1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Dynamics of spin charge carriers in polyaniline
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/2/10.1063/1.4873329
1.
1. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini, and M. H. Whangboo, Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties, and Theory (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992), p. 400.
2.
2. J. D. Wright, Molecular Crystals, 2 ed. (Cambridge University Press, Cambridge, New York, Melbourne, 1995), p. 236.
3.
3. Handbook of Organic Conductive Molecules and Polymers, edited by H. S. Nalwa (John Wiley & Sons, Chichester, New York, 1997), p. 3334.
4.
4. S. Roth and D. Carroll, One-Dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes, 2 ed (Wiley-VCH, Weinheim, 2004), 264 p.
5.
5. Z. V. Todres, Ion-Radical Organic Chemistry: Principles and Applications, 2 ed. (CRC Press, Boca Raton, 2008), p. 496.
6.
6. Fullerenes: Chemistry, Physics, and Technology, edited by K. M. Kadish and R. S. Ruoff (Wiley-Interscience, New York, 2000), 978 p.
7.
7. Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H. Nalwa (Academic Press, Maryland Heights, 2001), 3366 p.
8.
8. Fullerene-Based Materials: Structures and Properties, edited by K. Prassides (Springer, 2004), p. 285.
9.
9. A. B. Sorokin, “ Phthalocyanine metal complexes in catalysis,” Chem. Rev. 113(10), 81528191 (2013).
http://dx.doi.org/10.1021/cr4000072
10.
10. Dye-Sensitized Solar Cells, edited by K. Kalyanasundaram (EFPL Press, 2010), p. 320.
11.
11. Metal Filled Polymers, edited by S. K. Bhattacharya (CRC Press, Boca Raton, 1986), p. 376.
12.
12. Metal-Filled Polymers—Properties and Applications, edited by S. K. Bhattacharya (Marcel Dekker, New York, 1986), p. 360.
13.
13. Physical Properties of Polymers Handbook, 2 ed., edited by J. E. Mark (Springer, New York, 2007), p. 1076.
14.
14. L. M. Veca, W. Wang, Y. Lin, M. J. Meziani, L. Tian, J. W. Connel, S. Ghose, C. Y. Kong, and Y.-P. Sun, “ Thermal conductive materials based on carbon nanotubes and graphene nanosheets,” in Handbook of Carbon Nano Materials, edited by F. D'Souza and K. M. Kadish (World Scientific Publishing, Singapore, 2011), Vol. 2, p. 972.
15.
15. J. Ma, Q. Meng, I. Zaman, S. Zhu, A. Michelmore, N. Kawashima, C. H. Wang, and H.-C. Kuan, “Development of polymer composites using modified, high-structural integrity graphene platelets,” Compos. Sci. Technol. 31, 8290 (2014).
http://dx.doi.org/10.1016/j.compscitech.2013.11.017
16.
16. Fullerene Polymers and Fullerene Polymer Composites, edited by P. C. Eklund and A. M. Rao (Springer, 2000), p. 395.
17.
17. Z. Pan, H. Gu, M.-T. Wu, Y. Li, and Y. Chen, “Graphene-based functional materials for organic solar cells,” Optical Materials Express 2(6), 816824 (2012).
18.
18. C. Zhang and T. X. Liu, “ A review on hybridization modification of graphene and its polymer nanocomposites,” Chin. Sci. Bull. 57(23), 30103021 (2012).
http://dx.doi.org/10.1007/s11434-012-5321-x
19.
19. Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials, edited by J. L. Brédas and R. Silbey (Kluwer Academic, Dordrecht, 1991), p. 624.
20.
20. Intrinsically Conducting Polymers: An Emerging Technology, edited by M. Aldissi (Kluwer Academic, Dordrecht, London, 1992), p. 223.
21.
21. R. Menon, “ Charge transport in conducting polymers,” in Handbook of Organic Conductive Molecules and Polymers, edited by H. S. Nalwa (John Wiley & Sons, Chichester, 1997), Vol. 4, pp. 47145.
22.
22. Handbook of Conducting Polymers, edited by T. Skotheim, R. Elsenbaumer, and J. Reynolds (Marcel Dekker, Inc., New York, 1998), p. 1105.
23.
23. Conducting Polymers, Fundamentals and Applications: A Practical Approach, edited by P. Chandrasekhar (Kluwer Academic Publishers, Boston, Massachusetts, 1999), p. 718.
24.
24. Semiconducting Polymers: Chemistry, Physics and Engineering, 2 ed., edited by G. Hadziioannou and P. F. van Hutten (Wiley, Weinheim, 2000), p. 768.
25.
25. Handbook of Polymers in Electronics, edited by B. D. Malhotra (Rapra Technology Ltd., Shawbury, UK, 2002), p. 488.
26.
26. Conjugated Polymers: Processing and Applications, edited by T. A. Skotheim and J. Reynolds (CRC Press, Boca Raton, 2006), p. 656.
27.
27. Handbook of Conducting Polymers, edited by T. E. Scotheim and J. R. Reynolds (CRC Press, Boca Raton, 2007), p. 1680.
28.
28. M. X. Wan, Conducting Polymers with Micro or Nanometer Structure (Springer, Berlin, Heidelberg, New York, 2008), p. 170.
29.
29. A. J. Heeger, N. S. Sariciftci, and E. B. Namdas, Semiconducting and Metallic Polymers (Oxford Univertsity Press, London, 2010), p. 288.
30.
30. G. Inzelt, Conducting Polymers: A New Era in Electrochemistry, 2 ed. (Springer, 2012), p. 309.
31.
31. J.-P. Launay and M. Verdaguer, Electrons in Molecules: From Basic Principles to Molecular Electronics (Oxford University Press, Oxford, New York, 2013), p. 512.
32.
32. W. A. Little, “ Possibility of synthesizing an organic superconductor,” Phys. Rev. 134(6A), 14161424 (1964).
http://dx.doi.org/10.1103/PhysRev.134.A1416
33.
33. V. Saxena and B. D. Malhotra, “ Prospects of conducting polymers in molecular electronics,” Curr. Appl. Phys. 3(2–3), 293305 (2003).
http://dx.doi.org/10.1016/S1567-1739(02)00217-1
34.
34. S. Bhadra, Polyaniline: Preparation, Properties, Processing and Applications (Lap Lambert Academic Publishing, 2010), p. 92.
35.
35. Handbook of Nanoscale Optics and Electronics, edited by G. P. Wiederrecht (Elsevier Academic Press, 2010), p. 401.
36.
36. A. A. Syed and M. K. Dinesan, “ Polyaniline—A nowel polymeric material (Review),” Talanta 38(8), 815 (1991).
http://dx.doi.org/10.1016/0039-9140(91)80261-W
37.
