1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/2/10.1063/1.4871696
1.
1. S. E. Park and T. R. Shrout, “ Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82, 18041811 (1997).
http://dx.doi.org/10.1063/1.365983
2.
2. Y. Saito et al., “ Lead-free piezoceramics,” Nature 432, 8487 (2004).
http://dx.doi.org/10.1038/nature03028
3.
3. S. E. Park and T. R. Shrout, “ Relaxor based ferroelectric single crystals for electro-mechanical actuators,” Mater. Res. Innovations 1, 2025 (1997).
http://dx.doi.org/10.1007/s100190050014
4.
4. Q. M. Zhang, V. Bharti, and X. Zhao, “ Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer,” Science 280, 21012104 (1998).
http://dx.doi.org/10.1126/science.280.5372.2101
5.
5. Q. M. Zhang et al., “ An all-organic composite actuator material with a high dielectric constant,” Nature 419, 284287 (2002).
http://dx.doi.org/10.1038/nature01021
6.
6. R. Pelrine et al., “ High-field deformation of elastomeric dielectrics for actuators,” Mater. Sci. Eng. C: Biomimetic Supramol. Syst. 11, 89100 (2000).
http://dx.doi.org/10.1016/S0928-4931(00)00128-4
7.
7. X. H. Zhao and Z. G. Suo, “ Theory of dielectric elastomers capable of giant deformation of actuation,” Phys. Rev. Lett. 104, 178302 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.178302
8.
8. P. Brochu and Q. Pei, “ Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun. 31, 1036 (2010).
http://dx.doi.org/10.1002/marc.200900425
9.
9. L. A. Dissado and J. C. Fothergill, Electrical Degradation and Breakdown in Polymers (Peter Peregrinus Ltd., 1992), Vol. 11.
10.
10. Z. Suo, C. M. Kuo, D. M. Barnett, and J. R. Willis, “ Fracture-mechanics for piezoelectric ceramics,” J. Mech. Phys. Solids 40, 739765 (1992).
http://dx.doi.org/10.1016/0022-5096(92)90002-J
11.
11. K. H. Stark and C. G. Garton, “ Electric strength of irradiated polythene,” Nature 176, 12251226 (1955).
http://dx.doi.org/10.1038/1761225a0
12.
12. X. Zhou et al., “ Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer,” Appl. Phys. Lett. 94, 162901 (2009).
http://dx.doi.org/10.1063/1.3123001
13.
13. X. H. Zhao and Z. G. Suo, “ Electromechanical instability in semicrystalline polymers,” Appl. Phys. Lett. 95, 031904 (2009).
http://dx.doi.org/10.1063/1.3186078
14.
14. Q. M. Wang, X. F. Niu, Q. B. Pei, M. D. Dickey, and X. H. Zhao, “ Electromechanical instabilities of thermoplastics: Theory and in situ observation,” Appl. Phys. Lett. 101, 141911 (2012).
http://dx.doi.org/10.1063/1.4757867
15.
15. Z. B. Yu et al., “ Large-strain, rigid-to-rigid deformation of bistable electroactive polymers,” Appl. Phys. Lett. 95, 192904 (2009).
http://dx.doi.org/10.1063/1.3263729
16.
16. J. Y. Song, Y. Y. Wang, and C. C. Wan, “ Review of gel-type polymer electrolytes for lithium-ion batteries,” J. Power Sources 77, 183197 (1999).
http://dx.doi.org/10.1016/S0378-7753(98)00193-1
17.
17. R. Pelrine, R. Kornbluh, Q. B. Pei, and J. Joseph, “ High-speed electrically actuated elastomers with strain greater than 100%,” Science 287, 836839 (2000).
http://dx.doi.org/10.1126/science.287.5454.836
18.
18. F. Carpi, S. Bauer, and D. De Rossi, “ Stretching dielectric elastomer performance,” Science 330, 17591761 (2010).
http://dx.doi.org/10.1126/science.1194773
19.
19. F. Carpi, D. De Rossi, R. Kornbluh, R. E. Pelrine, and P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology (Elsevier, 2011).
20.
20. J. F. Zang et al., “ Multifunctionality and control of the crumpling and unfolding of large-area grapheme,” Nature Mater. 12, 321325 (2013).
http://dx.doi.org/10.1038/nmat3542
21.
21. G. Kovacs, L. Duering, S. Michel, and G. Terrasi, “ Stacked dielectric elastomer actuator for tensile force transmission,” Sens. Actuators, A 155, 299307 (2009).
http://dx.doi.org/10.1016/j.sna.2009.08.027
22.
22. R. Shankar, T. K. Ghosh, and R. J. Spontak, “ Dielectric elastomers as next-generation polymeric actuators,” Soft Matter 3, 11161129 (2007).
http://dx.doi.org/10.1039/b705737g
23.
23. F. Carpi and D. De Rossi, “ Dielectric elastomer cylindrical actuators: Electromechanical modelling and experimental evaluation,” Mater. Sci. Eng. C: Biomimetic Supramol. Syst. 24, 555562 (2004).
http://dx.doi.org/10.1016/j.msec.2004.02.005
24.
24. M. Moscardo, X. H. Zhao, Z. G. Suo, and Y. Lapusta, “ On designing dielectric elastomer actuators,” J. Appl. Phys. 104, 093503 (2008).
http://dx.doi.org/10.1063/1.3000440
25.
25. G. Kofod, W. Wirges, M. Paajanen, and S. Bauer, “ Energy minimization for self-organized structure formation and actuation,” Appl. Phys. Lett. 90, 081916 (2007).
http://dx.doi.org/10.1063/1.2695785
26.
26. M. Aschwanden and A. Stemmer, “ Polymeric, electrically tunable diffraction grating based on artificial muscles,” Opt. Lett. 31, 26102612 (2006).
http://dx.doi.org/10.1364/OL.31.002610
27.
27. E. Biddiss and T. Chau, “ Dielectric elastomers as actuators for upper limb prosthetics: Challenges and opportunities,” Med. Eng. Phys. 30, 403418 (2008).
http://dx.doi.org/10.1016/j.medengphy.2007.05.011
28.
28. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “ Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 41524158 (2011).
http://dx.doi.org/10.1002/adfm.201101253
29.
29. S. Akbari and H. R. Shea, “ Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells,” J. Micromech. Microeng. 22, 045020 (2012).
http://dx.doi.org/10.1088/0960-1317/22/4/045020
30.
30. Z. H. Fang, C. Punckt, E. Y. Leung, H. C. Schniepp, and I. A. Aksay, “ Tuning of structural color using a dielectric actuator and multifunctional compliant electrodes,” Appl. Opt. 49, 66896696 (2010).
http://dx.doi.org/10.1364/AO.49.006689
31.
31. S. I. Son et al., “ Electromechanically driven variable-focus lens based on transparent dielectric elastomer,” Appl. Opt. 51, 29872996 (2012).
http://dx.doi.org/10.1364/AO.51.002987
32.
