1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Exploring the significance of structural hierarchy in material systems—A review
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/2/10.1063/1.4871365
1.
1. M. A. Meyers, P. Y. Chen, A. Y. M. Lin, and Y. Seki, Prog. Mater. Sci. 53(1), 1206 (2008).
http://dx.doi.org/10.1016/j.pmatsci.2007.05.002
2.
2. A. E. Barron and R. N. Zuckermann, Curr. Opin. Chem. Biol. 3(6), 681687 (1999).
http://dx.doi.org/10.1016/S1367-5931(99)00026-5
3.
3. R. Lakes, Nature 361(6412), 511515 (1993).
http://dx.doi.org/10.1038/361511a0
4.
4. A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (The University Press, Cambridge, UK, 1993).
5.
5. D. A. Tirrell, Hierarchical Structures in Biology as a Guide for New Materials Technology (National Research Council, Washington, D.C., 1994).
6.
6. P. Fratzl and R. Weinkamer, Prog. Mater. Sci. 52, 12631334 (2007).
http://dx.doi.org/10.1016/j.pmatsci.2007.06.001
7.
7. M. J. Buehler, S. Keten, and T. Ackbarow, Prog. Mater. Sci. 53(8), 11011241 (2008).
http://dx.doi.org/10.1016/j.pmatsci.2008.06.002
8.
8. J. F. V. Vincent, J. Mater. Res. 23(12), 31403147 (2008).
http://dx.doi.org/10.1557/JMR.2008.0380
9.
9. J. W. C. Dunlop and P. Fratzl, Annu. Rev. Mater. Res. 40, 124 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104421
10.
10. L. Eadie and T. K. Ghosh, J. R. Soc. Interface 8, 761775 (2011).
http://dx.doi.org/10.1098/rsif.2010.0487
11.
11. Z. Q. Zhang, Y. W. Zhang, and H. J. Gao, Proc. R. Soc. B 278(1705), 519525 (2011).
http://dx.doi.org/10.1098/rspb.2010.1093
12.
12. A. H. Groschel, F. H. Schacher, H. Schmalz, O. V. Borisov, E. B. Zhulina, A. Walther, and A. H. E. Muller, Nat. Commun. 3, 710 (2012).
http://dx.doi.org/10.1038/ncomms1707
13.
13. C. Mattheck and H. Kubler, The Internal Optimization of Trees (Springer Verlag, Berlin, 1995).
14.
14. H. Bargel, K. Koch, Z. Cerman, and C. Neinhuis, Funct. Plant Biol. 33(10), 893910 (2006).
http://dx.doi.org/10.1071/FP06139
15.
15. B. J. Enquist, G. B. West, E. L. Charnov, and J. H. Brown, Nature 408(6813), 750 (2000).
http://dx.doi.org/10.1038/35047140
16.
16. K. Balani, R. R. Patel, A. K. Keshri, D. Lahiri, and A. Agarwal, J. Mech. Behav. Biomed. Mater. 4(7), 14401451 (2011).
http://dx.doi.org/10.1016/j.jmbbm.2011.05.014
17.
17. F. Bosia, T. Abdalrahman, and N. M. Pugno, Nanoscale 4(4), 12001207 (2012).
http://dx.doi.org/10.1039/c2nr11664b
18.
18. N. Yao, A. K. Epstein, W. W. Liu, F. Sauer, and N. Yang, J. R. Soc. Interface 6(33), 367376 (2009).
http://dx.doi.org/10.1098/rsif.2008.0316
19.
19. D. Stelitano and D. H. Rothman, Phys. Rev. E 62(5), 66676680 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.6667
20.
20. M. Wang and N. Pan, Mater. Sci. Eng., R 63(1), 130 (2008).
http://dx.doi.org/10.1016/j.mser.2008.07.001
21.
21. M. R. Wang, J. K. Wang, N. Pan, and S. Y. Chen, Phys. Rev. E 75, 3 (2007).
22.
22. Q. Chen and N. M. Pugno, J. Mech. Behav. Biomed. Mater. 19, 333 (2013).
http://dx.doi.org/10.1016/j.jmbbm.2012.10.012
23.
23. M. De Volder and A. J. Hart, Angew. Chem., Int. Ed. 52(9), 24122425 (2013).
http://dx.doi.org/10.1002/anie.201205944
24.
24. B. Fang, J. H. Kim, M. S. Kim, and J. S. Yu, Acc. Chem. Res. 46(7), 13971406 (2013).
http://dx.doi.org/10.1021/ar300253f
25.
25. K. Johnston and V. Harmandaris, Soft Matter 9(29), 66966710 (2013).
http://dx.doi.org/10.1039/c3sm50330e
26.
26. A. W. Thompson, On Growth and Form: The Complete Revised Edition (Dover, New York, 1992).
27.
27. K. Autumn and N. Gravish, Philos. Trans. R. Soc., A 366(1870), 15751590 (2008).
http://dx.doi.org/10.1098/rsta.2007.2173
28.
28. K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, Nature 405(6787), 681685 (2000).
http://dx.doi.org/10.1038/35015073
29.
29. A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, and S. Y. Shapoval, Nature Mater. 2(7), 461463 (2003).
http://dx.doi.org/10.1038/nmat917
30.
30. W. R. Hansen and K. Autumn, Proc. Natl. Acad. Sci. U. S. A. 102(2), 385389 (2005).
http://dx.doi.org/10.1073/pnas.0408304102
31.
31. J. P. O'Brien, S. R. Fahnestock, Y. Termonia, and K. C. H. Gardner, Adv. Mater. 10(15), 1185 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199810)10:15<1185::AID-ADMA1185>3.0.CO;2-T
32.
32. Y. Tian, N. Pesika, H. B. Zeng, K. Rosenberg, B. X. Zhao, P. McGuiggan, K. Autumn, and J. Israelachvili, Proc. Natl. Acad. Sci. U. S. A. 103(51), 1932019325 (2006).
http://dx.doi.org/10.1073/pnas.0608841103
33.
33. H. B. Zeng, N. Pesika, Y. Tian, B. X. Zhao, Y. F. Chen, M. Tirrell, K. L. Turner, and J. N. Israelachvili, Langmuir 25(13), 74867495 (2009).
http://dx.doi.org/10.1021/la900877h
34.
34. B. X. Zhao, N. Pesika, H. B. Zeng, Z. S. Wei, Y. F. Chen, K. Autumn, K. Turner, and J. Israelachvili, J. Phys. Chem. B 113(12), 36153621 (2009).
http://dx.doi.org/10.1021/jp806079d
35.
35. E. Arzt, S. Gorb, and R. Spolenak, Proc. Natl. Acad. Sci. U. S. A. 100(19), 1060310606 (2003).
http://dx.doi.org/10.1073/pnas.1534701100
36.
36. T. Miyazaki, K. Yamaoka, J. P. Gong, and Y. Osada, Macromol. Rapid Commun. 23, 447455 (2002).
http://dx.doi.org/10.1002/1521-3927(20020501)23:8<447::AID-MARC447>3.0.CO;2-O
37.
37. M. F. Ashby and Y. J. M. Brechet, Acta Mater. 51(19), 58015821 (2003).
http://dx.doi.org/10.1016/S1359-6454(03)00441-5
38.
38. N. D. Petkovich and A. Stein, Chem. Soc. Rev. 42(9), 37213739 (2013).
http://dx.doi.org/10.1039/c2cs35308c
39.
39. M. H. Sun, C. X. Luo, L. P. Xu, H. Ji, O. Y. Qi, D. P. Yu, and Y. Chen, Langmuir 21(19), 89788981 (2005).
http://dx.doi.org/10.1021/la050316q
40.
40. N. Zhao, X. Y. Lu, X. Y. Zhang, H. Y. Liu, S. X. Tan, and J. Xu, Prog. Chem. 19(6), 860871 (2007).
41.