37. S. Bhadra, S. Chattopadhyay, N. K. Singha, and D. Khastgir, “ Improvement of conductivity of electrochemically synthesized polyaniline,” J. Appl. Polym. Sci. 108(1), 5764 (2008).
http://dx.doi.org/10.1002/app.26926
38.
38. M. E. Jozefowicz, R. Laversanne, H. H. S. Javadi, A. J. Epstein, J. P. Pouget, X. Tang, and A. G. MacDiarmid, “ Multiple lattice phases and polaron-lattice spinless-defect competition in polyaniline,” Phys. Rev. B 39(17), 1295812961 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.12958
39.
39. S. Stafstrom, J. L. Brédas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang, and A. G. MacDiarmid, “ Polaron lattice in highly conducting polyaniline: Theoretical and optical studies,” Phys. Rev. Lett. 59(13), 14641467 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.1464
40.
40. R. P. McCall, J. M. Ginder, M. G. Roe, G. E. Asturias, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, “ Massive polarons on large-energy gap polymers,” Phys. Rev. B 39(14), 1017410178 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.10174
41.
41. P. Vignolo, R. Farchioni, and G. Grosso, “ Tight-binding effective Hamiltonians for the electronic states of polyaniline chains,” Phys. Status Solidi B 223(3), 853866 (2001).
http://dx.doi.org/10.1002/1521-3951(200102)223:3<853::AID-PSSB853>3.0.CO;2-C
42.
42. A. J. Epstein, A. G. MacDiarmid, and J. P. Pouget, “ Spin dynamics and conductivity in polyaniline,” Phys. Rev. Lett. 65(5), 664664 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.664
43.
43. J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, “ X-Ray structure of polyaniline,” Macromolecules 24(3), 779789 (1991).
http://dx.doi.org/10.1021/ma00003a022
44.
44. D. C. Trivedi, “ Polyanilines,” in Handbook of Organic Conductive Molecules and Polymers, edited by H. S. Nalwa (John Wiley, Chichester, 1997), Vol. 2, pp. 505572.
45.
45. J. M. Ginder, A. F. Richter, A. G. MacDiarmid, and A. J. Epstein, “ Insulator-to-metal transition in polyaniline,” Solid State Commun. 63(2), 97101 (1987).
http://dx.doi.org/10.1016/0038-1098(87)91173-2
46.
46. A. J. Epstein and A. G. MacDiarmid, “ Polaron and bipolaron defects in polymers: Polyaniline,” J. Mol. Electron. 4(3), 161165 (1988).
47.
47. L. M. Dai, J. P. Lu, B. Matthews, and A. W. H. Mau, “ Doping of conducting polymers by sulfonated fullerene derivatives and dendrimers,” J. Phys. Chem. B 102(21), 40494053 (1998).
http://dx.doi.org/10.1021/jp980410y
48.
48. A. V. Saprigin, K. R. Brenneman, W. P. Lee, S. M. Long, R. S. Kohlman, and A. J. Epstein, “ Li+ doping-induced localization in polyaniline,” Synth. Met. 100(1), 5559 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)00173-8
49.
49. K. Lee, A. J. Heeger, and Y. Cao, “ Reflectance spectra of polyaniline,” Synth. Met. 72(1), 2534 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02307-K
50.
50. C. Y. Yang, P. Smith, A. J. Heeger, Y. Cao, and J. E. Osterholm, “Electron-diffraction studies of the structure of polyaniline dodecylbenzenesulfonate,” Polymer 35(6), 11421147 (1994).
http://dx.doi.org/10.1016/0032-3861(94)90004-3
51.
51. B. Wessling, D. Srinivasan, G. Rangarajan, T. Mietzner, and W. Lennartz, “ Dispersion-induced insulator-to-metal transition in polyaniline,” Eur. Phys. J. E: Soft Matter Biol. Phys. 2(3), 207210 (2000).
http://dx.doi.org/10.1007/PL00013668
52.
52. M. Reghu, Y. Cao, D. Moses, and A. J. Heeger, “ Counterion-Induced processibility of polyaniline: Transport of the metal-insulator boundary,” Phys. Rev. B 47(4), 17581764 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1758
53.
53. C. O. Yoon, M. Reghu, D. Moses, A. J. Heeger, and Y. Cao, “ Counterion-induced processibility of polyaniline: Thermoelectric power,” Phys. Rev. B 48(19), 1408014084 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.14080
54.
54. K. H. Lee, A. J. Heeger, and Y. Cao, “ Reflectance of polyaniline protonated with camphor sulfonic acid: Disordered metal on the metal-insulator boundary,” Phys. Rev. B 48(20), 1488414891 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.14884
55.
55. K. Lee, A. J. Heeger, and Y. Cao, “ Reflectance of conducting polyaniline near the metal-insulator-transition,” Synth. Met. 69(1–3), 261262 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02441-Z
56.
56. K. Lee and A. J. Heeger, “ Optical reflectance studies of conducting polymers on the metal-insulator boundary,” Synth. Met. 84(1–3), 715718 (1997).
http://dx.doi.org/10.1016/S0379-6779(96)04116-1
57.
57. E. R. Holland, S. J. Pomfret, P. N. Adams, and A. P. Monkman, “ Conductivity studies of polyaniline doped with CSA,” J. Phys.: Condens. Matter 8(17), 29913002 (1996).
http://dx.doi.org/10.1088/0953-8984/8/17/011
58.
58. L. Abell, P. N. Adams, and A. P. Monkman, “ Electrical conductivity enhancement of predoped polyaniline by stretch orientation,” Polymer 37(26), 59275931 (1996).
http://dx.doi.org/10.1016/S0032-3861(96)00580-0
59.
59. L. Abell, S. J. Pomfret, P. N. Adams, A. C. Middleton, and A. P. Monkman, “ Studies of stretched predoped polyaniline films,” Synth. Met. 84(1–3), 803804 (1997).
http://dx.doi.org/10.1016/S0379-6779(96)04154-9
60.
60. Z. H. Wang, C. Li, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, “ 3 Dimensionality of metallic states in conducting polymers: Polyaniline,” Phys. Rev. Lett. 66(13), 17451748 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1745
61.
61. Z. H. Wang, A. Ray, A. G. MacDiarmid, and A. J. Epstein, “ Electron localization and charge transport in poly(o-toluidine): A model polyaniline derivative,” Phys. Rev. B 43(5), 43734384 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.4373
62.
62. A. P. Monkman and P. Adams, “ Observed anisotropies in stretch oriented polyaniline,” Synth. Met. 41(1–2), 627633 (1991).
http://dx.doi.org/10.1016/0379-6779(91)91146-2
63.
63. Z. H. Wang, E. M. Scherr, A. G. MacDiarmid, and A. J. Epstein, “ Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with 3-dimensional metallic states,” Phys. Rev. B 45(8), 41904202 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.4190
64.
