J. H. Gwynne, J. Wardale, N. Rushton, and R. E. Cameron, Tissue Eng., Part C 16(6 ), 1439 (2010).
http://dx.doi.org/10.1089/ten.tec.2009.0806
14.
14. C. N. Grover, R. E. Cameron, and S. M. Best, J. Mech. Behav. Biomed. Mater. 10, 62 (2012).
http://dx.doi.org/10.1016/j.jmbbm.2012.02.028
15.
15. C. N. Grover, R. W. Farndale, S. M. Best, and R. E. Cameron, J. Biomed. Mater. Res., Part A 100A(9 ), 2401 (2012).
http://dx.doi.org/10.1002/jbm.a.34187
16.
16. C. N. Grover, J. H. Gwynne, N. Pugh, S. Hamaia, R. W. Farndale, S. M. Best, and R. E. Cameron, Acta Biomater. 8(8 ), 3080 (2012).
http://dx.doi.org/10.1016/j.actbio.2012.05.006
17.
17. D. Enea, J. Gwynne, S. Kew, M. Arumugam, J. Shepherd, R. Brooks, S. Ghose, S. M. Best, R. E. Cameron, and N. Rushton, Knee Surg. Sports Traumatol. Arthroscopy 21(8 ), 1783 (2013).
http://dx.doi.org/10.1007/s00167-012-2102-7
18.
18. S. J. Kew, J. H. Gwynne, D. Enea, R. Brookes, N. Rushton, S. M. Best, and R. E. Cameron, Acta Biomater. 8(10 ), 3723 (2012).
http://dx.doi.org/10.1016/j.actbio.2012.06.018
19.
19. J. H. Shepherd, S. Ghose, S. J. Kew, A. Moavenian, S. M. Best, and R. E. Cameron, J. Biomed. Mater. Res., Part A 101A(1 ), 176 (2013).
http://dx.doi.org/10.1002/jbm.a.34317
20.
20. J. J. Campbell, N. Davidenko, M. M. Caffarel, R. E. Cameron, and C. J. Watson, PLoS One 6(9 ), e25661 (2011).
http://dx.doi.org/10.1371/journal.pone.0025661
21.
21. A. K. Lynn, T. Nakamura, N. Patel, A. E. Porter, A. C. Renouf, P. R. Laity, S. M. Best, R. E. Cameron, Y. Shimizu, and W. Bonfield, J. Biomed. Mater. Res., Part A 74A(3 ), 447 (2005).
http://dx.doi.org/10.1002/jbm.a.30373
22.
22. A. K. Lynn, S. M. Best, R. E. Cameron, B. A. Harley, I. V. Yannas, L. J. Gibson, and W. Bonfield, J. Biomed. Mater. Res., Part A 92A(3 ), 1057 (2010).
http://dx.doi.org/10.1002/jbm.a.32415
23.
23. A. M. J. Getgood, S. J. Kew, R. Brooks, H. Aberman, T. Simon, A. K. Lynn, and N. Rushton, Knee 19(4 ), 422 (2012).
http://dx.doi.org/10.1016/j.knee.2011.03.011
24.
24. A. Biewener, “ Tendons and ligaments: Structure, mechanical behavior and biological function,” in Collagen: Structure and Mechanics, edited by P. Fratzl (Springer, New York, 2008), Chap.10, p. 269.
25.
25. Z. Yin, X. Chen, J. L. Chen, W. L. Shen, T. M. H. Nguyen, L. Gao, and H. W. Ouyang, Biomaterials 31(8 ), 21632175 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2009.11.083
26.
26. K. M. Pawelec, J. Wardale, S. M. Best, and R. E. Cameron, “ The independent and combined effects of collagen scaffold architecture and fibrin gel on protein expression of tendon,” Acta Biomaterialia (submitted).
27.
27. K. M. Pawelec, J. Wardale, S. M. Best, and R. E. Cameron, “ Increasing meniscal cell proliferation using scaffold architecture and fibrin gel addition,” APL Mater. (to be published).
28.
28. N. Davidenko, T. Gibb, C. Schuster, S. M. Best, J. J. Campbell, C. J. Watson, and R. E. Cameron, Acta Biomater. 8(2 ), 667 (2012).
http://dx.doi.org/10.1016/j.actbio.2011.09.033
29.
29. K. M. Pawelec, A. Husmann, S. M. Best, and R. E. Cameron, Mater. Sci. Eng., C 37, 141 (2014).
http://dx.doi.org/10.1016/j.msec.2014.01.009
30.
30. K. M. Pawelec, A. Husmann, S. M. Best, and R. E. Cameron, J. R. Soc., Interface 11, 20130958 (2014).
http://dx.doi.org/10.1098/rsif.2013.0958
31.