41. D. T. Fullwood, S. R. Niezgoda, B. L. Adams, and S. R. Kalidindi, Prog. Mater. Sci. 55(6), 477562 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2009.08.002
42.
42. B. Bhushan and Y. C. Jung, Prog. Mater. Sci. 56(1), 1108 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2010.04.003
43.
43. Z. Burton and B. Bhushan, Nano Lett. 5(8), 16071613 (2005).
http://dx.doi.org/10.1021/nl050861b
44.
44. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 05460550 (1944).
http://dx.doi.org/10.1039/tf9444000546
45.
45. R. Furstner, W. Barthlott, C. Neinhuis, and P. Walzel, Langmuir 21(3), 956961 (2005).
http://dx.doi.org/10.1021/la0401011
46.
46. L. C. Gao and T. J. McCarthy, Langmuir 22(14), 59986000 (2006).
http://dx.doi.org/10.1021/la061237x
47.
47. K. Koch, B. Bhushan, and W. Barthlott, Soft Matter 4(10), 19431963 (2008).
http://dx.doi.org/10.1039/b804854a
48.
48. M. L. Ma and R. M. Hill, Curr. Opin. Colloid Interface Sci. 11(4), 193202 (2006).
http://dx.doi.org/10.1016/j.cocis.2006.06.002
49.
49. A. Marmur, Langmuir 20(9), 35173519 (2004).
http://dx.doi.org/10.1021/la036369u
50.
50. C. W. Mason, J. Phys. Chem. 30(3), 383395 (1926).
http://dx.doi.org/10.1021/j150261a009
51.
51. E. J. Denten, Philos. Trans. R. Soc. London, Ser. B 258(824), 285313 (1970).
http://dx.doi.org/10.1098/rstb.1970.0037
52.
52. R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, Nature 396(6706), 2829 (1998).
http://dx.doi.org/10.1038/23838
53.
53. M. Srinivasarao, Chem. Rev. 99(7), 19351961 (1999).
http://dx.doi.org/10.1021/cr970080y
54.
54. S. Kinoshita, S. Yoshioka, and K. Kawagoe, Proc. R. Soc. London, Ser. B 269(1499), 14171421 (2002).
http://dx.doi.org/10.1098/rspb.2002.2019
55.
55. A. R. Parker, V. L. Welch, D. Driver, and N. Martini, Nature 426(6968), 786787 (2003).
http://dx.doi.org/10.1038/426786a
56.
56. P. Vukusic and J. R. Sambles, Nature 424(6950), 852855 (2003).
http://dx.doi.org/10.1038/nature01941
57.
57. J. Zi, X. D. Yu, Y. Z. Li, X. H. Hu, C. Xu, X. J. Wang, X. H. Liu, and R. T. Fu, Proc. Natl. Acad. Sci. U. S. A. 100(22), 1257612578 (2003).
http://dx.doi.org/10.1073/pnas.2133313100
58.
58. A. R. Parker, Philos. Trans. R. Soc. London, Ser. A 362(1825), 27092720 (2004).
http://dx.doi.org/10.1098/rsta.2004.1458
59.
59. S. Kinoshita and S. Yoshioka, Chemphyschem 6(8), 14421459 (2005).
http://dx.doi.org/10.1002/cphc.200500007
60.
60. S. Kinoshita, S. Yoshioka, and J. Miyazaki, Rep. Prog. Phys. 71, 076401 (2008).
http://dx.doi.org/10.1088/0034-4885/71/7/076401
61.
61. Y. P. Yi, L. Y. Zhu, and Z. G. Shuai, Macromol. Theory Simul. 17(1), 1222 (2008).
http://dx.doi.org/10.1002/mats.200700054
62.
62. M. J. Buehler, Nat. Nanotechnol. 5(3), 172174 (2010).
http://dx.doi.org/10.1038/nnano.2010.28
63.
63. C. S. Du, D. Heldbrant, and N. Pan, Mater. Lett. 57(2), 434438 (2002).
http://dx.doi.org/10.1016/S0167-577X(02)00806-6
64.
64. C. S. Du, D. Heldebrant, and N. Pan, J. Mater. Sci. Lett. 21(7), 565568 (2002).
http://dx.doi.org/10.1023/A:1015417206987
65.
65. Y. W. Su, B. H. Ji, K. Zhang, H. J. Gao, Y. G. Huang, and K. Hwang, Langmuir 26(7), 49844989 (2010).
http://dx.doi.org/10.1021/la9036452
66.
66. Y. W. Su, B. H. Ji, Y. Huang, and K. C. Hwang, Langmuir 26(24), 1892618937 (2010).
http://dx.doi.org/10.1021/la103442b
67.
67. K. Tai, M. Dao, S. Suresh, A. Palazoglu, and C. Ortiz, Nature Mater. 6(6), 454462 (2007).
http://dx.doi.org/10.1038/nmat1911
68.
68. B. H. Ji and H. J. Gao, Annu. Rev. Mater. Res. 40, 77100 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104424
69.
69. H. J. Gao, Int. J. Fract. 138(1–4), 101137 (2006).
http://dx.doi.org/10.1007/s10704-006-7156-4
70.
70. B. Bar-On and H. D. Wagner, J. Struct. Biol. 183(2), 149164 (2013).
http://dx.doi.org/10.1016/j.jsb.2013.05.012
71.
71. V. M. Pereira, A. H. C. Neto, H. Y. Liang, and L. Mahadevan, Phys. Rev. Lett. 105(15), 156603156604 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.156603
72.
72. F. Vollrath and D. P. Knight, Nature 410(6828), 541548 (2001).
http://dx.doi.org/10.1038/35069000
73.
73. H. M. Zhang and J. Y. Liu, Prog. Nat. Sci. 15(9), 769776 (2005).
http://dx.doi.org/10.1080/10020070512331342900
74.
74. M. Heim, L. Romer, and T. Scheibel, Chem. Soc. Rev. 39(1), 156164 (2010).
http://dx.doi.org/10.1039/b813273a
75.
75. R. V. Lewis, Chem. Rev. 106(9), 37623774 (2006).
http://dx.doi.org/10.1021/cr010194g
76.
76. M. J. Buehler and T. Ackbarow, Mater. Today 10(9), 4658 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70208-0
77.
77. G. Bratzel and M. J. Buehler, Biopolymers 97(6), 408417 (2012).
http://dx.doi.org/10.1002/bip.21729
78.
78. D. E. Aston, J. R. Bow, and D. N. Gangadean, Int. Mater. Rev. 58(3), 167202 (2013).
http://dx.doi.org/10.1179/1743280412Y.0000000012
79.
79. Y. L. Yang and C. Wang, Chem. Soc. Rev. 38(9), 25762589 (2009).
http://dx.doi.org/10.1039/b807500j
80.
80. G. Bratzel and M. J. Buehler, J. Mech. Behav. Biomed. Mater. 7, 3040 (2012).
http://dx.doi.org/10.1016/j.jmbbm.2011.07.012
81.
81. E. Bini, D. P. Knight, and D. L. Kaplan, J. Mol. Biol. 335(1), 2740 (2004).
http://dx.doi.org/10.1016/j.jmb.2003.10.043
82.
82. C. Caloz, Mater. Today 12(3), 1220 (2009).
http://dx.doi.org/10.1016/S1369-7021(09)70071-9
83.
83. M. H. Lu, L. Feng, and Y. F. Chen, Mater. Today 12(12), 3442 (2009).
http://dx.doi.org/10.1016/S1369-7021(09)70315-3
84.
84. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305(5685), 788792 (2004).
http://dx.doi.org/10.1126/science.1096796
85.
85. W. J. Padilla, D. N. Basov, and D. R. Smith, Mater. Today 9(7–8), 2835 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71573-5
86.