32. S. Shian, R. M. Diebold, and D. R. Clarke, “ Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 86698676 (2013).
http://dx.doi.org/10.1364/OE.21.008669
33.
33. X. Niu et al., “ Bistable large-strain actuation of interpenetrating polymer networks,” Adv. Mater. 24, 65136519 (2012).
http://dx.doi.org/10.1002/adma.201202876
34.
34. B. O'Brien et al., Proc. SPIE 6524, 652415 (2007).
http://dx.doi.org/10.1117/12.715823
35.
35. S. Son and N. C. Goulbourne, “ Finite deformations of tubular dielectric elastomer sensors,” J. Intell. Mater. Syst. Struct. 20, 21872199 (2009).
http://dx.doi.org/10.1177/1045389X09350718
36.
36. K. Jung, K. J. Kim, and H. R. Choi, “ A self-sensing dielectric elastomer actuator,” Sens. Actuators A 143, 343351 (2008).
http://dx.doi.org/10.1016/j.sna.2007.10.076
37.
37. R. Pelrine et al., Proc. SPIE 4329, 148156 (2001).
http://dx.doi.org/10.1117/12.432640
38.
38. T. McKay, B. O'Brien, E. Calius, and I. Anderson, “ An integrated, self-priming dielectric elastomer generator,” Appl. Phys. Lett. 97, 062911 (2010).
http://dx.doi.org/10.1063/1.3478468
39.
39. S. Chiba et al., “ Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators,” Appl. Energy 104, 497502 (2013).
http://dx.doi.org/10.1016/j.apenergy.2012.10.052
40.
40. S. J. A. Koh, X. H. Zhao, and Z. G. Suo, “ Maximal energy that can be converted by a dielectric elastomer generator,” Appl. Phys. Lett. 94, 262902 (2009).
http://dx.doi.org/10.1063/1.3167773
41.
41. T. McKay, B. O'Brien, E. Calius, and I. Anderson, “ Self-priming dielectric elastomer generators,” Smart Mater. Struct. 19, 055025 (2010).
http://dx.doi.org/10.1088/0964-1726/19/5/055025
42.
42. R. Kaltseis et al., “ Method for measuring energy generation and efficiency of dielectric elastomer generators,” Appl. Phys. Lett. 99, 162904 (2011).
http://dx.doi.org/10.1063/1.3653239
43.
43. R. D. Kornbluh et al., in Dielectric Elastomers: Stretching the Capabilities of Energy Harvesting, edited by S. Wagner and S. Bauer (Mater. Res. Sci. Bull., 2012), Vol. 37, pp. 246253.
44.
44. K. Ahnert, M. Abel, M. Kollosche, P. J. Jorgensen, and G. Kofod, “ Soft capacitors for wave energy harvesting,” J. Mater. Chem. 21, 1449214497 (2011).
http://dx.doi.org/10.1039/c1jm12454d
45.
45. S. J. A. Koh, C. Keplinger, T. Li, S. Bauer, and Z. Suo, “ Dielectric elastomer generators: How much energy can be converted?,” IEEE/ASME Trans. Mechatron. 16, 3341 (2011).
http://dx.doi.org/10.1109/TMECH.2010.2089635
46.
46. S. Ashley, “ Artificial muscles,” Sci. Am. 289, 5259 (2003).
http://dx.doi.org/10.1038/scientificamerican1003-52
47.
47. Z. Suo, “ Theory of dielectric elastomers,” Acta Mech. Solida Sin. 23, 549578 (2010).
http://dx.doi.org/10.1016/S0894-9166(11)60004-9
48.
48. L. Zhang, Q. M. Wang, and X. H. Zhao, “ Mechanical constraints enhance electrical energy densities of soft dielectrics,” Appl. Phys. Lett. 99, 171906 (2011).
http://dx.doi.org/10.1063/1.3655910
49.
49. Q. M. Wang, M. Tahir, L. Zhang, and X. H. Zhao, “ Electro-creasing instability in deformed polymers: Experiment and theory,” Soft Matter 7, 65836589 (2011).
http://dx.doi.org/10.1039/c1sm05645j
50.
50. C. Keplinger, T. Li, R. Baumgartner, Z. Suo, and S. Bauer, “ Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation,” Soft Matter 8, 285288 (2012).
http://dx.doi.org/10.1039/c1sm06736b
51.
51. Q. M. Wang, M. Tahir, J. F. Zang, and X. H. Zhao, “ Dynamic electrostatic lithography: Multiscale on-demand patterning on large-area curved surfaces,” Adv. Mater. 24, 19471951 (2012).
http://dx.doi.org/10.1002/adma.201200272
52.
52. P. Shivapooja et al., “ Bioinspired surfaces with dynamic topography for active control of biofouling,” Adv. Mater. 25, 14301434 (2013).
http://dx.doi.org/10.1002/adma.201203374
53.
53. A. O'Halloran, F. O'Malley, and P. McHugh, “ A review on dielectric elastomer actuators, technology, applications, and challenges,” J. Appl. Phys. 104, 071101 (2008).
http://dx.doi.org/10.1063/1.2981642
54.
54. I. A. Anderson, T. A. Gisby, T. G. McKay, B. M. O'Brien, and E. P. Calius, “ Multi-functional dielectric elastomer artificial muscles for soft and smart machines,” J. Appl. Phys. 112, 041101 (2012).
http://dx.doi.org/10.1063/1.4740023
55.
55. Y. Bar-Cohen and Q. M. Zhang, in Electroactive Polymer Actuators and Sensors, edited by Z. Cheng and Q. Zhang (Mater. Res. Sci. Bull., 2008), Vol. 33, pp. 173181.
56.
56. C. Lowe, X. Q. Zhang, and G. Kovacs, “ Dielectric elastomers in actuator technology,” Adv. Eng. Mater. 7, 361367 (2005).
http://dx.doi.org/10.1002/adem.200500066
57.
57. J. L. Mead, Z. Tao, and H. S. Liu, “ Insulation materials for wire and cable applications,” Rubber Chem. Technol. 75, 701712 (2002).
http://dx.doi.org/10.5254/1.3544996
58.
58. R. A. Toupin, “ The elastic dielectric,” J. Rational Mech. Anal. 5, 849915 (1956).
59.
59. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
60.
60. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
61.
61. A. Dorfmann and R. W. Ogden, “ Nonlinear electroelasticity,” Acta Mech. 174, 167 (2005).
http://dx.doi.org/10.1007/s00707-004-0202-2
62.
62. R. M. McMeeking and C. M. Landis, “ Electrostatic forces and stored energy for deformable dielectric materials,” ASME Trans. J. Appl. Mech. 72, 581590 (2005).
http://dx.doi.org/10.1115/1.1940661
63.
63. Z. G. Suo, X. H. Zhao, and W. H. Greene, “ A nonlinear field theory of deformable dielectrics,” J. Mech. Phys. Solids 56, 467486 (2008).
http://dx.doi.org/10.1016/j.jmps.2007.05.021
64.