64. M. Reghu, Y. Cao, D. Moses, and A. J. Heeger, “ Metal-insulator-transition in polyaniline doped with surfactant counterion,” Synth. Met. 57(2–3), 50205025 (1993).
http://dx.doi.org/10.1016/0379-6779(93)90856-R
65.
65. P. N. Adams, P. J. Laughlin, A. P. Monkman, and N. Bernhoeft, “ A further step toward stable organic metals. Oriented films of polyaniline with high elrctrical-conductivity and anisotropy,” Solid State Commun. 91(11), 875878 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90005-1
66.
66. J. Joo, Y. C. Chung, H. G. Song, J. S. Baeck, W. P. Lee, A. J. Epstein, A. G. MacDiarmid, and S. K. Jeong, “ Charge transport studies of doped polyanilines with various dopants and their mixtures,” Synth. Met. 84(1–3), 739740 (1997).
http://dx.doi.org/10.1016/S0379-6779(96)04124-0
67.
67. B. Wessling, “ Metallic properties of conductive polymers due to dispersion,” in Handbook of Organic Conductive Molecules and Polymers, edited by H. S. Nalwa (John Wiley & Sons, Chichester, 1997), Vol. 3, pp. 497632.
68.
68. P. N. Adams, P. J. Laughlin, and A. P. Monkman, “ Synthesis of high molecular weight polyaniline at low temperatures,” Synth. Met. 76(1–3), 157160 (1996).
http://dx.doi.org/10.1016/0379-6779(95)03442-M
69.
69. A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W. S. Huang, and A. G. MacDiarmid, “ Insulator-to-metal transition in polyaniline,” Synth. Met. 18(1–3), 303309 (1987).
http://dx.doi.org/10.1016/0379-6779(87)90896-4
70.
70. C. Fite, Y. Cao, and A. J. Heeger, “ Magnetic-susceptibility of crystalline polyaniline,” Solid State Commun. 70(3), 245247 (1989).
http://dx.doi.org/10.1016/0038-1098(89)90319-0
71.
71. F. Zuo, M. Angelopoulos, A. G. MacDiarmid, and A. J. Epstein, “ Transport studies of protonated emeraldine polymer: A antigranulocytes polymeric metal system,” Phys. Rev. B 36(6), 34753478 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.3475
72.
72. A. G. MacDiarmid and A. J. Epstein, “ Polyanilines: A novel class of conducting polymers,” Faraday Discuss. 88, 317 (1989).
http://dx.doi.org/10.1039/dc9898800317
73.
73. A. J. Epstein and A. G. MacDiarmid, “ Structure, order, and the metallic state in polyaniline and its derivatives,” Synth. Met. 41(1–2), 601606 (1991).
http://dx.doi.org/10.1016/0379-6779(91)91142-W
74.
74. K. R. Cromack, M. E. Jozefowicz, J. M. Ginder, A. J. Epstein, R. P. McCall, G. Du, J. M. Leng, K. Kim, C. Li, Z. H. Wang, M. A. Druy, P. J. Glatkowski, E. M. Scherr, and A. G. MacDiarmid, “ Thermal-Process for orientation of polyaniline films,” Macromolecules 24(14), 41574161 (1991).
http://dx.doi.org/10.1021/ma00014a031
75.
75. Z. H. Wang, H. H. S. Javadi, A. Ray, A. G. MacDiarmid, and A. J. Epstein, “ Electron localization in polyaniline derivatives,” Phys. Rev. B 42(8), 54115413 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.5411
76.
76. P. Grosse, Freie Elektronen in Festkörpern (Springer-Verlag, Berlin, Heidelberg, New York, 1979), p. 296.
77.
77. J. Joo, E. J. Oh, G. Min, A. G. MacDiarmid, and A. J. Epstein, “ Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes,” Synth. Met. 69(1–3), 251254 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02438-5
78.
78. S. Kivelson and A. J. Heeger, “ Intrinsic conductivity of conducting polymers,” Synth. Met. 22(4), 371384 (1988).
http://dx.doi.org/10.1016/0379-6779(88)90108-7
79.
79. Advanced ESR Methods in Polymer Research, edited by S. Schlick (John Wiley & Sons, Inc., New York, 2006), p. 368 and references therein.
80.
80. G. R. Eaton, S. S. Eaton, D. P. Barr, and R. T. Weber, Quantitative EPR (Springer, Wien, New York, 2010), p. 185 and references therein.
81.
81. Multifrequency Electron Paramagnetic Resonance. Theory and Applications, edited by S. K. Misra (Wiley-VCH, Weinheim, 2011), p. 1056 and references therein.
82.
82. A. Lund, M. Shiotani, and S. Shimada, Principles and Applications of ESR Spectroscopy (Springer, 2011), p. 430 and references therein.
83.
83. EPR of Free Radicals in Solids I: Trends in Methods and Applications, 2nd ed., edited by A. Lund and M. Shiotan (Springer Netherlands, 2013), p. 414 and references therein.
84.
84. EPR of Free Radicals in Solids II: Progress in Theoretical Chemistry and Physics, 2nd ed., edited by A. Lund and M. Shiotan (Springer Netherlands, 2013), p. 387 and references therein. See also other books on EPR spectroscopy.
85.
85. V. I. Krinichnyi, 2-mm Wave Band EPR Spectroscopy of Condensed Systems (CRC Press, Boca Raton, 1995), p. 223.
86.
86. K. Mizoguchi and S. Kuroda, “ Magnetic properties of conducting polymers,” in Handbook of Organic Conductive Molecules and Polymers, edited by H. S. Nalwa (John Wiley & Sons, Chichester, New York, 1997), Vol. 3, pp. 251317.
87.
87. V. I. Krinichnyi, “ The nature and dynamics of nonlinear excitations in conducting polymers. Polyaniline,” Russ. Chem. Bull. 49(2), 207233 (2000).
http://dx.doi.org/10.1007/BF02494663
88.
88. V. I. Krinichnyi, “ 2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers (Review),” Synth. Met. 108(3), 173222 (2000);
http://dx.doi.org/10.1016/S0379-6779(99)00262-3
88. V. I. Krinichnyi, Synth. Met., see also hf-epr.awardspace.us.
89.
89. C. Menardo, F. Genoud, M. Nechtschein, J. P. Travers, and P. Hani, “ On the acidic functions of polyaniline,” in Electronic Properties of Conjugated Polymers, Springer Series in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and S. Roth (Springer-Verlag, Berlin, 1987), Vol. 76, pp. 244248.
90.
90. M. Lapkowski and E. M. Genies, “ Evidence of 2 kinds of spin in polyaniline from in situ EPR and electrochemistry: Influence of the electrolyte-composition,” J. Electroanal. Chem. 279(1–2), 157168 (1990).
http://dx.doi.org/10.1016/0022-0728(90)85173-3
91.