86. M. Hosseini, S. A. Fazelzadeh, and P. Marzocca, Int. J. Bifurcation Chaos 21(3), 931954 (2011).
http://dx.doi.org/10.1142/S0218127411028738
87.
87. Z. H. Jin and R. C. Batra, J. Mech. Phys. Solids 44(8), 12211235 (1996).
http://dx.doi.org/10.1016/0022-5096(96)00041-5
88.
88. W. Y. Lee, D. P. Stinton, C. C. Berndt, F. Erdogan, Y. D. Lee, and Z. Mutasim, J. Am. Ceram. Soc. 79(12), 30033012 (1996).
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08070.x
89.
89. S. Srivastava, A. Santos, K. Critchley, K. S. Kim, P. Podsiadlo, K. Sun, J. Lee, C. L. Xu, G. D. Lilly, S. C. Glotzer, and N. A. Kotov, Science 327(5971), 13551359 (2010).
http://dx.doi.org/10.1126/science.1177218
90.
90. G. M. Whitesides and B. Grzybowski, Science 295(5564), 24182421 (2002).
http://dx.doi.org/10.1126/science.1070821
91.
91. V. Schaller and A. R. Bausch, Nature 481(7381), 268269 (2012).
92.
92. G. B. West, J. H. Brown, and B. J. Enquist, Science 284(5420), 16771679 (1999b).
http://dx.doi.org/10.1126/science.284.5420.1677
93.
93. J. H. Brown, V. K. Gupta, B. L. Li, B. T. Milne, C. Restrepo, and G. B. West, Philos. Trans. R. Soc., B 357(1421), 619626 (2002).
http://dx.doi.org/10.1098/rstb.2001.0993
94.
94. G. B. West, J. H. Brown, and B. J. Enquist, Science 276(5309), 122126 (1997).
http://dx.doi.org/10.1126/science.276.5309.122
95.
95. C. Kuhnert, D. Helbing, and G. B. West, Physica A 363(1), 96103 (2006).
http://dx.doi.org/10.1016/j.physa.2006.01.058
96.
96. G. B. West, J. H. Brown, and B. J. Enquist, Nature 400(6745), 664667 (1999a).
http://dx.doi.org/10.1038/23251
97.
97. G. B. West, B. J. Enquist, and J. H. Brown, Proc. Natl. Acad. Sci. U. S. A. 106(17), 70407045 (2009).
http://dx.doi.org/10.1073/pnas.0812294106
98.
98. L. M. A. Bettencourt, J. Lobo, and G. B. West, Eur. Phys. J. B 63(3), 285293 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00250-6
99.
99. J. van Leeuwen and P. Aerts, Philos. Trans. R. Soc. London, Ser. B 358(1437), 14271428 (2003).
http://dx.doi.org/10.1098/rstb.2003.1353
100.
100. J. F. V. Vincent, Philos. Trans. R. Soc. London, Ser. B 358(1437), 15971603 (2003).
http://dx.doi.org/10.1098/rstb.2003.1349
101.
101. J. F. V. Vincent, Science 304(5670), 520 (2004).
http://dx.doi.org/10.1126/science.1095993
102.
102. J. F. V. Vincent, O. A. Bogatyreva, N. R. Bogatyrev, A. Bowyer, and A. K. Pahl, J. R. Soc. Interface 3(9), 471482 (2006).
http://dx.doi.org/10.1098/rsif.2006.0127
103.
103. P. Fratzl, J. R. Soc. Interface 4(15), 637642 (2007).
http://dx.doi.org/10.1098/rsif.2007.0218
104.
104. K. Konopka, Arch. Metall. Mater. 53(3), 767781 (2008).
105.
105. N. M. Pugno, J. Phys.: Condens. Matter 19, 39 (2007).
106.
106. N. M. Pugno and A. Carpinteri, Philos. Mag. Lett. 88(6), 397405 (2008).
http://dx.doi.org/10.1080/09500830802089843
107.
107. H. M. Yao and H. J. Gao, Int. J. Solids Struct. 44(25–26), 81778193 (2007).
http://dx.doi.org/10.1016/j.ijsolstr.2007.06.007
108.
108. M. R. Wang, N. Yang, and Z. Y. Guo, J. Appl. Phys. 110(6), 064310 (2011).
http://dx.doi.org/10.1063/1.3634078
109.
109. G. Jeronimidis, in Structural Biological Materials, edited by M. Elices (Elsevier, Pergamon, New York, 2001).
110.
110. J. D. Currey, Bones: Structure and Mechanics (Princeton University Press, Princeton, 2002).
111.
111. J. Aizenberg and P. Fratzl, Adv. Mater. 21(4), 387388 (2009).
http://dx.doi.org/10.1002/adma.200803699
112.
112. U. G. K. Wegst and M. F. Ashby, Philos. Mag. 84(21), 21672181 (2004).
http://dx.doi.org/10.1080/14786430410001680935
113.
113. J. Kopecek, Biomaterials 28, 51855192 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2007.07.044
114.
114. S. Banerjee, R. K. Das, and U. Maitra, J. Mater. Chem. 19(37), 66496687 (2009).
http://dx.doi.org/10.1039/b819218a
115.
115. V. Sahni, T. A. Blackledge, and A. Dhinojwala, Nat. Commun. 1, 19 (2010).
http://dx.doi.org/10.1038/ncomms1019
116.
116. J. H. Waite and M. L. Tanzer, Science 212(4498), 10381040 (1981).
http://dx.doi.org/10.1126/science.212.4498.1038
117.
117. H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, Science 318(5849), 426430 (2007).
http://dx.doi.org/10.1126/science.1147241
118.
118. H. Lee, Nature 465(7296), 298299 (2010).
http://dx.doi.org/10.1038/465298a
119.
119. E. Arzt, Mater. Sci. Eng., C 26(8), 12451250 (2006).
http://dx.doi.org/10.1016/j.msec.2005.08.033
120.
120. H. F. Jakob, P. Fratzl, and S. E. Tschegg, J. Struct. Biol. 113(1), 1322 (1994).
http://dx.doi.org/10.1006/jsbi.1994.1028
121.
121. R. Wimmer, G. M. Downes, and R. Evans, Tree Physiol. 22(7), 449457 (2002).
http://dx.doi.org/10.1093/treephys/22.7.449
122.
122. G. Jeronimidis, Proc. R. Soc. London, Ser. B 208, 447 (1980).
123.
123. P. Fratzl, I. Burgert, and H. S. Gupta, Phys. Chem. Chem. Phys. 6(24), 55755579 (2004).
http://dx.doi.org/10.1039/b411986j
124.
124. L. Kohler and H. C. Spatz, Planta 215(1), 3340 (2002).
http://dx.doi.org/10.1007/s00425-001-0718-9
125.
125. J. Keckes, I. Burgert, K. Fruhmann, M. Muller, K. Kolln, M. Hamilton, M. Burghammer, S. V. Roth, S. Stanzl-Tschegg, and P. Fratzl, Nature Mater. 2(12), 810814 (2003).
http://dx.doi.org/10.1038/nmat1019
126.
126. P. Fratzl, H. S. Gupta, E. P. Paschalis, and P. Roschger, J. Mater. Chem. 14(14), 21152123 (2004).
http://dx.doi.org/10.1039/b402005g
127.
127. S. Weiner and H. D. Wagner, Annu. Rev. Mater. Sci. 28, 271298 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.271
128.
128. P. Fratzl, Nature Mater. 7(8), 610612 (2008).
http://dx.doi.org/10.1038/nmat2240
129.
129. J. D. Currey, J. Exp. Biol. 202(23), 32853294 (1999).
130.
130. J. D. Currey, J. Bone Miner. Res. 18(4), 591598 (2003).
http://dx.doi.org/10.1359/jbmr.2003.18.4.591
131.