64. A. Dorfmann and R. W. Ogden, “ Nonlinear electroelastic deformations,” J. Elasticity 82, 99127 (2006).
http://dx.doi.org/10.1007/s10659-005-9028-y
65.
65. R. W. Ogden, Nonlinear Elastic Deformations (Dover Publications, 1997).
66.
66. G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (Wiley, 2000).
67.
67. M. E. Gurtin, E. Fried, and L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge University Press, 2010).
68.
68. X. H. Zhao, W. Hong, and Z. G. Suo, “ Electromechanical hysteresis and coexistent states in dielectric elastomers,” Phys. Rev. B 76, 134113 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.134113
69.
69. X. H. Zhao and Z. G. Suo, “ Method to analyze electromechanical stability of dielectric elastomers,” Appl. Phys. Lett. 91, 061921 (2007).
http://dx.doi.org/10.1063/1.2768641
70.
70. A. Dorfmann and R. W. Ogden, “ Nonlinear electroelastostatics: Incremental equations and stability,” Int. J. Eng. Sci. 48, 114 (2010).
http://dx.doi.org/10.1016/j.ijengsci.2008.06.005
71.
71. Q. M. Wang, L. Zhang, and X. H. Zhao, “ Creasing to cratering instability in polymers under ultrahigh electric fields,” Phys. Rev. Lett. 106, 118301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.118301
72.
72. Q. M. Wang, Z. G. Suo, and X. H. Zhao, “ Bursting drops in solid dielectrics caused by high voltages,” Nat. Commun. 3, 1157 (2012).
http://dx.doi.org/10.1038/ncomms2178
73.
73. C. Keplinger, M. Kaltenbrunner, N. Arnold, and S. Bauer, “ Röntgen's electrode-free elastomer actuators without electromechanical pull-in instability,” Proc. Natl. Acad. Sci. U. S. A. 107, 45054510 (2010).
http://dx.doi.org/10.1073/pnas.0913461107
74.
74. T. Lu, C. Keplinger, N. Arnold, S. Bauer, and Z. Suo, “ Charge localization instability in a highly deformable dielectric elastomer,” Appl. Phys. Lett. 104, 022905 (2014).
http://dx.doi.org/10.1063/1.4862325
75.
75. B. Li, J. Zhou, and H. Chen, “ Electromechanical stability in charge-controlled dielectric elastomer actuation,” Appl. Phys. Lett. 99, 244101 (2011).
http://dx.doi.org/10.1063/1.3670048
76.
76. X. H. Zhao and Z. G. Suo, “ Method to analyze programmable deformation of dielectric elastomer layers,” Appl. Phys. Lett. 93, 251902 (2008).
http://dx.doi.org/10.1063/1.3054159
77.
77. M. Watanabe, H. Shirai, and T. Hirai, “ Wrinkled polypyrrole electrode for electroactive polymer actuators,” J. Appl. Phys. 92, 46314637 (2002).
http://dx.doi.org/10.1063/1.1505674
78.
78. S. Rosset and H. R. Shea, “ Flexible and stretchable electrodes for dielectric elastomer actuators,” Appl. Phys. A: Mater. Sci. Process. 110, 281307 (2013).
http://dx.doi.org/10.1007/s00339-012-7402-8
79.
79. M. R. Begley, H. Bart-Smith, O. N. Scott, M. H. Jones, and M. L. Reed, “ The electro-mechanical response of elastomer membranes coated with ultra-thin metal electrodes,” J. Mech. Phys. Solids 53, 25572578 (2005).
http://dx.doi.org/10.1016/j.jmps.2005.05.002
80.
80. W. Yuan et al., “ Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes,” Adv. Mater. 20, 621 (2008).
http://dx.doi.org/10.1002/adma.200701018
81.
81. D. J. Lipomi et al., “ Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes,” Nat. Nanotechnol. 6, 788792 (2011).
http://dx.doi.org/10.1038/nnano.2011.184
82.
82. Y. Zhu and F. Xu, “ Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy,” Adv. Mater. 24, 10731077 (2012).
http://dx.doi.org/10.1002/adma.201103382
83.
83. H. Stoyanov et al., “ Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes,” RSC Adv. 3, 22722278 (2013).
http://dx.doi.org/10.1039/c2ra22380e
84.
84. F. Xu and Y. Zhu, “ Highly conductive and stretchable silver nanowire conductors,” Adv. Mater. 24, 51175122 (2012).
http://dx.doi.org/10.1002/adma.201201886
85.
85. J. H. Wu, J. F. Zang, A. R. Rathmell, X. H. Zhao, and B. J. Wiley, “ Reversible sliding in networks of nanowires,” Nano Lett. 13, 23812386 (2013).
http://dx.doi.org/10.1021/nl4000739
86.
86. S. Yun et al., “ Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation,” Adv. Mater. 24, 13211327 (2012).
http://dx.doi.org/10.1002/adma.201104101
87.
87. S. Zhu et al., “ Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23, 23082314 (2013).
http://dx.doi.org/10.1002/adfm.201202405
88.
88. C. Keplinger et al., “ Stretchable, transparent, ionic conductors,” Science 341, 984987 (2013).
http://dx.doi.org/10.1126/science.1240228
89.
89. J. A. Rogers, “ A clear advance in soft actuators,” Science 341, 968969 (2013).
http://dx.doi.org/10.1126/science.1243314
90.
90. B. Chu et al., “ A dielectric polymer with high electric energy density and fast discharge speed,” Science 313, 334336 (2006).
http://dx.doi.org/10.1126/science.1127798
91.
91. J. S. Plante and S. Dubowsky, “ Large-scale failure modes of dielectric elastomer actuators,” Int. J. Solids Struct. 43, 77277751 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2006.03.026
92.
92. W. G. Lawson, “ Temperature dependence of intrinsic electric strength of polythene,” Nature 206, 1248 (1965).
http://dx.doi.org/10.1038/2061248a0
93.
93. J. Blok and D. G. LeGrand, “ Dielectric breakdown of polymer films,” J. Appl. Phys. 40, 288 (1969).
http://dx.doi.org/10.1063/1.1657045
94.
94. D. B. Watson, “ Dielectric breakdown in perspex,” IEEE Trans. Electr. Insul. EI-8, 7375 (1973).
http://dx.doi.org/10.1109/TEI.1973.299247
95.
95. M. Ieda, “ Dielectric-breakdown process of polymers,” IEEE Trans. Electr. Insul. EI-15, 206224 (1980).
http://dx.doi.org/10.1109/TEI.1980.298314
96.
96. N. Yoshimura, M. Nishida, and F. Noto, “ Dielectric-breakdown of polyethersulfone (PES) film under DC voltage conditions,” IEEE Trans. Electr. Insul. EI-17, 359362 (1982).
http://dx.doi.org/10.1109/TEI.1982.298509
97.
97. H. R. Zeller and W. R. Schneider, “ Electrofracture mechanics of dielectric aging,” J. Appl. Phys. 56, 455 (1984).
http://dx.doi.org/10.1063/1.333931
98.