91. A. G. MacDiarmid and A. J. Epstein, “ The polyanilines: Potential technology based on new chemistry and new properties,” in Science and Application of Conducting Polymers, edited by W. R. Salaneck, D. T. Clark, and E. J. Samuelsen (Adam Hilger, Bristol, 1991), pp. 117128.
92.
92. N. S. Sariciftci, A. J. Heeger, and Y. Cao, “ Paramagnetic susceptibility of highly conducting polyaniline: Disordered metal with weak electron-electron interactions (Fermi glass),” Phys. Rev. B 49(9), 59885992 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.5988
93.
93. N. S. Sariciftci, A. C. Kolbert, Y. Cao, A. J. Heeger, and A. Pines, “ Magnetic resonance evidence for metallic state in highly conducting polyaniline,” Synth. Met. 69(1–3), 243244 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02435-2
94.
94. M. Nechtschein, “ Electron spin dynamics,” in Handbook of Conducting Polymers, edited by T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds (Marcel Dekker, New York, 1997), pp. 141163.
95.
95. K. Mizoguchi, M. Nechtschein, J. P. Travers, and C. Menardo, “ Spin dynamics in the conducting polymer. Polyaniline,” Phys. Rev. Lett. 63(1), 6669 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.66
96.
96. K. Mizoguchi, M. Nechtschein, and J. P. Travers, “ Spin dynamics and conductivity in polyaniline: Temperature-dependence,” Synth. Met. 41(1–2), 113116 (1991).
http://dx.doi.org/10.1016/0379-6779(91)91014-2
97.
97. K. Mizoguchi, M. Nechtschein, J. P. Travers, and C. Menardo, “ Spin dynamics study in polyaniline,” Synth. Met. 29(1), E417E424 (1989).
http://dx.doi.org/10.1016/0379-6779(89)90327-5
98.
98. K. Mizoguchi and K. Kume, “ Metallic temperature-dependence in the conducting polymer, polyaniline: Spin dynamics study by ESR,” Solid State Commun. 89(12), 971975 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90497-9
99.
99. K. Mizoguchi and K. Kume, “ Metallic temperature-dependence of microscopic electrical-conductivity in HCl-doped polyaniline studied by ESR,” Synth. Met. 69(1–3), 241242 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02434-Z
100.
100. M. Nechtschein, F. Genoud, C. Menardo, K. Mizoguchi, J. P. Travers, and B. Villeret, “ On the nature of the conducting state of polyaniline,” Synth. Met. 29(1), E211E218 (1989).
http://dx.doi.org/10.1016/0379-6779(89)90298-1
101.
101. M. Inoue, M. B. Inoue, M. M. Castillo-Ortega, M. Mizuno, T. Asaji, and D. Nakamura, “ Intrinsic paramagnetism of doped polypyrroles and polythiophenes: Electron spin resonance of the polymers prepared by the use of copper(II) compounds as oxidative coupling agents,” Synth. Met. 33, 355364 (1989).
http://dx.doi.org/10.1016/0379-6779(89)90480-3
102.
102. M. Iida, T. Asaji, M. Inoue, H. Grijalva, M. B. Inoue, and D. Nakamura, “ Electron-spin-resonance study of intrinsic paramagnetism of soluble polyaniline perchlorates,” Bull. Chem. Soc. Jpn. 64(5), 15091513 (1991).
http://dx.doi.org/10.1246/bcsj.64.1509
103.
103. T. Ohsawa, O. Kimura, M. Onoda, and K. Yoshino, “ An ESR study on polyaniline in nonaqueous electrolyte,” Synth. Met. 47(2), 151156 (1992).
http://dx.doi.org/10.1016/0379-6779(92)90382-S
104.
104. A. Bartle, L. Dunsch, H. Naarmann, D. Schmeisser, and W. Gopel, “ ESR studies of polypyrrole films with a two-dimensional microstructure,” Synth. Met. 61(1–2), 167170 (1993).
http://dx.doi.org/10.1016/0379-6779(93)91218-Q
105.
105. M. Nechtschein and F. Genoud, “ On the broadening of the ESR line in presence of air or oxygen in conducting polymers,” Solid State Commun. 91(6), 471473 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90788-9
106.
106. K. Aasmundtveit, F. Genoud, E. Houze, and M. Nechtschein, “ Oxygen-induced ESR line broadening in conducting polymers,” Synth. Met. 69(1–3), 193196 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02414-T
107.
107. P. K. Kahol, A. J. Dyakonov, and B. J. McCormick, “ An electron-spin-resonance study of polymer interactions with moisture in polyaniline and its derivatives,” Synth. Met. 89(1), 1728 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)81188-5
108.
108. P. K. Kahol, A. J. Dyakonov, and B. J. McCormick, “ An electron-spin-resonance study of polyaniline and its derivatives: Polymer interactions with moisture,” Synth. Met. 84, 691694 (1997).
http://dx.doi.org/10.1016/S0379-6779(96)04110-0
109.
109. Y. S. Kang, H. J. Lee, J. Namgoong, B. Jung, and H. Lee, “ Decrease in electrical conductivity upon oxygen exposure in polyanilines doped with HCl,” Polymer 40(9), 22092213 (1999).
http://dx.doi.org/10.1016/S0032-3861(98)00441-8
110.
110. K. Mizoguchi, N. Kachi, H. Sakamoto, K. Yoshioka, S. Masubuchi, and S. Kazama, “ The effect of oxygen on the ESR linewidth in polypyrrole doped by PF6,” Solid State Commun. 105(2), 8184 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10060-6
111.
111. E. Houze and M. Nechtschein, “ ESR in conducting polymers: Oxygen-induced contribution to the linewidth,” Phys. Rev. B 53(21), 1430914318 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.14309
112.
112. F. J. Dyson, “ Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect,” Phys. Rev. B 98(2), 349359 (1955).
http://dx.doi.org/10.1103/PhysRev.98.349
113.
113. A. P. Monkman, D. Bloor, and G. C. Stevens, “Effects of oxidation-state on the measured g-value in polyaniline,” J. Phys. D 23 (5), 627629 (1990).
http://dx.doi.org/10.1088/0022-3727/23/5/027
114.
114. M. Iida, T. Asaji, M. B. Inoue, and M. Inoue, “ EPR study of polyaniline perchlorates: Spin species-related to charge-transport,” Synth. Met. 55(1), 607612 (1993).
http://dx.doi.org/10.1016/0379-6779(93)90999-D
115.
115. B. Z. Lubentsov, O. N. Timofeeva, S. L. Saratovskikh, V. I. Krinichnyi, A. E. Pelekh, V. V. Dmitrenko, and M. L. Khidekel, “ The study of conducting polymer interaction with gaseous substances. IV. The water-content influence on polyaniline crystal structure and conductivity,” Synth. Met. 47(2), 187192 (1992).
http://dx.doi.org/10.1016/0379-6779(92)90386-W
116.