31. P. W. Wilson, A. F. Heneghan, and A. D. J. Haymet, Cryobiology 46(1 ), 88 (2003).
http://dx.doi.org/10.1016/S0011-2240(02)00182-7
32.
32. S. Deville, Adv. Eng. Mater. 10(3 ), 155 (2008).
http://dx.doi.org/10.1002/adem.200700270
33.
33. A. Myerson and R. Ginde, “ Crystals, crystal growth and nucleation,” in Handbook of Industrial Crystallization, 2nd ed., edited by A. Myerson (Butterworth-Heinemann, 2002), Chap. 2, p. 33.
34.
34. M. Akyurt, G. Zaki, and B. Habeebullah, Energy Convers. Manage. 43(14 ), 17731789 (2002).
http://dx.doi.org/10.1016/S0196-8904(01)00129-7
35.
35. M. Matsumoto, S. Saito, and I. Ohmine, Nature 416(6879 ), 409 (2002).
http://dx.doi.org/10.1038/416409a
36.
36. V. Ayel, O. Lottin, M. Faucheux, D. Sallier, and H. Peerhossaini, Int. J. Heat Mass Transfer 49(11–12 ), 1876 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.10.036
37.
37. Y. Shirai, T. Sugimoto, M. Hashimoto, K. Nakanishi, and R. Matsuno, Agric. Biol. Chem. 51(9 ), 2359 (1987).
http://dx.doi.org/10.1271/bbb1961.51.2359
38.
38. J. Searles, “ Freezing and annealing phenomena in lyophilization,” in Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, 2nd ed., edited by L. Rey and J. May (Marcel Dekker, Inc., New York, 2004), Chap. 4.
39.
39. A. Hottot, S. Vessot, and J. Andrieu, Chem. Eng. Process. 46(7 ), 666 (2007).
http://dx.doi.org/10.1016/j.cep.2006.09.003
40.
40. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard, J. Am. Ceram. Soc. 92(11 ), 24892496 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03163.x
41.
41. J. A. Searles, J. F. Carpenter, and T. W. Randolph, J. Pharm. Sci. 90(7 ), 860 (2001).
http://dx.doi.org/10.1002/jps.1039
42.
42. S. L. Chen and T. S. Lee, Int. J. Heat Mass Transfer 41(4–5 ), 769 (1998).
http://dx.doi.org/10.1016/S0017-9310(97)00134-8
43.
43. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard, J. Am. Ceram. Soc. 93(9 ), 2507 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.03840.x
44.
44. A. Lasalle, C. Guizard, J. Leloup, S. Deville, E. Maire, A. Bogner, C. Gauthier, J. Adrien, and L. Courtois, J. Am. Ceram. Soc. 95(2 ), 799 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2011.04993.x
45.
45. E. K. Bigg, Proc. Phys. Soc., London, Sect. B 66(404 ), 688694 (1953).
http://dx.doi.org/10.1088/0370-1301/66/8/309
46.
46. J. A. Searles, J. F. Carpenter, and T. W. Randolph, J. Pharm. Sci. 90(7 ), 872887 (2001).
http://dx.doi.org/10.1002/jps.1040
47.
47. A. F. Heneghan, P. W. Wilson, G. M. Wang, and A. D. J. Haymet, J. Chem. Phys. 115(16 ), 7599 (2001).
http://dx.doi.org/10.1063/1.1407290
48.
48. R. Chow, R. Blindt, R. Chivers, and M. Povey, Ultrasonics 41(8 ), 595604 (2003).
http://dx.doi.org/10.1016/j.ultras.2003.08.001
49.
49. M. C. Flemings, Solidification Processing, Materials Science and Engineering (McGraw-Hill Book Co., New York, 1974).
50.
50. M. C. Gutierrez, M. L. Ferrer, and F. del Monte, Chem. Mater. 20(3 ), 634 (2008).
http://dx.doi.org/10.1021/cm702028z
51.
51. A. Petersen, H. Schneider, G. Rau, and B. Glasmacher, Cryobiology 53(2 ), 248 (2006).
http://dx.doi.org/10.1016/j.cryobiol.2006.06.005
52.
52. J. C. Kasper and W. Friess, Eur. J. Pharm. Biopharm. 78(2 ), 248 (2011).
http://dx.doi.org/10.1016/j.ejpb.2011.03.010
53.
53. W. L. Li, K. Lu, and J. Y. Walz, Int. Mater. Rev. 57(1 ), 37 (2012).
http://dx.doi.org/10.1179/1743280411Y.0000000011
54.
54. W. Kurz and D. Fisher, Fundamentals of Solidification, 4th ed. (Trans Tech Publications Ltd., New York, 1998).
55.