98. P. Guerin et al., “ Pressure and temperature-dependence of the dielectric-breakdown of polyethylene used in submarine power-cables,” J. Appl. Phys. 57, 48054807 (1985).
http://dx.doi.org/10.1063/1.335346
99.
99. M. Hikita et al., “ High-field conduction and electrical breakdown of polyethylene at high-temperatures,” Jpn. J. Appl. Phys. Part 1 24, 988996 (1985).
http://dx.doi.org/10.1143/JJAP.24.988
100.
100. M. Farkh et al., “ Dielectric-breakdown of high-density polyethylene (HDPE) under high-pressure,” J. Phys. D: Appl. Phys. 22, 566568 (1989).
http://dx.doi.org/10.1088/0022-3727/22/4/019
101.
101. J. C. Fothergill, “ Filamentary electromechanical breakdown,” IEEE Trans. Electr. Insul. 26, 1124 (1991).
http://dx.doi.org/10.1109/14.108149
102.
102. N. Zebouchi, R. Essolbi, D. Malec, H. T. Giam, and B. Ai, “ Electrical breakdown of polyethylene terephthalate under hydrostatic-pressure,” J. Appl. Phys. 76, 82188220 (1994).
http://dx.doi.org/10.1063/1.357885
103.
103. A. Tröls et al., “ Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers,” Smart Mater. Struct. 22, 104012 (2013).
http://dx.doi.org/10.1088/0964-1726/22/10/104012
104.
104. C. Keplinger, M. Kaltenbrunner, N. Arnold, and S. Bauer, “ Capacitive extensometry for transient strain analysis of dielectric elastomer actuators,” Appl. Phys. Lett. 92, 192903 (2008).
http://dx.doi.org/10.1063/1.2929383
105.
105. J. Zhu, M. Kollosche, T. Lu, G. Kofod, and Z. Suo, “ Two types of transitions to wrinkles in dielectric elastomers,” Soft Matter 8, 88408846 (2012).
http://dx.doi.org/10.1039/c2sm26034d
106.
106. Y. Liu, L. Liu, Z. Zhang, L. Shi, and J. Leng, “ Comment on ‘method to analyze electromechanical stability of dielectric elastomers’ [Appl. Phys. Lett. 91, 061921 (2007)],” Appl. Phys. Lett. 93, 106101 (2008).
http://dx.doi.org/10.1063/1.2979236
107.
107. A. N. Norris, “ Comment on ‘Method to analyze electromechanical stability of dielectric elastomers’ [Appl. Phys. Lett. 91, 061921 (2007)],” Appl. Phys. Lett. 92, 026101 (2008).
http://dx.doi.org/10.1063/1.2833688
108.
108. M. Wissler and E. Mazza, “ Modeling and simulation of dielectric elastomer actuators,” Smart Mater. Struct. 14, 13961402 (2005).
http://dx.doi.org/10.1088/0964-1726/14/6/032
109.
109. M. Wissler and E. Mazza, “ Electromechanical coupling in dielectric elastomer actuators,” Sens. Actuators A: Phys. 138, 384393 (2007).
http://dx.doi.org/10.1016/j.sna.2007.05.029
110.
110. M. Wissler and E. Mazza, “ Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators,” Sens. Actuators A: Phys. 134, 494504 (2007).
http://dx.doi.org/10.1016/j.sna.2006.05.024
111.
111. N. Goulbourne, E. Mockensturm, and M. Frecker, “ A nonlinear model for dielectric elastomer membranes,” J. Appl. Mech. 72, 899 (2005).
http://dx.doi.org/10.1115/1.2047597
112.
112. N. C. Goulbourne, E. M. Mockensturm, and M. I. Frecker, “ Electro-elastomers: Large deformation analysis of silicone membranes,” Int. J. Solids Struct. 44, 26092626 (2007).
http://dx.doi.org/10.1016/j.ijsolstr.2006.08.015
113.
113. J. S. Leng, L. W. Liu, Y. J. Liu, K. Yu, and S. H. Sun, “ Electromechanical stability of dielectric elastomer,” Appl. Phys. Lett. 94, 211901 (2009).
http://dx.doi.org/10.1063/1.3138153
114.
114. B. Li et al., “ Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation,” J. Phys. D: Appl. Phys. 44, 155301 (2011).
http://dx.doi.org/10.1088/0022-3727/44/15/155301
115.
115. R. Diaz-Calleja, M. J. Sanchis, and E. Riande, “ Effect of an electric field on the bifurcation of a biaxially stretched incompressible slab rubber,” Eur. Phys. J. E 30, 417426 (2009).
http://dx.doi.org/10.1140/epje/i2009-10541-4
116.
116. X. H. Zhao, W. Hong, and Z. G. Suo, “ Stretching and polarizing a dielectric gel immersed in a solvent,” Int. J. Solids Struct. 45, 40214031 (2008).
http://dx.doi.org/10.1016/j.ijsolstr.2008.02.023
117.
117. E. Hohlfeld and L. Mahadevan, “ Unfolding the sulcus,” Phys. Rev. Lett. 106, 105702 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.105702
118.
118. Q. Wang and X. Zhao, “ Phase diagrams of instabilities in compressed film-substrate systems,” J. Appl. Mech. 81, 051004 (2014).
http://dx.doi.org/10.1115/1.4025828
119.
119. W. Hong, X. H. Zhao, and Z. G. Suo, “ Formation of creases on the surfaces of elastomers and gels,” Appl. Phys. Lett. 95, 111901 (2009).
http://dx.doi.org/10.1063/1.3211917
120.
120. V. Shenoy and A. Sharma, “ Pattern formation in a thin solid film with interactions,” Phys. Rev. Lett. 86, 119122 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.119
121.
121. R. Huang, “ Electrically induced surface instability of a conductive thin film on a dielectric substrate,” Appl. Phys. Lett. 87, 151911 (2005).
http://dx.doi.org/10.1063/1.2099526
122.
122. L. F. Pease and W. B. Russel, “ Linear stability analysis of thin leaky dielectric films subjected to electric fields,” J. Non-Newtonian Fluid Mech. 102, 233250 (2002).
http://dx.doi.org/10.1016/S0377-0257(01)00180-X
123.
123. Q. M. Wang and X. H. Zhao, “ Creasing-wrinkling transition in elastomer films under electric fields,” Phys. Rev. E 88, 042403 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.042403
124.
124. M. Biot, “ Surface instability of rubber in compression,” Appl. Sci. Res., Sect. A 12, 168182 (1963).
http://dx.doi.org/10.1007/BF03184638
125.
125. Y. P. Cao and J. W. Hutchinson, “ From wrinkles to creases in elastomers: The instability and imperfection-sensitivity of wrinkling,” Proc. R. Soc. A: Math. Phys. Eng. Sci. 468, 94115 (2012).
http://dx.doi.org/10.1098/rspa.2011.0384
126.