131. B. H. Ji and H. J. Gao, J. Mech. Phys. Solids 52(9), 19631990 (2004).
http://dx.doi.org/10.1016/j.jmps.2004.03.006
132.
132. H. J. Gao, B. H. Ji, I. L. Jager, E. Arzt, and P. Fratzl, Proc. Natl. Acad. Sci. U. S. A. 100(10), 55975600 (2003).
http://dx.doi.org/10.1073/pnas.0631609100
133.
133. H. Peterlik, P. Roschger, K. Klaushofer, and P. Fratzl, Nature Mater. 5(1), 5255 (2006).
http://dx.doi.org/10.1038/nmat1545
134.
134. S. Kamat, X. Su, R. Ballarini, and A. H. Heuer, Nature 405(6790), 10361040 (2000).
http://dx.doi.org/10.1038/35016535
135.
135. J. Aizenberg, J. C. Weaver, M. S. Thanawala, V. C. Sundar, D. E. Morse, and P. Fratzl, Science 309(5732), 275278 (2005).
http://dx.doi.org/10.1126/science.1112255
136.
136. B. R. Lawn and J. J. W. Lee, Acta Biomater. 5(6), 22132221 (2009).
http://dx.doi.org/10.1016/j.actbio.2009.02.001
137.
137. X. D. Li, W. C. Chang, Y. J. Chao, R. Z. Wang, and M. Chang, Nano Lett. 4(4), 613617 (2004).
http://dx.doi.org/10.1021/nl049962k
138.
138. A. Miserez, Y. L. Li, J. H. Waite, and F. Zok, Acta Biomater. 3(1), 139149 (2007).
http://dx.doi.org/10.1016/j.actbio.2006.09.004
139.
139. A. Miserez, T. Schneberk, C. J. Sun, F. W. Zok, and J. H. Waite, Science 319(5871), 18161819 (2008).
http://dx.doi.org/10.1126/science.1154117
140.
140. S. Krauss, E. Monsonego-Ornan, E. Zelzer, P. Fratzl, and R. Shahar, Adv. Mater. 21(4), 407412 (2009).
http://dx.doi.org/10.1002/adma.200801256
141.
141. J. L. Hu and J. G. Teng, Finite Elem. Anal. Des. 21(4), 225237 (1996).
http://dx.doi.org/10.1016/0168-874X(95)00042-R
142.
142. G. Indelicato and A. Albano, J. Elasticity 94(1), 3354 (2009).
http://dx.doi.org/10.1007/s10659-008-9183-z
143.
143. N. Pan and P. Gibson, Thermal and Moisture Transport in Fibrous Material (Woodhead Publishing Ltd., Cambridge, 2006).
144.
144. J. Hu, Structure and Mechanics of Woven Fabrics (Woodhead Publishing Ltd., Cambridge, 2004).
145.
145. J. W. S. Hearle, P. Grosberg, and S. Backer, Structural Mechanics of Yarns and Fabrics (Wiley-Interscience, New York, 1969).
146.
146. J. W. S. Hearle, J. J. Thwaites, and J. Amirbayat, Mechanics of Flexible Fibre Assemblies (Sijthoff & Noordhoff, Germantown, MD, 1980).
147.
147. R. Postle, G. A. Carnaby, and S. D. Jong, The Mechanics of Wool Structures (Ellis Horwood, 1988).
148.
148. G. Galileo, Dialogue Concerning Two New Sciences (Evanston, Leyden, 1914).
149.
149. N. Pan and D. Brookstein, J. Appl. Polym. Sci. 83(3), 610630 (2002).
http://dx.doi.org/10.1002/app.2261
150.
150. L. R. G. Treloar, Br. J. Appl. Phys. 13(7), 314 (1962).
http://dx.doi.org/10.1088/0508-3443/13/7/304
151.
151. S. L. Phoenix, Int. J. Eng. Sci. 13(3), 287304 (1975).
http://dx.doi.org/10.1016/0020-7225(75)90036-1
152.
152. B. D. Coleman, J. Mech. Phys. Solids 7(1), 6070 (1958).
http://dx.doi.org/10.1016/0022-5096(58)90039-5
153.
153. H. E. Daniels, Proc. R. Soc. London, Ser. A 183(995), 405435 (1945).
http://dx.doi.org/10.1098/rspa.1945.0011
154.
154. N. Pan, Text. Res. J. 63(9), 504514 (1993).
http://dx.doi.org/10.1177/004051759306300902
155.
155. N. Pan, Compos. Sci. Technol. 56(3), 311327 (1996).
http://dx.doi.org/10.1016/0266-3538(95)00114-X
156.
156. A. A. Shahpurwala and P. Schwartz, Text. Res. J. 59(1), 2632 (1989).
http://dx.doi.org/10.1177/004051758905900104
157.
157. N. Pan and M. Y. Yoon, Text. Res. J. 66(4), 238244 (1996).
http://dx.doi.org/10.1177/004051759606600409
158.
158. E. Cerda and L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.074302
159.
159. D. Breid and A. J. Crosby, Soft Matter 7(9), 44904496 (2011).
http://dx.doi.org/10.1039/c1sm05152k
160.
160. E. Cerda, K. Ravi-Chandar, and L. Mahadevan, Nature 419(6907), 579580 (2002).
http://dx.doi.org/10.1038/419579b
161.
161. V. Kantsler, E. Segre, and V. Steinberg, Phys. Rev. Lett. 99, 178102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.178102
162.
162. E. Sharon, B. Roman, M. Marder, G. S. Shin, and H. L. Swinney, Nature 419(6907), 579 (2002).
http://dx.doi.org/10.1038/419579a
163.
163. F. T. Peirce, J., J. Text. Inst. 17, T355368 (1926).
http://dx.doi.org/10.1080/19447027.1926.10599953
164.
164. G. N. Haddad and J. E. Sutton, Text. Res. J. 42(8), 452 (1972).
http://dx.doi.org/10.1177/004051757204200803
165.
165. T. V. Ratnam, K. S. Shankaranarayana, C. Underwood, and K. Govindarajulu, Text. Res. J. 38(4), 360365 (1968).
http://dx.doi.org/10.1177/004051756803800406
166.
166. H. L. Cox, Br. J. Appl. Phys. 3(3), 7279 (1952).
http://dx.doi.org/10.1088/0508-3443/3/3/302
167.
167. C. J. Monego, S. Backer, Y. P. Qui, and K. Machida, Compos. Sci. Technol. 50(4), 451456 (1994).
http://dx.doi.org/10.1016/0266-3538(94)90053-1
168.
168. C. J. Monego and S. Backer, Text. Res. J. 38(7), 762766 (1968).
http://dx.doi.org/10.1177/004051756803800712
169.
169. N. Pan, K. H. Chen, C. J. Monego, and S. Backer, Proc. R. Soc. London, Ser. A 454(1972), 11091127 (1998).
http://dx.doi.org/10.1098/rspa.1998.0198
170.
170. N. Pan and R. Postle, Philos. Trans. R. Soc. London, Ser. A 354(1714), 18751897 (1996).
http://dx.doi.org/10.1098/rsta.1996.0082
171.
171. W. A. Curtin, J. Am. Ceram. Soc. 74(11), 28372845 (1991).
http://dx.doi.org/10.1111/j.1151-2916.1991.tb06852.x
172.
172. W. A. Curtin, J. Mater. Sci. 26(19), 52395253 (1991).
http://dx.doi.org/10.1007/BF01143218
173.
173. H. D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, Appl. Phys. Lett. 72(2), 188190 (1998).
http://dx.doi.org/10.1063/1.120680
174.
174. P. K. Baumgart, J. Colloid Interface Sci. 36(1), 71 (1971).
http://dx.doi.org/10.1016/0021-9797(71)90241-4
175.