55. J. Hallett, J. Atmos. Sci. 21(6 ), 671 (1964).
http://dx.doi.org/10.1175/1520-0469(1964)021<0671:ESOTCO>2.0.CO;2
56.
56. J. P. Hindmarsh, A. B. Russell, and X. D. Chen, J. Cryst. Growth 285(1–2 ), 236 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.08.017
57.
57. C. S. Lindenmeyer, G. T. Orrok, K. A. Jackson, and B. Chalmers, J. Chem. Phys. 27(3 ), 822 (1957).
http://dx.doi.org/10.1063/1.1743849
58.
58. M. Mueller-Stoffels, P. J. Langhorne, C. Petrich, and E. W. Kempema, Cold Reg. Sci. Technol. 56(1 ), 1 (2009).
http://dx.doi.org/10.1016/j.coldregions.2008.11.003
59.
59. Y. Chino and D. C. Dunand, Acta Mater. 56(1 ), 105 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.09.002
60.
60. G. Blond, Cryobiology 25(1 ), 61 (1988).
http://dx.doi.org/10.1016/0011-2240(88)90021-1
61.
61. L. Vrbka and P. Jungwirth, Phys. Rev. Lett. 95(14 ), 148501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.148501
62.
62. J. P. Kallungal and A. J. Barduhn, AIChE J. 23(3 ), 294 (1977).
http://dx.doi.org/10.1002/aic.690230312
63.
63. S. Deville, E. Saiz, R. K. Nalla, and A. P. Tomsia, Science 311(5760 ), 515 (2006).
http://dx.doi.org/10.1126/science.1120937
64.
64. H. Zhang and A. I. Cooper, Adv. Mater. 19(11 ), 1529 (2007).
http://dx.doi.org/10.1002/adma.200700154
65.
65. A. Bareggi, E. Maire, A. Lasalle, and S. Deville, J. Am. Ceram. Soc. 94(10 ), 3570 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04572.x
66.
66. B. Luyet and G. Rapatz, Biodynamica 8(156 ), 1 (1958).
67.
67. H. Schoof, L. Bruns, A. Fischer, I. Heschel, and G. Rau, J. Cryst. Growth 209(1 ), 122 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00519-9
68.
68. Y. Teraoka, A. Saito, and S. Okawa, Int. J. Refrig. 25(2 ), 218 (2002).
http://dx.doi.org/10.1016/S0140-7007(01)00082-2
69.
69. R. E. Dehl, Science 170(NN395 ), 738 (1970).
http://dx.doi.org/10.1126/science.170.3959.738
70.
70. K. Itagaki, J. Colloid Interface Sci. 25(2 ), 218 (1967).
http://dx.doi.org/10.1016/0021-9797(67)90024-0
71.
71. H. G. Jellinek and S. H. Ibrahim, J. Colloid Interface Sci. 25(2 ), 245 1967
http://dx.doi.org/10.1016/0021-9797(67)90027-6
72.
72. P. Pronk, C. A. I. Ferreira, and G. J. Witkamp, J. Cryst. Growth 275(1–2 ), E1355 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.11.173
73.
73. T. Hagiwara, J. Mao, T. Suzuki, and R. Takai, Food Sci. Technol. Res. 11(4 ), 407 (2005).
http://dx.doi.org/10.3136/fstr.11.407
74.
74. H. D. Goff and M. E. Sahagian, Thermochim. Acta 280-281, 449 (1996).
http://dx.doi.org/10.1016/0040-6031(95)02656-8
75.
75. C. Wilson, Textures Microstruct. 5, 19 (1982).
http://dx.doi.org/10.1155/TSM.5.19
76.
76. P. Pronk, T. M. Hansen, C. A. I. Ferreira, and G. J. Witkamp, Int. J. Refrig. 28(1 ), 2736 (2005).
http://dx.doi.org/10.1016/j.ijrefrig.2004.07.011
77.
77. G. Madras and B. J. McCoy, Chem. Eng. Sci. 57(18 ), 3809 (2002).
http://dx.doi.org/10.1016/S0009-2509(02)00313-5
78.
78. R. L. Sutton, A. Lips, G. Piccirillo, and A. Sztehlo, J. Food Sci. 61(4 ), 741 (1996).
http://dx.doi.org/10.1111/j.1365-2621.1996.tb12194.x
79.
79. J. C. Johnston and V. Molinero, J. Am. Chem. Soc. 134(15 ), 6650 (2012).
http://dx.doi.org/10.1021/ja210878c
80.
80. C. E. Smith and H. G. Schwartzberg, Biotechnol. Prog. 1(2 ), 111 (1985).
http://dx.doi.org/10.1002/btpr.5420010208
81.