126. W. H. Wong, T. F. Guo, Y. W. Zhang, and L. Cheng, “ Surface instability maps for soft materials,” Soft Matter 6, 57435750 (2010).
http://dx.doi.org/10.1039/c0sm00351d
127.
127. H. S. Park, Q. M. Wang, X. H. Zhao, and P. A. Klein, “ Electromechanical instability on dielectric polymer surface: Modeling and experiment,” Comput. Methods Appl. Mech. Eng. 260, 4049 (2013).
http://dx.doi.org/10.1016/j.cma.2013.03.020
128.
128. H. S. Park and T. D. Nguyen, “ Viscoelastic effects on electromechanical instabilities in dielectric elastomers,” Soft Matter 9, 10311042 (2013).
http://dx.doi.org/10.1039/c2sm27375f
129.
129. G. Finis and A. Claudi, “ On the electric breakdown behavior of Silicone gel at interfaces,” IEEE Trans. Dielectr. Electr. Insul. 15, 366373 (2008).
http://dx.doi.org/10.1109/TDEI.2008.4483454
130.
130. J. A. Stratton, Electromagnetic Theory (Wiley-IEEE Press, 2007), Vol. 33.
131.
131. G. Taylor, “ Disintegration of water drops in electric field,” Proc. R. Soc. London, Ser. A 280, 383 (1964).
http://dx.doi.org/10.1098/rspa.1964.0151
132.
132. L. D. Landau et al., Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960), Vol. 364.
133.
133. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953).
134.
134. M. Rubinstein and R. H. Colby, Polymer Physics (Oxford University Press, 2003).
135.
135. L. R. G. Treloar, The Physics of Rubber Elasticity (Clarendon Press, 1975).
136.
136. M. C. Boyce and E. M. Arruda, “ Constitutive models of rubber elasticity: A review,” Rubber Chem. Technol. 73, 504 (2000).
http://dx.doi.org/10.5254/1.3547602
137.
137. S. J. A. Koh et al., “ Mechanisms of large actuation strain in dielectric elastomers,” J. Polym. Sci., Part B: Polym. Phys. 49, 504515 (2011).
http://dx.doi.org/10.1002/polb.22223
138.
138. Z. G. Suo and J. Zhu, “ Dielectric elastomers of interpenetrating networks,” Appl. Phys. Lett. 95, 232909 (2009).
http://dx.doi.org/10.1063/1.3272685
139.
139. S. M. Ha, W. Yuan, Q. B. Pei, R. Pelrine, and S. Stanford, “ Interpenetrating polymer networks for high-performance electroelastomer artificial muscles,” Adv. Mater. 18, 887891 (2006).
http://dx.doi.org/10.1002/adma.200502437
140.
140. R. Shankar, T. K. Ghosh, and R. J. Spontak, “ Electromechanical response of nanostructured polymer systems with no mechanical pre-strain,” Macromol. Rapid Commun. 28, 11421147 (2007).
http://dx.doi.org/10.1002/marc.200700033
141.
141. S. M. Ha, W. Yuan, Q. Pei, R. Pelrine, and S. Stanford, “ Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain,” Smart Mater. Struct. 16, S280S287 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/S12
142.
142. X. F. Niu et al., “ Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching,” J. Polym. Sci. Part B: Polym. Phys. 51, 197206 (2013).
http://dx.doi.org/10.1002/polb.23197
143.
143. Y. Jang, T. Hirai, T. Ueki, and T. Kato, “ Enhancement of the actuation performance of dielectric triblock copolymers modified with additives,” Polym. Int. 61, 228234 (2012).
http://dx.doi.org/10.1002/pi.3176
144.
144. G. Kofod, “ The static actuation of dielectric elastomer actuators: How does pre-stretch improve actuation?J. Phys. D: Appl. Phys. 41, 215405 (2008).
http://dx.doi.org/10.1088/0022-3727/41/21/215405
145.
145. M. Wissler and E. Mazza, “ Modeling of a pre-strained circular actuator made of dielectric elastomers,” Sens. Actuators A: Phys. 120, 184192 (2005).
http://dx.doi.org/10.1016/j.sna.2004.11.015
146.
146. Q. Pei, R. Pelrine, S. Stanford, R. Kornbluh, and M. Rosenthal, “ Electroelastomer rolls and their application for biomimetic walking robots,” Synth. Met. 135–136, 129131 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00535-0
147.
147. S. Rudykh, K. Bhattacharya, and G. deBotton, “ Snap-through actuation of thick-wall electroactive balloons,” Int. J. Non-Linear Mech. 47, 206209 (2012).
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.05.006
148.
148. J. Zhu, S. Cai, and Z. Suo, “ Nonlinear oscillation of a dielectric elastomer balloon,” Polym. Int. 59, 378383 (2010).
http://dx.doi.org/10.1002/pi.2767
149.
149. F. Carpi, C. Salaris, and D. De Rossi, “ Folded dielectric elastomer actuators,” Smart Mater. Struct. 16, S300S305 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/S15
150.
150. F. Carpi, A. Migliore, G. Serra, and D. De Rossi, “ Helical dielectric elastomer actuators,” Smart Mater. Struct. 14, 12101216 (2005).
http://dx.doi.org/10.1088/0964-1726/14/6/014
151.
151. T. H. He, X. H. Zhao, and Z. G. Suo, “ Dielectric elastomer membranes undergoing inhomogeneous deformation,” J. Appl. Phys. 106, 083522 (2009).
http://dx.doi.org/10.1063/1.3253322
152.
152. G. Berselli, R. Vertechy, G. Vassura, and V. Parenti-Castelli, “ Optimal synthesis of conically shaped dielectric elastomer linear actuators: Design methodology and experimental validation,” IEEE-ASME Trans. Mechatron. 16, 6779 (2011).
http://dx.doi.org/10.1109/TMECH.2010.2090664
153.
153. S. Arora, T. Ghosh, and J. Muth, “ Dielectric elastomer based prototype fiber actuators,” Sens. Actuators A: Phys. 136, 321328 (2007).
http://dx.doi.org/10.1016/j.sna.2006.10.044
154.
154. A. Wingert, M. D. Lichter, and S. Dubowsky, “ On the design of large degree-of-freedom digital mechatronic devices based on bistable dielectric elastomer actuators,” IEEE-ASME Trans. Mechatron. 11, 448456 (2006).
http://dx.doi.org/10.1109/TMECH.2006.878542
155.
155. J. Fothergil, L. Dissado, and P. Sweeney, “ A discharge-avalanche theory for the propagation of electrical tree: a physical basis for their voltage,” IEEE Trans. Dielectr. Electr. Insul. 1, 474486 (1994).
http://dx.doi.org/10.1109/94.300291
156.
156. C. Mayoux, “ Degradation of insulating materials under electrical stress,” IEEE Trans. Dielectr. Electr. Insul. 7, 590601 (2000).
http://dx.doi.org/10.1109/TDEI.2000.879355
157.