175. D. Li and Y. N. Xia, Adv. Mater. 16(14), 11511170 (2004).
http://dx.doi.org/10.1002/adma.200400719
176.
176. T. J. Sill and H. A. von Recum, Biomaterials 29(13), 19892006 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.01.011
177.
177. S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. W. Ma, and R. Ramaseshan, Mater. Today 9(3), 4050 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71389-X
178.
178. L. Gonzalez-Macia, A. Morrin, M. R. Smyth, and A. J. Killard, Analyst 135(5), 845867 (2010).
http://dx.doi.org/10.1039/b916888e
179.
179. H. K. Baca, E. C. Carnes, C. E. Ashley, D. M. Lopez, C. Douthit, S. Karlin, and C. J. Brinker, Biochim. Biophys. Acta, Gen. Subj. 1810(3), 259267 (2011).
http://dx.doi.org/10.1016/j.bbagen.2010.09.005
180.
180. M. Shimomura and T. Sawadaishi, Curr. Opin. Colloid Interface Sci. 6(1), 1116 (2001).
http://dx.doi.org/10.1016/S1359-0294(00)00081-9
181.
181. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf, IBM J. Res. Dev. 45(5), 697719 (2001).
http://dx.doi.org/10.1147/rd.455.0697
182.
182. D. J. Futuyma, Evolution (Sinauer Associates, Inc., Sunderland, Massachusetts, 2005).
183.
183. M. J. Buehler and Y. C. Yung, Nature Mater. 8(3), 175188 (2009).
http://dx.doi.org/10.1038/nmat2387
184.
184. F. Cervantes-Sodi, T. McNicholas, J. Simmons, J. Liu, G. Csnyi, A. Ferrari, and S. Curtarolo, ACS Nano 4, 69506956 (2010).
http://dx.doi.org/10.1021/nn101883s
185.
185. L. Mahadevan, Faraday Discuss. 139, 919 (2008).
http://dx.doi.org/10.1039/b809771m
186.
186. A. A. Griffith, Philos. Trans. R. Soc. London, Ser. A 221, 163198 (1921).
http://dx.doi.org/10.1098/rsta.1921.0006
187.
187. H. J. Gao and S. H. Chen, Trans. ASME J. Appl. Mech. 72(5), 732737 (2005).
http://dx.doi.org/10.1115/1.1988348
188.
188. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, J. Colloid Interface Sci. 53(2), 314326 (1975).
http://dx.doi.org/10.1016/0021-9797(75)90018-1
189.
189. K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Soc. London, Ser. A 324(1558), 301 (1971).
http://dx.doi.org/10.1098/rspa.1971.0141
190.
190. D. Maugis, J. Colloid Interface Sci. 150(1), 243269 (1992).
http://dx.doi.org/10.1016/0021-9797(92)90285-T
191.
191. M. Varenberg, A. Peressadko, S. Gorb, and E. Arzt, Appl. Phys. Lett. 89, 121905 (2006).
http://dx.doi.org/10.1063/1.2356099
192.
192. R. Spolenak, S. Gorb, H. J. Gao, and E. Arzt, Proc. R. Soc. London, Ser. A 461(2054), 305319 (2005).
http://dx.doi.org/10.1098/rspa.2004.1326
193.
193. B. Aksak, M. P. Murphy, and M. Sitti, Langmuir 23(6), 33223332 (2007).
http://dx.doi.org/10.1021/la062697t
194.
194. A. Peressadko and S. N. Gorb, J. Adhes. 80, 247261 (2004).
http://dx.doi.org/10.1080/00218460490430199
195.
195. H. J. Gao and H. M. Yao, Proc. Natl. Acad. Sci. U. S. A. 101(21), 78517856 (2004).
http://dx.doi.org/10.1073/pnas.0400757101
196.
196. R. J. Bassett, R. Postle, and N. Pan, Text. Res. J. 69(11), 866875 (1999).
http://dx.doi.org/10.1177/004051759906901111
197.
197. L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. H. Lin, K. Y. C. Lee, and E. Cerda, Science 320(5878), 912916 (2008).
http://dx.doi.org/10.1126/science.1154069
198.
198. S. McCormick, Science 317(5838), 606607 (2007).
http://dx.doi.org/10.1126/science.1146655
199.
199. S. Keten, Z. P. Xu, B. Ihle, and M. J. Buehler, Nature Mater. 9(4), 359367 (2010).
http://dx.doi.org/10.1038/nmat2704
200.
200. C. P. Brangwynne, F. C. MacKintosh, S. Kumar, N. A. Geisse, J. Talbot, L. Mahadevan, K. K. Parker, D. E. Ingber, and D. A. Weitz, J. Cell Biol. 173(5), 733741 (2006).
http://dx.doi.org/10.1083/jcb.200601060
201.
201. A. Woesz, J. C. Weaver, M. Kazanci, Y. Dauphin, J. Aizenberg, D. E. Morse, and P. Fratzl, J. Mater. Res. 21(8), 20682078 (2006).
http://dx.doi.org/10.1557/jmr.2006.0251
202.
202. B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, 2nd ed. (Wiley-Interscience, New York, 1990).
203.
203. M. J. Buehler, Nano Today 5, 379383 (2010).
http://dx.doi.org/10.1016/j.nantod.2010.08.001
204.
204. S. Keten and M. J. Buehler, Nano Lett. 8(2), 743748 (2008).
http://dx.doi.org/10.1021/nl0731670
205.
205. A. Tarakanova and M. J. Buehler, Jom 64(2), 214225 (2012).
http://dx.doi.org/10.1007/s11837-012-0250-3
206.
206. H. Y. Liang and L. Mahadevan, Proc. Natl. Acad. Sci. U. S. A. 108(14), 55165521 (2011).
http://dx.doi.org/10.1073/pnas.1007808108
207.
207. L. A. Hirano, M. T. Escote, L. S. Martins, G. L. Mantovani, and C. H. Scuracchio, Artif. Organs 35(5), 478483 (2011).
http://dx.doi.org/10.1111/j.1525-1594.2011.01259.x
208.
208. Y. Forterre, J. M. Skotheim, J. Dumais, and L. Mahadevan, Nature 433(7024), 421425 (2005).
http://dx.doi.org/10.1038/nature03185
209.
209. H. Y. Liang and L. Mahadevan, Proc. Natl. Acad. Sci. U. S. A. 106(52), 2204922054 (2009).
http://dx.doi.org/10.1073/pnas.0911954106
210.
210. R. Bieleski, J. Elgar, and J. Heyes, Ann. Bot. 86(6), 11751183 (2000).
http://dx.doi.org/10.1006/anbo.2000.1291
211.
211. W. G. van Doorn and U. van Meeteren, J. Exp. Bot. 54(389), 18011812 (2003).
http://dx.doi.org/10.1093/jxb/erg213
212.
212. Q. Ji, M. Miyahara, J. P. Hill, S. Acharya, A. Vinu, S. B. Yoon, J. S. Yu, K. Sakamoto, and K. Ariga, J. Am. Chem. Soc. 130(8), 23762377 (2008).
http://dx.doi.org/10.1021/ja076139s
213.
213. G. M. Grason, Phys. Rev. Lett. 108(5), 059901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.059901
214.
214. W. Wagermaier, H. S. Gupta, A. Gourrier, M. Burghammer, P. Roschger, and P. Fratzl, Biointerphases 1(1), 15 (2006).
http://dx.doi.org/10.1116/1.2178386
215.
215. J. Hearle, Phys. World November, 22 (2010).
216.
216. L. Mahadevan and S. Rica, Science 307(5716), 1740 (2005).
http://dx.doi.org/10.1126/science.1105169
217.
217. S. Clark and R. Prabhakar, Soft Matter 7, 5536 (2011).
http://dx.doi.org/10.1039/c1sm05269a
218.