116. F. Lux, G. Hinrichsen, V. I. Krinichnyi, I. B. Nazarova, S. D. Chemerisov, and M. M. Pohl, “ Conducting islands concept for highly conductive polyaniline-recent results of TEM-measurements, X-ray-diffraction-measurements, EPR-measurements, DC conductivity-measurements and magnetic susceptibility-measurements,” Synth. Met. 55(1), 347352 (1993).
http://dx.doi.org/10.1016/0379-6779(93)90956-W
117.
117. H. K. Roth and V. I. Krinichnyi, “ ESR studies on polymers with particular electronic and magnetic properties,” Makromol. Chem., Macromol. Symp. 72, 143159 (1993).
http://dx.doi.org/10.1002/masy.19930720112
118.
118. V. I. Krinichnyi, “ The nature and dynamics of nonlinear excitations in conducting polymers. Heteroaromatic polymers,” Russ. Chem. Rev. 65(6), 521536 (1996).
http://dx.doi.org/10.1070/RC1996v065n06ABEH000303
119.
119. V. I. Krinichnyi, S. D. Chemerisov, and Y. S. Lebedev, “ EPR and charge-transport studies of polyaniline,” Phys. Rev. B 55(24), 1623316244 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.16233
120.
120. V. I. Krinichnyi, S. D. Chemerisov, and Y. S. Lebedev, “ Charge transport in slightly doped polyaniline,” Synth. Met. 84(1–3), 819820 (1997).
http://dx.doi.org/10.1016/S0379-6779(96)04162-8
121.
121. V. I. Krinichnyi, S. D. Chemerisov, and Y. S. Lebedev, “ Mechanism of spin and charge transport in poly(aniline),” Polym. Sci., Ser. A 40(8), 826834 (1998).
122.
122. V. I. Krinichnyi, I. B. Nazarova, L. M. Goldenberg, and H. K. Roth, “ Spin dynamics in conducting poly(aniline),” Polym. Sci., Ser. A 40(8), 835843 (1998).
123.
123. V. I. Krinichnyi, A. L. Konkin, P. Devasagayam, and A. P. Monkman, “ Multifrequency EPR study of charge transport in doped polyaniline,” Synth. Met. 119, 281282 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)01131-0
124.
124. A. L. Kon'kin, V. G. Shtyrlin, R. R. Garipov, A. V. Aganov, A. V. Zakharov, V. I. Krinichnyi, P. N. Adams, and A. P. Monkman, “ EPR, charge transport, and spin dynamics in doped polyanilines,” Phys. Rev. B 66(7), 075203 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.075203
125.
125. V. I. Krinichnyi, H. K. Roth, G. Hinrichsen, F. Lux, and K. Lüders, “ EPR and charge transfer in H2SO4-doped polyaniline,” Phys. Rev. B 65(15), 155205 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.155205
126.
126. V. I. Krinichnyi, H. K. Roth, and G. Hinrichsen, “ Charge transfer in heavily H2SO4-doped polyaniline,” Synth. Met. 135(1–3), 431432 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00554-4
127.
127. V. I. Krinichnyi and S. V. Tokarev, “ Charge transport in polyaniline heavily doped with p-toluenesulfonic acid,” Polym. Sci., Ser. A 47(3), 261269 (2005).
128.
128. V. I. Krinichnyi, S. V. Tokarev, H. K. Roth, M. Schrödner, and B. Wessling, “ Multifrequency EPR study of metal-like domains in polyaniline,” Synth. Met. 152(1–3), 165168 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.07.185
129.
129. V. I. Krinichnyi, A. L. Konkin, and A. Monkman, “ Electron paramagnetic resonance study of spin centers related to charge transport in metallic polyaniline,” Synth. Met. 162(13–14), 11471155 (2012).
http://dx.doi.org/10.1016/j.synthmet.2012.04.030
130.
130. V. I. Krinichnyi, E. I. Yudanova, and B. Wessling, “ Influence of spin–spin exchange on charge transfer in PANI-ES/P3DDT/PCBM composite,” Synth. Met. 179, 6773 (2013).
http://dx.doi.org/10.1016/j.synthmet.2013.07.008
131.
131. V. I. Krinichnyi, “ Relaxation and dynamics of spin charge carriers in polyaniline,” in Advances in Materials Science Research, edited by M. C. Wythers (Nova Science Publishers, Hauppauge, New York, 2014), Vol. 17, pp. 109160.
132.
132. Y. S. Lebedev, “ High-field ESR,” in Electron Spin Resonance, edited by N. M. Atherton, M. J. Davies, and B. C. Gilbert (Royal Society of Chemistry, Cambridge, 1994), Vol. 14, pp. 6387.
133.
133. W. R. Hagen, “ High-frequency EPR of transition ion complexes and metalloproteins,” Coord. Chem. Rev. 192, 209229 (1999).
http://dx.doi.org/10.1016/S0010-8545(99)00079-X
134.
134. G. M. Smith and P. C. Riedi, Progress in High Field EPR (RSC, Cambridge, UK, 2000), p. 164.
135.
135. D. Marsh, D. Kurad, and V. A. Livshits, “ High-field electron spin resonance of spin labels in membranes,” Chem. Phys. Lipids 116(1–2), 93114 (2002).
http://dx.doi.org/10.1016/S0009-3084(02)00022-1
136.
136. E. J. Hustedt and A. H. Beth, “ High field/high frequency saturation transfer electron paramagnetic resonance spectroscopy: Increased sensitivity to very slow rotational motions,” Biophys. J. 86, 39403950 (2004).
http://dx.doi.org/10.1529/biophysj.103.035048
137.
137. Very High Frequency (VHF) ESR/EPR (Biological Magnetic Resonance), edited by O. Y. Grinberg and L. J. Berliner (Kluwer Academic Plenum Publishers, New York, 2004), p. 592.
138.
138. F. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics (Harrer & Row, Publishers, New York, Evanston, London, 1967), p. 266.
139.
139. A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Russ) (Khimija, Moscow, 1973), p. 408.
140.
140. A. L. Buchachenko, C. N. Turton, and T. I. Turton, Stable Radicals (Consultants Bureau, New York, 1995), p180.
141.
141. A. Raghunathan, P. K. Kahol, J. C. Ho, Y. Y. Chen, Y. D. Yao, Y. S. Lin, and B. Wessling, “ Low-temperature heat capacities of polyaniline and polyaniline polymethylmethacrylate blends,” Phys. Rev. B 58(24), R15955R15958 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R15955
142.
142. S. V. Vonsovskii, Magnetism—Magnetic Properties of Dia-, Para-, Ferro-, Antiferro-, and Ferrimagnetics (John Wiley & Sons, New York, 1974), 1256 p.
143.