157. M. Kollosche and G. Kofod, “ Electrical failure in blends of chemically identical, soft thermoplastic elastomers with different elastic stiffness,” Appl. Phys. Lett. 96, 071904 (2010).
http://dx.doi.org/10.1063/1.3319513
158.
158. R. Huang and Z. G. Suo, “ Electromechanical phase transition in dielectric elastomers,” Proc. R. Soc. A: Math. Phys. Eng. Sci. 468, 10141040 (2012).
http://dx.doi.org/10.1098/rspa.2011.0452
159.
159. T. Li et al., “ Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability,” J. Mech. Phys. Solids 61, 611628 (2013).
http://dx.doi.org/10.1016/j.jmps.2012.09.006
160.
160. T. L. Sun et al., “ Reversible switching between superhydrophilicity and superhydrophobicity,” Angew. Chem., Int. Ed. 43, 357360 (2004).
http://dx.doi.org/10.1002/anie.200352565
161.
161. H. J. Gao and H. M. Yao, “ Shape insensitive optimal adhesion of nanoscale fibrillar structures,” Proc. Natl. Acad. Sci. U. S. A. 101, 78517856 (2004).
http://dx.doi.org/10.1073/pnas.0400757101
162.
162. E. P. Chan, E. J. Smith, R. C. Hayward, and A. J. Crosby, “ Surface wrinkles for smart adhesion,” Adv. Mater. 20, 711716 (2008).
http://dx.doi.org/10.1002/adma.200701530
163.
163. J. L. Wilbur et al., “ Elastomeric optics,” Chem. Mater. 8, 13801385 (1996).
http://dx.doi.org/10.1021/cm950579d
164.
164. X. H. Zhao et al., “ Active scaffolds for on-demand drug and cell delivery,” Proc. Natl. Acad. Sci. U. S. A. 108, 6772 (2011).
http://dx.doi.org/10.1073/pnas.1007862108
165.
165. L. K. Ista, S. Mendez, and G. P. Lopez, “ Attachment and detachment of bacteria on surfaces with tunable and switchable wettability,” Biofouling 26, 111118 (2010).
http://dx.doi.org/10.1080/08927010903383455
166.
166. M. A. Meitl et al., “ Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nature Mater. 5, 3338 (2006).
http://dx.doi.org/10.1038/nmat1532
167.
167. L. Hall-Stoodley, J. W. Costerton, and P. Stoodley, “ Bacterial biofilms: From the natural environment to infectious diseases,” Nat. Rev. Microbiol. 2, 95108 (2004).
http://dx.doi.org/10.1038/nrmicro821
168.
168. D. M. Yebra, S. Kiil, and K. Dam-Johansen, “ Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings,” Prog. Org. Coat. 50, 75104 (2004).
http://dx.doi.org/10.1016/j.porgcoat.2003.06.001
169.
169. J. A. Callow and M. E. Callow, “ Trends in the development of environmentally friendly fouling-resistant marine coatings,” Nat. Commun. 2, 244 (2011).
http://dx.doi.org/10.1038/ncomms1251
170.
170. E. Ralston and G. Swain, “ Bioinspiration—The solution for biofouling control?Bioinspiration Biomimetics 4, 015007 (2009).
http://dx.doi.org/10.1088/1748-3182/4/1/015007
171.
171. A. Wanner, “ Clinical aspects of mucociliary transport,” Am. Rev. Respir. Dis. 116, 73125 (1977).
172.
172. H. Matsui et al., “ Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease,” Cell 95, 10051015 (1998).
http://dx.doi.org/10.1016/S0092-8674(00)81724-9
173.
173. T. Sanchez, D. Welch, D. Nicastro, and Z. Dogic, “ Cilia-like beating of active microtubule bundles,” Science 333, 456459 (2011).
http://dx.doi.org/10.1126/science.1203963
174.
174. M. Wahl, K. Kroger, and M. Lenz, “ Non-toxic protection against epibiosis,” Biofouling 12, 205226 (1998).
http://dx.doi.org/10.1080/08927019809378355
175.
175. S. Bauer et al., “ 25th Anniversary article: A soft future from robots and sensor skin to energy harvesters,” Adv. Mater. 26, 149162 (2014).
http://dx.doi.org/10.1002/adma.201303349
176.
176. N. Lu and D.-H. Kim, “ Flexible and stretchable electronics paving the way for soft robotics,” Soft Rob. 1, 5362 (2014).
http://dx.doi.org/10.1089/soro.2013.0005
177.
177. J. A. Rogers, T. Someya, and Y. Huang, “ Materials and mechanics for stretchable electronics,” Science 327, 16031607 (2010).
http://dx.doi.org/10.1126/science.1182383
178.
178. J. D. Madden, “ Mobile robots: Motor challenges and materials solutions,” Science 318, 10941097 (2007).
http://dx.doi.org/10.1126/science.1146351
179.
179. Z. G. Suo, in Mechanics of Stretchable Electronics and Soft Machines, edited by S. Wagner and S. Bauer (Mater. Res. Sci. Bull., 2012), Vol. 37, pp. 218225.
180.
180. T. Yamwong, A. M. Voice, and G. R. Davies, “ Electrostrictive response of an ideal polar rubber,” J. Appl. Phys. 91, 14721476 (2002).
http://dx.doi.org/10.1063/1.1428090
181.
181. G. Kofod, P. Sommer-Larsen, R. Kornbluh, and R. Pelrine, “ Actuation response of polyacrylate dielectric elastomers,” J. Intell. Mater. Syst. Struct. 14, 787793 (2003).
http://dx.doi.org/10.1177/104538903039260
182.
182. L. W. Liu, Y. J. Liu, X. J. Luo, B. Li, and J. S. Leng, “ Electromechanical instability and snap-through instability of dielectric elastomers undergoing polarization saturation,” Mech. Mater. 55, 6072 (2012).
http://dx.doi.org/10.1016/j.mechmat.2012.07.009
183.
183. Y. M. Shkel and D. Klingenberg, “ Material parameters for electrostriction,” J. Appl. Phys. 80, 45664572 (1996).
http://dx.doi.org/10.1063/1.363439
184.
184. X. H. Zhao and Z. G. Suo, “ Electrostriction in elastic dielectrics undergoing large deformation,” J. Appl. Phys. 104, 123530 (2008).
http://dx.doi.org/10.1063/1.3031483
185.
185. S. M. A. Jimenez and R. M. McMeeking, “ Deformation dependent dielectric permittivity and its effect on actuator performance and stability,” Int. J. Non-Linear Mech. 57, 183191 (2013).
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.08.001
186.
186. W. Ma and L. E. Cross, “ An experimental investigation of electromechanical response in a dielectric acrylic elastomer,” Appl. Phys. A: Mater. Sci. Process. 78, 12011204 (2004).
http://dx.doi.org/10.1007/s00339-003-2197-2
187.
187. B. Li, L. Liu, and Z. Suo, “ Extension limit, polarization saturation, and snap-through instability of dielectric elastomers,” Int. J. Smart Nano Mater. 2, 5967 (2011).
http://dx.doi.org/10.1080/19475411.2011.567306
188.