218. T. Yue and X. Zhang, J. Phys. Chem. B 115(40), 1156611574 (2011).
http://dx.doi.org/10.1021/jp2037087
219.
219. G. M. Grason, Phys. Rep.-Rev. Sec. Phys. Lett. 433(1), 164 (2006).
220.
220. G. M. Grason and R. F. Bruinsma, Phys. Rev. Lett. 99(9), 098101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.098101
221.
221. T. Gibaud, E. Barry, M. J. Zakhary, M. Henglin, A. Ward, Y. Yang, C. Berciu, R. Oldenbourg, M. F. Hagan, D. Nicastro, R. B. Meyer, and Z. Dogic, Nature 481(7381), 348 (2012).
222.
222. B. W. Rosen, AIAA J. 2(11), 19851991 (1964).
http://dx.doi.org/10.2514/3.2699
223.
223. C. Zweben and B. W. Rosen, J. Mech. Phys. Solids 18(3), 189 (1970).
http://dx.doi.org/10.1016/0022-5096(70)90023-2
224.
224. L. S. Sutherland, R. A. Shenoi, and S. M. Lewis, Compos. Sci. Technol. 59(2), 209220 (1999).
http://dx.doi.org/10.1016/S0266-3538(98)00065-7
225.
225. J. Weiss, Eng. Fract. Mech. 68(17–18), 19752012 (2001).
http://dx.doi.org/10.1016/S0013-7944(01)00034-0
226.
226. A. Carpinteri, P. Cornetti, and S. Puzzi, Appl. Mech. Rev. 59(1–6), 283305 (2006).
http://dx.doi.org/10.1115/1.2204076
227.
227. L. Y. Sun, R. F. Gibson, F. Gordaninejad, and J. Suhr, Compos. Sci. Technol. 69(14), 23922409 (2009).
http://dx.doi.org/10.1016/j.compscitech.2009.06.020
228.
228. S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline, Mechanical Design in Organisms (Princeton University Press, Princeton, 1982).
229.
229. R. Menig, M. H. Meyers, M. A. Meyers, and K. S. Vecchio, Acta Mater. 48(9), 23832398 (2000).
http://dx.doi.org/10.1016/S1359-6454(99)00443-7
230.
230. A. G. Evans, Z. Suo, R. Z. Wang, I. A. Aksay, M. Y. He, and J. W. Hutchinson, J. Mater. Res. 16(9), 24752484 (2001).
http://dx.doi.org/10.1557/JMR.2001.0339
231.
231. R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, and I. A. Aksay, J. Mater. Res. 16(9), 24852493 (2001).
http://dx.doi.org/10.1557/JMR.2001.0340
232.
232. F. Song, A. K. Soh, and Y. L. Bai, Biomaterials 24(20), 36233631 (2003).
http://dx.doi.org/10.1016/S0142-9612(03)00215-1
233.
233. P. Fratzl, H. S. Gupta, F. D. Fischer, and O. Kolednik, Adv. Mater. 19, 2657 (2007).
http://dx.doi.org/10.1002/adma.200602394
234.
234. S. Weiner and H. A. Lowenstam, On Biomineralization (Oxford University Press Inc., Oxford, UK, 1989).
235.
235. A. Dey, G. de With, and N. Sommerdijk, Chem. Soc. Rev. 39(2), 397409 (2010).
http://dx.doi.org/10.1039/b811842f
236.
236. P. Zaslansky, R. Shahar, A. A. Friesem, and S. Weiner, Adv. Funct. Mater. 16(15), 19251936 (2006).
http://dx.doi.org/10.1002/adfm.200600120
237.
237. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, 1997).
238.
238. S. Majumdar, R. Krishnaswamy, and A. K. Sood, Proc. Natl. Acad. Sci. U. S. A. 108(22), 89969001 (2011).
http://dx.doi.org/10.1073/pnas.1018685108
239.
239. R. P. Wool, Soft Matter 4(3), 400418 (2008).
http://dx.doi.org/10.1039/b711716g
240.
240. D. S. Fudge, K. H. Gardner, V. T. Forsyth, C. Riekel, and J. M. Gosline, Biophys. J. 85(3), 20152027 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74629-3
241.
241. N. B. Hatzigrigoriou, S. N. Vouyiouka, C. Joly, P. Dole, and C. D. Papaspyrides, J. Appl. Polym. Sci. 125(4), 28142823 (2012).
http://dx.doi.org/10.1002/app.36279
242.
242. D. B. Staple, M. Loparic, H. J. Kreuzer, and L. Kreplak, Phys. Rev. Lett. 102(12), 128302 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.128302
243.
243. J. Wu, W. Lin, Z. Wang, S. Chen, and Y. Chang, Langmuir 28(19), 74367441 (2012).
http://dx.doi.org/10.1021/la300394c
244.
244. D. Lukas and N. Pan, Polym. Compos. 24(3), 314322 (2003).
http://dx.doi.org/10.1002/pc.10031
245.
245. F. Brochard, J. Chem. Phys. 84(8), 46644672 (1986).
http://dx.doi.org/10.1063/1.449993
246.
246. F. Casanova, C. E. Chiang, C. P. Li, I. V. Roshchin, A. M. Ruminski, M. J. Sailor, and I. K. Schuller, Nanotechnology 19(31), 315709 (2008).
http://dx.doi.org/10.1088/0957-4484/19/31/315709
247.
247. S. P. Rigby, P. I. Chigada, E. L. Perkins, M. J. Watt-Smith, J. P. Lowe, and K. J. Edler, Adsorption 14(2–3), 289307 (2008).
http://dx.doi.org/10.1007/s10450-007-9091-8
248.
248. A. Wongkoblap, D. D. Do, G. Birkett, and D. Nicholson, J. Colloid Interface Sci. 356(2), 672680 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.01.074
249.
249. P. G. De Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003).
250.
250. W. W. Schultz and S. H. Davis, J. Rheol. 26(4), 331345 (1982).
http://dx.doi.org/10.1122/1.549679
251.
251. J. Eggers, Rev. Mod. Phys. 69(3), 865929 (1997).
http://dx.doi.org/10.1103/RevModPhys.69.865
252.
252. M. R. Wang, J. H. He, J. Y. Yu, and N. Pan, Int. J. Therm. Sci. 46(9), 848855 (2007).
http://dx.doi.org/10.1016/j.ijthermalsci.2006.11.006
253.
253. D. Donadio and G. Galli, Nano Lett. 10(3), 847851 (2010).
http://dx.doi.org/10.1021/nl903268y
254.
254. K. Nassau, The Physics and Chemistry of Color, 2nd ed. (Wiley, New York, 2001).
255.
255. J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, and G. Hendler, Nature 412(6849), 819822 (2001).
http://dx.doi.org/10.1038/35090573
256.
256. V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, and J. Aizenberg, Nature 424(6951), 899900 (2003).
http://dx.doi.org/10.1038/424899a
257.
257. T. P. J. Knowles, T. W. Oppenheim, A. K. Buell, D. Y. Chirgadze, and M. E. Welland, Nat. Nanotechnol. 5(3), 204207 (2010).
http://dx.doi.org/10.1038/nnano.2010.26
258.
258. C. Tekoglu, L. J. Gibson, T. Pardoen, and P. R. Onck, Prog. Mater. Sci. 56(2), 109138 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2010.06.001
259.
259. N. Pan, S. M. Zhao, and T. Hua, Polym. Compos. 21(2), 187195 (2000).
http://dx.doi.org/10.1002/pc.10176
260.
260. M. J. Buehler, Proc. Natl. Acad. Sci. U. S. A. 103(33), 1228512290 (2006).
http://dx.doi.org/10.1073/pnas.0603216103
261.
261. D. Frenkel, Theor. Chem. Acc. 103(3–4), 212213 (2000).
http://dx.doi.org/10.1007/s002149900018
262.