81. R. L. Sutton, A. Lips, and G. Piccirillo, J. Food Sci. 61(4 ), 746 (1996).
http://dx.doi.org/10.1111/j.1365-2621.1996.tb12195.x
82.
82. B. A. C. Harley and L. J. Gibson, Chem. Eng. J. 137(1 ), 102 (2008).
http://dx.doi.org/10.1016/j.cej.2007.09.009
83.
83. B. Stevens, Y. Z. Yang, A. Mohanda, B. Stucker, and K. T. Nguyen, J. Biomed. Mater. Res., Part B 85B(2 ), 573 (2008).
http://dx.doi.org/10.1002/jbm.b.30962
84.
84. B. Harley and I. Yannas, “ In vivo synthesis of tissues and organs,” in Principles of Tissue Engineering, 3rd ed., edited by R. Lanza, R. Langer, and J. Vacanti (Elsevier, Academic Press, New York, 2007), Chap. 16, p. 219.
85.
85. V. Kishore, W. Bullock, X. Sun, W. S. Van Dyke, and O. Akkus, Biomaterials 33(7 ), 2137 (2012).
http://dx.doi.org/10.1016/j.biomaterials.2011.11.066
86.
86. N. Y. Yuan, Y. A. Lin, M. H. Ho, D. M. Wang, J. Y. Lai, and H. J. Hsieh, Carbohydr. Polym. 78(2 ), 349 (2009).
http://dx.doi.org/10.1016/j.carbpol.2009.04.021
87.
87. F. Byette, F. Bouchard, C. Pellerin, J. Paquin, I. Marcotte, and M. A. Mateescu, Polym. Bull. 67(1 ), 159 (2011).
http://dx.doi.org/10.1007/s00289-010-0438-z
88.
88. F. J. O'Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, Biomaterials 26(4 ), 433441 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.02.052
89.
89. M. G. Haugh, C. M. Murphy, and F. J. O'Brien, Tissue Eng., Part C 16(5 ), 887 (2010).
http://dx.doi.org/10.1089/ten.tec.2009.0422
90.
90. K. M. Pawelec, A. Husmann, S. M. Best, and R. E. Cameron, “Numerical simulations to determine the influence of mold design on ice-templated scaffold structure homogeneity,” J. Phys. Chem. (submitted).
91.
91. F. J. O'Brien, B. A. Harley, I. V. Yannas, and L. Gibson, Biomaterials 25(6 ), 1077 (2004).
http://dx.doi.org/10.1016/S0142-9612(03)00630-6
92.
92. A. M. Padilla, S. G. Chou, S. Luthra, and M. J. Pikal, J. Pharm. Sci. 100(4 ), 1362 (2011).
http://dx.doi.org/10.1002/jps.22357
93.
93. M. J. Cooney, C. Lau, M. Windmeisser, B. Y. Liaw, T. Klotzbach, and S. D. Minteer, J. Mater. Chem. 18(6 ), 667 (2008).
http://dx.doi.org/10.1039/b710082e
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4871083
Loading
/content/aip/journal/apr2/1/2/10.1063/1.4871083
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/2/10.1063/1.4871083
2014-04-11
2014-12-27

Abstract

Ice-templating techniques, including freeze-drying and freeze casting, are extremely versatile and can be used with a variety of materials systems. The process relies on the freezing of a water based solution. During freezing, ice nucleates within the solution and concentrates the solute in the regions between the growing crystals. Once the ice is removed via sublimation, the solute remains in a porous structure, which is a negative of the ice. As the final structure of the ice relies on the freezing of the solution, the variables which influence ice nucleation and growth alter the structure of ice-templated scaffolds. Nucleation, the initial step of freezing, can be altered by the type and concentration of solutes within the solution, as well as the set cooling rate before freezing. After nucleation, crystal growth and annealing processes, such as Ostwald ripening, determine the features of the final scaffold. Both crystal growth and annealing are sensitive to many factors including the set freezing temperature and solutes. The porous structures created using ice-templating allow scaffolds to be used for many diverse applications, from microfluidics to biomedical tissue engineering. Within the field of tissue engineering, scaffold structure can influence cellular behavior, and is thus critical for determining the biological stimulus supplied by the scaffold. The research focusing on controlling the ice-templated structure serves as a model for how other ice-templating systems might be tailored, to expand the applications of ice-templated structures to their full potential.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/2/1.4871083.html;jsessionid=7ot14pf07fqj1.x-aip-live-02?itemId=/content/aip/journal/apr2/1/2/10.1063/1.4871083&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ice-templated structures for biomedical tissue repair: From physics to final scaffolds
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4871083
10.1063/1.4871083
SEARCH_EXPAND_ITEM