188. B. Li, H. L. Chen, J. X. Zhou, Z. C. Zhu, and Y. Q. Wang, “ Polarization-modified instability and actuation transition of deformable dielectric,” EPL 95, 37006 (2011).
http://dx.doi.org/10.1209/0295-5075/95/37006
189.
189. C. C. Foo, S. Cai, S. J. A. Koh, S. Bauer, and Z. Suo, “ Model of dissipative dielectric elastomers,” J. Appl. Phys. 111, 034102 (2012).
http://dx.doi.org/10.1063/1.3680878
190.
190. J.-S. Plante and S. Dubowsky, “ On the performance mechanisms of dielectric elastomer actuators,” Sens. Actuators A: Phys. 137, 96109 (2007).
http://dx.doi.org/10.1016/j.sna.2007.01.017
191.
191. W. Hong, “ Modeling viscoelastic dielectrics,” J. Mech. Phys. Solids 59, 637650 (2011).
http://dx.doi.org/10.1016/j.jmps.2010.12.003
192.
192. Y. Bai, Y. Jiang, B. Chen, C. C. Foo, Y. Zhou, F. Xiang, J. Zhou, H. Wang, and Z. Suo, “ Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes,” Appl. Phys. Lett. 104, 062902 (2014).
http://dx.doi.org/10.1063/1.4865200
193.
193. X. H. Zhao, S. J. A. Koh, and Z. G. Suo, “ Nonequilibrium thermodynamics of dielectric elastomers,” Int. J. Appl. Mech. 3, 203217 (2011).
http://dx.doi.org/10.1142/S1758825111000944
194.
194. H. Wang, M. Lei, and S. Cai, “ Viscoelastic deformation of a dielectric elastomer membrane subject to electromechanical loads,” J. Appl. Phys. 113, 213508 (2013).
http://dx.doi.org/10.1063/1.4807911
195.
195. P. Lochmatter, G. Kovacs, and M. Wissler, “ Characterization of dielectric elastomer actuators based on a visco-hyperelastic film model,” Smart Mater. Struct. 16, 477486 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/028
196.
196. T. F. Li, S. X. Qu, and W. Yang, “ Energy harvesting of dielectric elastomer generators concerning inhomogeneous fields and viscoelastic deformation,” J. Appl. Phys. 112, 034119 (2012).
http://dx.doi.org/10.1063/1.4745049
197.
197. H. Gao, T.-Y. Zhang, and P. Tong, “ Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic,” J. Mech. Phys. Solids 45, 491510 (1997).
http://dx.doi.org/10.1016/S0022-5096(96)00108-1
198.
198. X. H. Zhao, “ A theory for large deformation and damage of interpenetrating polymer networks,” J. Mech. Phys. Solids 60, 319332 (2012).
http://dx.doi.org/10.1016/j.jmps.2011.10.005
199.
199. Q. Liu, D. Guyomar, L. Seveyrat, and B. Guiffard, “ A study on a polyurethane-based blend with enhanced electromechanical properties,” J. Optoelectron. Adv. Mater. 15, 475480 (2013).
200.
200. G. Gallone, F. Galantini, and F. Carpi, “ Perspectives for new dielectric elastomers with improved electromechanical actuation performance: Composites versus blends,” Polym. Int. 59, 400406 (2010).
http://dx.doi.org/10.1002/pi.2765
201.
201. C. Huang, Q. M. Zhang, and J. Su, “ High-dielectric-constant all-polymer percolative composites,” Appl. Phys. Lett. 82, 35023504 (2003).
http://dx.doi.org/10.1063/1.1575505
202.
202. F. Carpi, G. Gallone, F. Galantini, and D. De Rossi, “ Silicone-poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties,” Adv. Funct. Mater. 18, 235241 (2008).
http://dx.doi.org/10.1002/adfm.200700757
203.
203. B. Kussmaul et al., “ Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: Molecular grafting of organic dipoles to the macromolecular network,” Adv. Funct. Mater. 21, 45894594 (2011).
http://dx.doi.org/10.1002/adfm.201100884
204.
204. Y. G. Wu, X. H. Zhao, F. Li, and Z. G. Fan, “ Evaluation of mixing rules for dielectric constants of composite dielectrics by MC-FEM calculation on 3D cubic lattice,” J. Electroceram. 11, 227239 (2003).
http://dx.doi.org/10.1023/B:JECR.0000026377.48598.4d
205.
205. X. H. Zhao, Y. G. Wu, Z. G. Fan, and F. Li, “ Three-dimensional simulations of the complex dielectric properties of random composites by finite element method,” J. Appl. Phys. 95, 81108117 (2004).
http://dx.doi.org/10.1063/1.1712017
206.
206. F. Carpi and D. De Rossi, “ Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder,” IEEE Trans. Dielectr. Electr. Insul. 12, 835843 (2005).
http://dx.doi.org/10.1109/TDEI.2005.1511110
207.
207. G. Gallone, F. Carpi, D. De Rossi, G. Levita, and A. Marchetti, “ Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-lead titanate,” Mater. Sci. Eng. C: Biomimetic Supramol. Syst. 27, 110116 (2007).
http://dx.doi.org/10.1016/j.msec.2006.03.003
208.
208. O. Lopez-Pamies, “ Elastic dielectric composites: Theory and application to particle-filled ideal dielectrics,” J. Mech. Phys. Solids 64, 61 (2014).
http://dx.doi.org/10.1016/j.jmps.2013.10.016
209.
209. P. P. Castaneda and M. N. Siboni, “ A finite-strain constitutive theory for electro-active polymer composites via homogenization,” Int. J. Non-Linear Mech. 47, 293306 (2012).
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.06.012
210.
210. M. Molberg et al., “ High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler,” Adv. Funct. Mater. 20, 32803291 (2010).
http://dx.doi.org/10.1002/adfm.201000486
211.
211. H. Stoyanov, M. Kollosche, S. Risse, D. N. McCarthy, and G. Kofod, “ Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control,” Soft Matter 7, 194202 (2011).
http://dx.doi.org/10.1039/c0sm00715c
212.
212. D. M. Opris et al., “ New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil,” Adv. Funct. Mater. 21, 35313539 (2011).
http://dx.doi.org/10.1002/adfm.201101039
213.
213. D. N. McCarthy et al., “ Increased permittivity nanocomposite dielectrics by controlled interfacial interactions,” Compos. Sci. Technol. 72, 731736 (2012).
http://dx.doi.org/10.1016/j.compscitech.2012.01.026
214.
214. W. Y. Li and C. M. Landis, “ Deformation and instabilities in dielectric elastomer composites,” Smart Mater. Struct. 21, 094006 (2012).
http://dx.doi.org/10.1088/0964-1726/21/9/094006
215.
215. K. Bertoldi and M. Gei, “ Instabilities in multilayered soft dielectrics,” J. Mech. Phys. Solids 59, 1842 (2011).
http://dx.doi.org/10.1016/j.jmps.2010.10.001
216.