262. E. Garcia, D. C. Williamson, and A. Martinez-Richa, Mol. Phys. 98(3), 179192 (2000).
http://dx.doi.org/10.1080/00268970009483281
263.
263. L. Onsager, Ann. NY Acad. Sci. 51, 627659 (1949).
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
264.
264. M. Levitt, M. Gerstein, E. Huang, S. Subbiah, and J. Tsai, Annu. Rev. Biochem. 66, 549579 (1997).
http://dx.doi.org/10.1146/annurev.biochem.66.1.549
265.
265. R. T. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).
266.
266. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, 2002).
267.
267. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000).
268.
268. L. N. Zou, X. Cheng, M. L. Rivers, H. M. Jaeger, and S. R. Nagel, Science 326(5951), 408410 (2009).
http://dx.doi.org/10.1126/science.1177114
269.
269. J. Liang and K. A. Dill, Biophys. J. 78(1), 197 (2000).
270.
270. J. Liang and K. A. Dill, Biophys. J. 81(2), 751766 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)75739-6
271.
271. P. K. Purohit, M. M. Inamdar, P. D. Grayson, T. M. Squires, J. Kondev, and R. Phillips, Biophys. J. 88(2), 851866 (2005).
http://dx.doi.org/10.1529/biophysj.104.047134
272.
272. J. L. Gevertz and S. Torquato, Plos Comput. Biol. 4, 8 (2008).
http://dx.doi.org/10.1371/journal.pcbi.1000152
273.
273. S. Torquato and Y. Jiao, Nature 460(7257), 876 (2009).
http://dx.doi.org/10.1038/nature08239
274.
274. S. P. De Genne and G. Prostj, The Physics of Liquid Crysials (Clarendon Press, Oxford, 1995).
275.
275. F. M. Richards, Annu. Rev. Biophys. Bioeng. 6, 151176 (1977).
http://dx.doi.org/10.1146/annurev.bb.06.060177.001055
276.
276. F. M. Richards, J. Mol. Biol. 82(1), 114 (1974).
http://dx.doi.org/10.1016/0022-2836(74)90570-1
277.
277. T. C. Hales, Discrete Comput. Geom. 36(1), 520 (2006).
http://dx.doi.org/10.1007/s00454-005-1210-2
278.
278. D. A. Weitz, Science 303, 968969 (2004).
http://dx.doi.org/10.1126/science.1094581
279.
279. I. Peterson, Science News 154(7), 103 (1998).
http://dx.doi.org/10.2307/4010790
280.
280. R. O. Erickson, Science 181(4101), 705716 (1973).
http://dx.doi.org/10.1126/science.181.4101.705
281.
281. T. C. Hales, Ann. Math. 162(3), 10651185 (2005).
http://dx.doi.org/10.4007/annals.2005.162.1065
282.
282. T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller, Discrete Comput. Geom. 44(1), 134 (2010).
http://dx.doi.org/10.1007/s00454-009-9148-4
283.
283. A. Haji-Akbari, M. Engel, A. S. Keys, X. Y. Zheng, R. G. Petschek, P. Palffy-Muhoray, and S. C. Glotzer, Nature 462(7274), 773777 (2009).
http://dx.doi.org/10.1038/nature08641
284.
284. A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92(25), 255506 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.255506
285.
285. Z. Y. Tang, Z. L. Zhang, Y. Wang, S. C. Glotzer, and N. A. Kotov, Science 314(5797), 274278 (2006).
http://dx.doi.org/10.1126/science.1128045
286.
286. S. C. Glotzer and M. J. Solomon, Nature Mater. 6(8), 557562 (2007).
http://dx.doi.org/10.1038/nmat1949
287.
287. A. Donev, I. Cisse, D. Sachs, E. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303(5660), 990993 (2004).
http://dx.doi.org/10.1126/science.1093010
288.
288. G. N. Meng, N. Arkus, M. P. Brenner, and V. N. Manoharan, Science 327(5965), 560563 (2010).
http://dx.doi.org/10.1126/science.1181263
289.
289. G. M. Whitesides, J. P. Mathias, and C. T. Seto, Science 254(5036), 13121319 (1991).
http://dx.doi.org/10.1126/science.1962191
290.
290. G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. U. S. A. 99(8), 47694774 (2002).
http://dx.doi.org/10.1073/pnas.082065899
291.
291. E. C. R. Reeve and J. S. Huxley, in Assays on Growth and Form Presented to D'arcy Wentworth Thompson, edited by W. E. Clark and P. B. Medawar (Clarendon Press, Oxford, 1945).
292.
292. S. A. Ambartsumyan and A. A. Khachatryan, Mech. Solids 1, 2934 (1966).
293.
293. S. A. Ambartsumyan, Mech. Solids 4, 4856 (1969).
294.
294. S. A. Ambartsumyan, Izv. Akad. Nauk. SSSR, Mekh. 4, 7785 (1965).
295.
295. K. Bertoldi, D. Bigoni, and W. J. Drugan, Compos. Sci. Technol. 68(6), 13631375 (2008).
http://dx.doi.org/10.1016/j.compscitech.2007.11.016
296.
296. J. Y. Sun, H. Q. Zhu, S. H. Qin, D. L. Yang, and X. T. He, J. Mech. Sci. Technol. 24(9), 18451854 (2010).
http://dx.doi.org/10.1007/s12206-010-0601-3
297.
297. B. J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D: Appl. Phys. 31(19), 23952405 (1998).
http://dx.doi.org/10.1088/0022-3727/31/19/006
298.
298. J. Malzbender, J. M. J. den Toonder, A. R. Balkenende, and G. de With, Mater. Sci. Eng., R 36(2–3), 47103 (2002).
http://dx.doi.org/10.1016/S0927-796X(01)00040-7
299.
299. D. Bruno, S. Lato, and R. Zinno, Compos. Eng. 3(5), 419435 (1993).
http://dx.doi.org/10.1016/0961-9526(93)90079-Y
300.
300. W. W. Eltahan, G. H. Staab, S. H. Advani, and J. K. Lee, ASCE J. Eng. Mech. 115(5), 963981 (1989).
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:5(963)
301.
301. E. Sacco and J. N. Reddy, Trans. ASME J. Appl. Mech. 59(1), 220221 (1992).
http://dx.doi.org/10.1115/1.2899436
302.
302. Z. H. Nie, A. Petukhova, and E. Kumacheva, Nat. Nanotechnol. 5(1), 1525 (2010).
http://dx.doi.org/10.1038/nnano.2009.453
303.
303. A. Mandelis, J. Therm. Anal. 37(5), 10651101 (1991).
http://dx.doi.org/10.1007/BF01932803
304.
304. N. Pan, Int. J. Nat. Des. 1, 4860 (2007).
305.
305. G. A. Carnaby and N. Pan, Text. Res. J. 59(5), 275284 (1989).
http://dx.doi.org/10.1177/004051758905900505
306.
306. C. M. van Wyk, J. Text. Inst. 37, T285 (1946).
http://dx.doi.org/10.1080/19447024608659279
307.
307. S. Niederegger, S. Gorb, and Y. Jiao, J. Comp. Physiol. A 187, 961970 (2002).
http://dx.doi.org/10.1007/s00359-001-0265-7
308.
308. D. G. Hepworth, A. Steven-fountain, D. M. Bruce, and J. F. V. Vincent, J. Biomech. 34(3), 341346 (2001).
http://dx.doi.org/10.1016/S0021-9290(00)00183-4
309.
309. N. Pan, J. Compos. Mater. 28, 15001531 (1994).
http://dx.doi.org/10.1177/002199839402801601
310.
310. S. Kirkpatrick, Rev. Mod. Phys. 45, 574588 (1973).
http://dx.doi.org/10.1103/RevModPhys.45.574
311.