143. H. Salavagione, G. M. Morales, M. C. Miras, and C. Barbero, “ Synthesis of a self-doped polyaniline by nucleophilic addition,” Acta Polym. 50(1), 4044 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4044(19990101)50:1<40::AID-APOL40>3.0.CO;2-8
144.
144. Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller and S. Parkin (Wiley, 2007), p. 3064.
145.
145. P. K. Kahol and M. Mehring, “ Exchange-coupled pair model for the non-curie-like susceptibility in conducting polymers,” Synth. Met. 16(2), 257264 (1986).
http://dx.doi.org/10.1016/0379-6779(86)90118-9
146.
146. W. G. Clark and L. C. Tippie, “ Exchange-coupled pair model for the random-exchange Heisenberg antiferromagnetic chain,” Phys. Rev. B 20(7), 29142923 (1979).
http://dx.doi.org/10.1103/PhysRevB.20.2914
147.
147. H. K. Roth, F. Keller, and H. Schneider, Hochfrequenzspectroskopie in der Polymerforschung (Academie Verlag, Berlin, 1984), p. 374.
148.
148. L. A. Blumenfeld, V. V. Voevodski, and A. G. Semenov, Application of Electron Paramagnetic Resonance in Chemistry (Russ) (Izdat. SO AN SSSR, Novosibirsk, 1962), p. 216.
149.
149. J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (Wiley-Interscience, New York, 2007), p. 644.
150.
150. Y. S. Lebedev and V. I. Muromtsev, EPR and Relaxation of Stabilized Radicals (Russ) (Khimija, Moscow, 1972), p. 256.
151.
151. Y. N. Molin, K. M. Salikhov, and K. I. Zamaraev, Spin Exchange (Springer, Berlin, 1980), p. 260.
152.
152. M. A. Butler, L. R. Walker, and Z. G. Soos, “ Dimensionality of spin fluctuations in highly anisotropic TCNQ salts,” J. Chem. Phys. 64(9), 35923601 (1976).
http://dx.doi.org/10.1063/1.432709
153.
153. P. D. Krasicky, R. H. Silsbee, and J. C. Scott, “ Studies of a polymeric chromium phosphinate. Electron-spin resonance and spin dynamics,” Phys. Rev. B 25(9), 56075626 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.5607
154.
154. M. J. Hennessy, C. D. McElwee, and P. M. Richards, “ Effect of interchain coupling on electron-spin resonance in nearly one-dimensional systems,” Phys. Rev. B 7(3), 930947 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.930
155.
155. P. K. Kahol, K. K. S. Kumar, S. Geetha, and D. C. Trivedi, “ Effect of dopants on electron localization length in polyaniline,” Synth. Met. 139(2), 191200 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)01321-8
156.
156. Z. Wilamowski, B. Oczkiewicz, P. Kacman, and J. Blinowski, “ Asymmetry of the EPR absorption line in CdF2 with Y,” Phys. Status Solidi B 134, 303306 (1986).
http://dx.doi.org/10.1002/pssb.2221340137
157.
157. P. Bernier, “ The magnetic properties of conjugated polymers: ESR studies of undoped and doped systems,” in Handbook of Conducting Polymers, edited by T. E. Scotheim (Marcel Deccer, Inc., New York, 1986), Vol. 2, pp. 10991125.
158.
158. A. C. Chapman, P. Rhodes, and E. F. W. Seymour, “ The Effect of Eddy currents on nuclear magnetic resonance in metals,” Proc. Phys. Soc., Sect. B 70(4), 345360 (1957).
http://dx.doi.org/10.1088/0370-1301/70/4/301
159.
159. A. Abragam and B. Bleany, Electron Paramagnetic Resonance of Transition Ions (Oxford Academ, Oxford, 2012), p. 944.
160.
160. C. P. Poole, Electron Spin Resonance, A Comprehensive Treatise on Experimental Techniques (John Wiley & Sons, New York, 1983), p. 780.
161.
161. A. Lösche, Kerninduction (VEB Deutscher Verlag, Berlin, 1957), p. 684.
162.
162. J. S. Hyde and L. R. Dalton, “ Saturation-transfer spectroscopy,” in Spin Labeling II: Theory and Application, edited by L. J. Berliner (Academic, New York, 1979), Vol. 2, pp. 170.
163.
163. A. A. Bugai, “ Passing effects for inhomogeneously broadened EPR lines at high-frequency-modulation of magnetic field,” Phys. Solid State 4, 30273030 (1962).
164.
164. E. E. Salpeter, “ Nuclear induction signals for long relaxation times,” Proc. Phys. Soc., Sect. A 63, 337349 (1950).
http://dx.doi.org/10.1088/0370-1298/63/4/303
165.
165. G. Feher, “ Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by electron nuclear double resonance technique,” Phys. Rev. B 114, 1219 (1959).
http://dx.doi.org/10.1103/PhysRev.114.1219
166.
166. M. Weger, “ Passage effects in paramagnetic resonance experiments,” Bell Syst. Tech. J. 39, 10131112 (1960).
http://dx.doi.org/10.1002/j.1538-7305.1960.tb03951.x
167.
167. C. A. J. Ammerlaan and A. van der Wiel, “ The divacancy in silicon: Spin-lattice relaxation and passage effects in electron paramagnetic resonance,” J. Magn. Reson. 21(3), 387513 (1976).
http://dx.doi.org/10.1016/0022-2364(76)90043-3
168.
168. S. A. Altshuler and B. M. Kozirev, Electron Paramagnetic Resonance (Academic Press, 1964), p. 372.
169.
169. V. I. Krinichnyi, “ Investigation of biological systems by EPR method of high spectral resolution at 2-mm wave band,” J. Appl. Spectrosc. 52(6), 575591 (1990).
http://dx.doi.org/10.1007/BF00662189
170.
170. V. I. Krinichnyi, “ Investigation of biological systems by high-resolution 2-mm wave band ESR,” J. Biochem. Biophys. Methods 23(1), 130 (1991).
http://dx.doi.org/10.1016/0165-022X(91)90047-Z
171.
171. V. I. Krinichnyi, “ Investigation of biological systems by high resolution 2-mm wave band EPR,” Appl. Magn. Reson. 2(1), 2960 (1991).
http://dx.doi.org/10.1007/BF03166266
172.
172. P. R. Cullis, “ EPR in inhomogeneously broadened systems: A spin temperature approach,” J. Magn. Reson. 21(3), 397418 (1976).
http://dx.doi.org/10.1016/0022-2364(76)90044-5
173.
173. A. E. Pelekh, V. I. Krinichnyi, A. Y. Brezgunov, L. I. Tkachenko, and G. I. Kozub, “ ESR study of relaxational parameters of paramagnetic centers in polyacetylene,” Polym. Sci. USSR 33(8), 16151623 (1991).
http://dx.doi.org/10.1016/0032-3950(91)90048-U
174.