216. M. Gei, R. Springhetti, and E. Bortot, “ Performance of soft dielectric laminated composites,” Smart Mater. Struct. 22, 104014 (2013).
http://dx.doi.org/10.1088/0964-1726/22/10/104014
217.
217. C. Y. Cao and X. H. Zhao, “ Tunable stiffness of electrorheological elastomers by designing mesostructures,” Appl. Phys. Lett. 103, 041901 (2013).
http://dx.doi.org/10.1063/1.4816287
218.
218. S. Rudykh, A. Lewinstein, G. Uner, and G. deBotton, “ Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics,” Appl. Phys. Lett. 102, 151905 (2013).
http://dx.doi.org/10.1063/1.4801775
219.
219. L. Tian, L. Tevet-Deree, G. deBotton, and K. Bhattacharya, “ Dielectric elastomer composites,” J. Mech. Phys. Solids 60, 181198 (2012).
http://dx.doi.org/10.1016/j.jmps.2011.08.005
220.
220. G. Shmuel and G. deBotton, “ Band-gaps in electrostatically controlled dielectric laminates subjected to incremental shear motions,” J. Mech. Phys. Solids 60, 19701981 (2012).
http://dx.doi.org/10.1016/j.jmps.2012.05.006
221.
221. S. A. Spinelli and O. Lopez-Pamies, “ Some simple explicit results for the elastic dielectric properties and stability of layered composites,” Int. J. Eng. Sci. (published online).
http://dx.doi.org/10.1016/j.ijengsci.2014.01.005
222.
222. T. Lu et al., “ Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers,” Soft Matter 8, 61676173 (2012).
http://dx.doi.org/10.1039/c2sm25692d
223.
223. G. Shmuel, “ Electrostatically tunable band gaps in finitely extensible dielectric elastomer fiber composites,” Int. J. Solids Struct. 50, 680686 (2013).
http://dx.doi.org/10.1016/j.ijsolstr.2012.10.028
224.
224. J. Huang, T. Lu, J. Zhu, D. R. Clarke, and Z. Suo, “ Large, uni-directional actuation in dielectric elastomers achieved by fiber stiffening,” Appl. Phys. Lett. 100, 041911 (2012).
http://dx.doi.org/10.1063/1.3680591
225.
225. B. O'Brien, T. McKay, E. Calius, S. Xie, and I. Anderson, “ Finite element modelling of dielectric elastomer minimum energy structures,” Appl. Phys. A: Mater. Sci. Process. 94, 507514 (2009).
http://dx.doi.org/10.1007/s00339-008-4946-8
226.
226. J. X. Zhou, W. Hong, X. H. Zhao, Z. Q. Zhang, and Z. G. Suo, “ Propagation of instability in dielectric elastomers,” Int. J. Solids Struct. 45, 37393750 (2008).
http://dx.doi.org/10.1016/j.ijsolstr.2007.09.031
227.
227. D. K. Vu, P. Steinmann, and G. Possart, “ Numerical modelling of non-linear electroelasticity,” Int. J. Numer. Methods Eng. 70, 685704 (2007).
http://dx.doi.org/10.1002/nme.1902
228.
228. D. L. Henann, S. A. Chester, and K. Bertoldi, “ Modeling of dielectric elastomers: Design of actuators and energy harvesting devices,” J. Mech. and Phys. Solids 61, 20472066 (2013).
http://dx.doi.org/10.1016/j.jmps.2013.05.003
229.
229. R. M. McMeeking, C. M. Landis, and S. M. A. Jimenez, “ A principle of virtual work for combined electrostatic and mechanical loading of materials,” Int. J. Non-Linear Mech. 42, 831838 (2007).
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.03.008
230.
230. S. X. Qu and Z. G. Suo, “ A finite element method for dielectric elastomer transducers,” Acta Mech. Solida Sin. 25, 459466 (2012).
http://dx.doi.org/10.1016/S0894-9166(12)60040-8
231.
231. K. A. Khan, H. Wafai, and T. El Sayed, “ A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer,” Comput. Mech. 52, 345360 (2013).
http://dx.doi.org/10.1007/s00466-012-0815-6
232.
232. J. W. Fox and N. C. Goulbourne, “ On the dynamic electromechanical loading of dielectric elastomer membranes,” J. Mech. Phys. Solids 56, 26692686 (2008).
http://dx.doi.org/10.1016/j.jmps.2008.03.007
233.
233. J. A. Zhu, S. Q. Cai, and Z. G. Suo, “ Resonant behavior of a membrane of a dielectric elastomer,” Int. J. Solids Struct. 47, 32543262 (2010).
http://dx.doi.org/10.1016/j.ijsolstr.2010.08.008
234.
234. J. W. Fox and N. C. Goulbourne, “ Electric field-induced surface transformations and experimental dynamic characteristics of dielectric elastomer membranes,” J. Mech. Phys. Solids 57, 14171435 (2009).
http://dx.doi.org/10.1016/j.jmps.2009.03.008
235.
235. P. B. Goncalves, R. M. Soares, and D. Pamplona, “ Nonlinear vibrations of a radially stretched circular hyperelastic membrane,” J. Sound Vib. 327, 231248 (2009).
http://dx.doi.org/10.1016/j.jsv.2009.06.023
236.
236. H. S. Park, Z. G. Suo, J. X. Zhou, and P. A. Klein, “ A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers,” Int. J. Solids Struct. 49, 21872194 (2012).
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.031
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4871696
Loading
/content/aip/journal/apr2/1/2/10.1063/1.4871696
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/2/10.1063/1.4871696
2014-05-06
2015-07-28

Abstract

Widely used as insulators, capacitors, and transducers in daily life, soft dielectrics based on polymers and polymeric gels play important roles in modern electrified society. Owning to their mechanical compliance, soft dielectrics subject to voltages frequently undergo large deformation and mechanical instabilities. The deformation and instabilities can lead to detrimental failures in some applications of soft dielectrics such as polymer capacitors and insulating gels but can also be rationally harnessed to enable novel functions such as artificial muscle, dynamic surface patterning, and energy harvesting. According to mechanical constraints on soft dielectrics, we classify their deformation and instabilities into three generic modes: (i) thinning and pull-in, (ii) electro-creasing to cratering, and (iii) electro-cavitation. We then provide a systematic understanding of different modes of deformation and instabilities of soft dielectrics by integrating state-of-the-art experimental methods and observations, theoretical models, and applications. Based on the understanding, a systematic set of strategies to prevent or harness the deformation and instabilities of soft dielectrics for diverse applications are discussed. The review is concluded with perspectives on future directions of research in this rapidly evolving field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/2/1.4871696.html;jsessionid=43l3co6g3q52o.x-aip-live-06?itemId=/content/aip/journal/apr2/1/2/10.1063/1.4871696&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4871696
10.1063/1.4871696
SEARCH_EXPAND_ITEM