311. M. Wang and Z. X. Li, Microfluid. Nanofluid. 1, 6270 (2004).
http://dx.doi.org/10.1007/s10404-004-0008-5
312.
312. M. Wang and Z. X. Li, J. Eng. Thermophys. 25, 840842 (2004).
313.
313. M. Wang, J. Wang, N. Pan, S. Chen, and J. He, J. Phys. D: Appl. Phys. 40, 260265 (2007).
http://dx.doi.org/10.1088/0022-3727/40/1/024
314.
314. J. M. Benyus, Biomimicry: Innovation Inspired by Nature (William Morrow and Company, Inc., New York, 1997).
315.
315. E. Ruiz-Hitzky, M. Darder, P. Aranda, and K. Ariga, Adv. Mater. 22(3), 323336 (2010).
http://dx.doi.org/10.1002/adma.200901134
316.
316. T. X. Fan, S. K. Chow, and Z. Di, Prog. Mater. Sci. 54(5), 542659 (2009).
http://dx.doi.org/10.1016/j.pmatsci.2009.02.001
317.
317. B. Bhushan, Prog. Mater. Sci. 53(4), 585710 (2008).
http://dx.doi.org/10.1016/j.pmatsci.2008.01.001
318.
318. C. M. Li and D. L. Kaplan, Curr. Opin. Solid State Mater. Sci. 7(4–5), 265271 (2003).
http://dx.doi.org/10.1016/j.cossms.2003.09.011
319.
319. J. Dawson, J. F. V. Vincent, and A. M. Rocca, Nature 390(6661), 668 (1997).
http://dx.doi.org/10.1038/37745
320.
320. E. Bormashenko, Y. Bormashenko, T. Stein, and G. Whyman, J. Colloid Interface Sci. 311(1), 212216 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.02.049
321.
321. J. Gao, N. Pan, and W. D. Yu, Int. J. Nonlinear Sci. Numer. Simul. 7(1), 113116 (2006).
http://dx.doi.org/10.1515/IJNSNS.2006.7.1.113
322.
322. T. Stegmaier, M. Linke, and H. Planck, Philos. Trans. R. Soc., A 367(1894), 17491758 (2009).
http://dx.doi.org/10.1098/rsta.2009.0019
323.
323. A. J. Scardino and R. de Nys, Biofouling 27(1), 7386 (2011).
http://dx.doi.org/10.1080/08927014.2010.536837
324.
324. J. G. Hardy and T. R. Scheibel, Prog. Polym. Sci. 35(9), 10931115 (2010).
http://dx.doi.org/10.1016/j.progpolymsci.2010.04.005
325.
325. K. Shanmuganathan, J. R. Capadona, S. J. Rowan, and C. Weder, Prog. Polym. Sci. 35(1–2), 212222 (2010).
http://dx.doi.org/10.1016/j.progpolymsci.2009.10.005
326.
326. W. L. Murphy, Soft Matter 7, 36793688 (2011).
http://dx.doi.org/10.1039/c0sm01351j
327.
327. P. Brochu and Q. B. Pei, Macromol. Rapid Commun. 31(1), 1036 (2010).
http://dx.doi.org/10.1002/marc.200900425
328.
328. C. Darwin, The Origin of Species, 150th Anniversary Edition ed. (Signet Classic, Penguin Publishing Group, New York, 2003), Chap. VI.
329.
329. L. D. Hurst, Nat. Rev. Genet. 10(2), 8393 (2009).
http://dx.doi.org/10.1038/nrg2506
330.
330. D. Noble, Philos. Trans. R. Soc., A 368(1914), 11251139 (2010).
http://dx.doi.org/10.1098/rsta.2009.0245
331.
331. T. Mitchell-Olds, J. H. Willis, and D. B. Goldstein, Nat. Rev. Genet. 8, 845856 (2007).
http://dx.doi.org/10.1038/nrg2207
332.
332. M. Nei, Mol. Biol. Evol. 22(12), 23182342 (2005).
http://dx.doi.org/10.1093/molbev/msi242
333.
333. M. Protas, I. Tabansky, M. Conrad, J. B. Gross, O. Vidal, C. J. Tabin, and R. Borowsky, Evol. Dev. 10(2), 196209 (2008).
http://dx.doi.org/10.1111/j.1525-142X.2008.00227.x
334.
334. H. A. Orr, Nat. Rev. Genet. 10(8), 531539 (2009).
http://dx.doi.org/10.1038/nrg2603
335.
335. S. J. Gould and E. A. Lloyd, Proc. Natl. Acad. Sci. U. S. A. 96(21), 1190411909 (1999).
http://dx.doi.org/10.1073/pnas.96.21.11904
336.
336. M. J. Dougherty, Scientific American, July 20, see http://www.scientificamerican.com/article/is-the-human-race-evolvin/.
337.
337. W. R. Atchley and B. K. Hall, Biol. Rev. Cambridge Philos. Soc. 66(2), 101157 (1991).
http://dx.doi.org/10.1111/j.1469-185X.1991.tb01138.x
338.
338. J. F. V. Vincent, Adv. Bot. Res. Incorporating Adv. Plant Pathol. 17, 235287 (1990).
339.
339. J. Y. Sun and B. Bhushan, Rsc Adv. 2(20), 76177632 (2012).
http://dx.doi.org/10.1039/c2ra20218b
340.
340. M. Spinderellas, http://www.spinderellas.com, 2014.
341.
341. I. R. Bruss and G. M. Grason, Proc. Natl. Acad. Sci. U. S. A. 109(27), 1078110786 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4871365
Loading
/content/aip/journal/apr2/1/2/10.1063/1.4871365
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/2/10.1063/1.4871365
2014-04-17
2015-04-26

Abstract

Structural hierarchy and heterogeneity are inherent features in biological materials, but their significance in affecting the system behaviors is yet to be fully understood. In Sec. I, this article first identifies the major characteristics that manifest, or are resulted from, such hierarchy and heterogeneity in materials. Then in Sec. II, it presents several typical natural material systems including wood, bone, and others from animals to illustrate the proposed views. The paper also discusses a man-made smart material, textiles, to demonstrate that textiles are hierarchal, multifunctional, highly complex, and arguably the engineered material closest on a par with biological materials in complexity, and, more importantly, we can still learn quite a few new things from them in development of novel materials. In Sec. III, the paper summarizes several general approaches in developing a hierarchal material system at various scales, including structure thinning and splitting, laminating and layering, spatial and angular orientation, heterogenization and hybridization, and analyzes the advantages associated with them. It also stresses the adverse consequences once the existing structural hierarchy breaks down due to various mutations in biological systems. It discusses, in particular, the influences of moisture and air on material properties, given the near ubiquitousness of both air and water in materials. It next deals with in Sec. IV, some theoretical issues in material research including packing and ordering, the bi-modular mechanics, the behavior non-affinities due to disparity in hierarchal levels, the importance of system dimensionality in a hierarchal material system, and more philosophically, the issues of Nature's wisdom versus Intelligent Design. Section V then offers some concluding remarks, including a recap of the major issues covered in this article, and some general conclusions derived from the analyses and discussions. The main purpose of this paper is to make an effort to explore, identify, derive, or theorize some generic principles based on the existing results, not to offer another comprehensive review of current research activities in the fields for that there already exist some excellent ones. This paper examines the related topics with several approaches to not only reveal the underlying geometrical and physical mechanisms but also to emphasize the ways in which such mechanisms may be applied to developing engineered material systems with novel properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/2/1.4871365.html;jsessionid=3fe9041glkrh9.x-aip-live-03?itemId=/content/aip/journal/apr2/1/2/10.1063/1.4871365&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Exploring the significance of structural hierarchy in material systems—A review
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4871365
10.1063/1.4871365
SEARCH_EXPAND_ITEM