174. V. I. Krinichnyi, A. E. Pelekh, A. Y. Brezgunov, L. I. Tkachenko, and G. I. Kozub, “ The EPR study of undoped polyacetylene,” Mater. Sci. Eng. 17(1), 2529 (1991).
175.
175. A. M. Wasserman and T. N. Khazanovich, “ New fronties in spin probe and spin label EPR spectroscopy of polymers,” in Polymer Yearbook, edited by R. A. Pathrick (Taylor & Francis, London, 1995), Vol. 12, pp. 153184.
176.
176. Spin Labeling: The Next Millenium, edited by L. J. Berliner (Plenum Press, New York, 1998), p. 444.
177.
177. H. Winter, G. Sachs, E. Dormann, R. Cosmo, and H. Naarmann, “ Magnetic-properties of spin-labeled polyacetylene,” Synth. Met. 36(3), 353365 (1990).
http://dx.doi.org/10.1016/0379-6779(90)90259-N
178.
178. B. H. Robinson and L. R. Dalton, “ Anisotropic rotational diffusion studied by passage saturation transfer electron paramagnetic resonance,” J. Chem. Phys. 72, 13121324 (1980).
http://dx.doi.org/10.1063/1.439194
179.
179. A. A. Dubinski, O. Y. Grinberg, V. I. Kurochkin, L. G. Oransky, O. G. Poluektov, and Y. S. Lebedev, “ Investigation of anisotropy of nitroxide radicals rotation using 2-mm wave band EPR spectra,” Theor. Exp. Chem. 17(2), 180 (1981).
http://dx.doi.org/10.1007/BF00516946
180.
180. V. I. Krinichnyi, “ High field ESR spectroscopy of conductive polymers,” in Advanced ESR Methods in Polymer Research, edited by S. Schlick (Wiley, Hoboken, NJ, 2006), pp. 307338.
181.
181. V. I. Krinichnyi, O. Y. Grinberg, A. A. Dubinskii, V. A. Livshits, Y. A. Bobrov, and Y. S. Lebedev, “ Study of anisotropic molecular rotations by saturation transfer EPR spectroscopy at 2-mm wave band,” Biofizika 32(3), 534535 (1987).
182.
182. A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1983), p. 614.
183.
183. R. L. Elsenbaume and L. W. Shacklette, “ Phenylene-based conducting polymers,” in Handbook of Conducting Polymers, edited by T. E. Scotheim (Marcel Deccer, Inc., New York, 1986), Vol. 1, pp. 213263.
184.
184. F. Devreux, F. Genoud, M. Nechtschein, and B. Villeret, “ On polaron and bipolaron formation in conducting polymers,” in Electronic Properties of Conjugated Polymers, edited by H. Kuzmany, M. Mehring, and S. Roth (Springer-Verlag, Berlin, 1987), Vol. 76, pp. 270276.
185.
185. M. Westerling, R. Osterbacka, and H. Stubb, “ Recombination of long-lived photoexcitations in regioregular polyalkylthiophenes,” Phys. Rev. B 66(16), 165220 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165220
186.
186. G. Agostini, C. Corvaja, and L. Pasimeni, “ EPR studies of the excited triplet states of C60O and C60C2H4N(CH3) fullerene derivatives and C-70 in toluene and polymethylmethacrylate glasses and as films,” Chem. Phys. 202(2–3), 349356 (1996).
http://dx.doi.org/10.1016/0301-0104(95)00384-3
187.
187. N. N. Denisov, V. I. Krinichnyi, and V. A. Nadtochenko, “ Spin properties of paramagnetic centers photogenerated in crystals of complexes between C-60 and TPA,” in Fullerenes. Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by K. Kadish and R. Ruoff (The Electrochemical Society, Inc., Pennington, NJ, 1997), Vol. 4, pp. 139147.
188.
188. D. M. Martino, C. A. Steren, and H. vanWilligen, “ Time-resolved EPR study of C-3(60) in solid matrices,” Res. Chem. Intermed. 23(5), 415429 (1997).
http://dx.doi.org/10.1163/156856797X00169
189.
189. X. Wei and Z. V. Vardeny, “ Spin dynamics of photoexcitations in C-60 and C-70,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 256, 307315 (1994).
http://dx.doi.org/10.1080/10587259408039261
190.
190. M. N. Uvarov, L. V. Kulik, and S. A. Dzuba, “ Fullerene C-70 triplet zero-field splitting parameters revisited by light-induced EPR at thermal equilibrium,” Appl. Magn. Reson. 40(4), 489499 (2011).
http://dx.doi.org/10.1007/s00723-011-0224-6
191.
191. M. N. Uvarov, L. V. Kulik, A. B. Doktorov, and S. A. Dzuba, “ Isotropic reorientations of fullerene C-70 triplet molecules in solid glassy matrices revealed by light-induced electron paramagnetic resonance,” J. Chem. Phys. 135(5), 054507 (2011).
http://dx.doi.org/10.1063/1.3618738
192.
192. M. I. Klinger, Problems of Linear Electron (Polaron) Transport Theory in Semiconductors (Pergamon Press, Oxford, 1979), p. 962.
193.
193. Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, Oxford, 1999), p. 1360.
194.
194. S. Kivelson, “ Electron hopping in a soliton band: Conduction in lightly doped (CH)X,” Phys. Rev. B 25(6), 37983821 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.3798
195.
195. A. Tawansi, A. H. Oraby, H. M. Zidan, and M. E. Dorgham, “ Effect of one-dimensional phenomena on electrical, magnetic and ESR properties of MnCl2-filled PVA films,” Physica B 254(1–2), 126133 (1998).
http://dx.doi.org/10.1016/S0921-4526(98)00414-1
196.
196. A. R. Long and N. Balkan, “ AC loss in amorphous germanium,” Philos. Mag. B 41(3), 287305 (1980).
http://dx.doi.org/10.1080/13642818008245386
197.
197. M. El Kadiri and J. P. Parneix, “ Frequency- and temperature-dependent complex conductivity of some conducting polymers,” in Electronic Properties of Polymers and Related Compounds, edited by H. Kuzmany, M. Mehring, and S. Roth (Springer-Verlag, Berlin, 1985), Vol. 63, pp. 183186.
198.
198. J. P. Parneix and M. El Kadiri, “ Frequency- and temperature-dependent dielectric losses in lightly doped conducting polymers,” in Electronic Properties of Conjugated Polymers, edited by H. Kuzmany, M. Mehring, and S. Roth (Springer-Verlag, Berlin, 1987), Vol. 76, pp. 2326.
199.
199. D. Schafer-Siebert, C. Budrowski, H. Kuzmany, and S. Roth, “ Influence of the conjugation length of polyacetylene chains on the DC-conductivity,” in Electronic Properties of Conjugated Polymers, edited by H. Kuzmany, M. Mehring, and S. Roth (Springer-Verlag, Berlin, 1987), Vol. 76, pp. 3842.
200.
200. D. Schafer-Siebert and S. Roth, “ Limitation of the conductivity of polyacetylene by conjugational defects,” Synth. Met. 28, D369D374 (1989).
http://dx.doi.org/10.1016/0379-6779(89)90716-9
201.
201. H. Meier, “ Application of the semiconductor properties of dyes: Possibilities and problems,” in Topics in Current Chemistry (Springer-Verlag, Berlin, 1976), pp. 6185.
202.
202. D. A. Dos Santos, D. S. Galvao, B. Laks, and M. C. dos Santos, “ Poly(alkylthiophenes): Chain conformation and thermochromism,” Synth. Met. 51, 203209 (1992).
http://dx.doi.org/10.1016/0379-6779(92)90272-K
203.
203. I. Hoogmartens, P. Adreansens, R. Carleer, D. Vanderzande, H. Martens, and J. Gelan, “ An investigation into the electronic structure of poly(isothianaphthene),” Synth. Met. 51(1–3), 219228 (1992).
http://dx.doi.org/10.1016/0379-6779(92)90274-M
204.
204. N. F. Mott, Conduction in Non-Crystalline Materials (Clarendon Press, Oxford, 1987), p. 150.
205.
205. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 2012), p. 608.
206.
206. I. G. Austin and N. F. Mott, “ Polarons in crystalline and non-crystalline materials,” Adv. Phys. 18(71), 41102 (1969).
http://dx.doi.org/10.1080/00018736900101267
207.
207. L. Pietronero, “ Ideal conductivity of carbon ã polymers and intercalation compounds,” Synth. Met. 8, 225231 (1983).
http://dx.doi.org/10.1016/0379-6779(83)90104-2
208.
208. M. Nechtschein, “ Doped conjugated polymers: Conducting polymers,” in Organic Conductors Fundamental and Applications, edited by J. P. Ferges (Marcel Dekker, New York, 1994), pp. 647689.
209.
209. A. J. Epstein and A. G. MacDiarmid, “ Novel concepts in electronic polymers: Polyaniline and its derivatives,” Makromol. Chem., Macromol. Symp. 51, 217234 (1991).
http://dx.doi.org/10.1002/masy.19910510118
210.
210. P. W. Anderson “The Fermi glass: theory and experiment,” Comments on Solid State Physics 2, 193198 (1970).
211.
211. S. M. Long, K. R. Cromack, A. J. Epstein, Y. Sun, and A. G. MacDiarmid, “ ESR of pernigraniline base solutions revisited,” Synth. Met. 62(3), 287289 (1994).
http://dx.doi.org/10.1016/0379-6779(94)90219-4
212.
212. C. P. Poole, Electron Spine Resonance (Int. Sci. Publ., London, 1967), p. 959.
213.
213. C. P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques (Dover Publications, 1997), p. 810.
214.
214. S. P. Kurzin, B. G. Tarasov, N. F. Fatkullin, and R. M. Aseeva, “ The electron spin-lattice relaxation in pyrolyzed poly-2-methyl-5-ethinylpyridine,” Polym. Sci. USSR A 24(1), 134142 (1982).
http://dx.doi.org/10.1016/0032-3950(82)90088-0
215.
215. J. S. Blakemore, Solid State Physics, 2nd ed. (Cambridge University Press, Cambridge, 1985), p. 520.
216.
216. S. Kivelson, “ Electron hopping conduction in the soliton model of polyacetylene,” Phys. Rev. Lett. 46, 13441348 (1981).
http://dx.doi.org/10.1103/PhysRevLett.46.1344
217.
217. S. Kivelson, “ Electron hopping conduction in the soliton model of polyacetylene,” Mol. Cryst. Liq. Cryst. 77(1–4), 6579 (1981).
http://dx.doi.org/10.1080/00268948108075229
218.
218. L. Zuppiroli, S. Paschen, and M. N. Bussac, “ Role of the dopant counterions in the transport and magnetic-properties of disordered conducting polymers,” Synth. Met. 69(1–3), 621624 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02594-O
219.
219. Y. Cao, S. Z. Li, Z. J. Xue, and D. Guo, “ Spectroscopic and electrical characterization of some aniline oligomers and polyaniline,” Synth. Met. 16(3), 305315 (1986).
http://dx.doi.org/10.1016/0379-6779(86)90167-0
220.
220. H. H. S. Javadi, K. R. Cromack, A. G. MacDiarmid, and A. J. Epstein, “ Microwave transport in the emeraldine form of polyaniline,” Phys. Rev. B 39(6), 35793584 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.3579
221.
221. P. K. Kahol, N. J. Pinto, and B. J. McCormick, “ Charge-transport and electron localization in alkyl ring-substituted polyanilines,” Solid State Commun. 91(1), 2124 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90835-4
222.
222. P. K. Kahol, N. J. Pinto, E. J. Berndtsson, and B. J. McCormick, “ Electron localization effects on the conducting state in polyaniline,” J. Phys.: Condens. Matter 6(29), 56315638 (1994).
http://dx.doi.org/10.1088/0953-8984/6/29/005
223.
223. N. J. Pinto, P. K. Kahol, B. J. McCormick, N. S. Dalal, and H. Wan, “ Charge-transport and electron localization in polyaniline derivatives,” Phys. Rev. B 49(19), 1398313986 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.13983
224.
224. T. N. Khazanovich, “ Theory of nuclear magnetic relaxation in liquid-phase polymers,” Polym. Sci. USSR 4(4), 727736 (1963).
http://dx.doi.org/10.1016/0032-3950(63)90111-4
225.
225. H. Y. Lim, S. K. Jeong, J. S. Suh, E. J. Oh, Y. W. Park, K. S. Ryu, and C. H. Yo, “ Preparation and properties of fullerene doped polyaniline,” Synth. Met. 70(1–3), 14631464 (1995).
http://dx.doi.org/10.1016/0379-6779(94)02919-P
226.
226. B. Beau, J. P. Travers, and E. Banka, “ NMR evidence for heterogeneous disorder and quasi-1D metallic state in polyaniline CSA,” Synth. Met. 101(1–2), 772775 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)00357-9
227.
227. B. Beau, J. P. Travers, F. Genoud, and P. Rannou, “ NMR study of aging effects in polyaniline CSA,” Synth. Met. 101(1–2), 778779 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)00771-1
228.
228. F. L. Pratt, S. J. Blundell, W. Hayes, K. Nagamine, K. Ishida, and A. P. Monkman, “ Anisotropic polaron motion in polyaniline studied by muon spin relaxation,” Phys. Rev. Lett. 79(15), 28552858 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2855
229.
229. V. I. Krinichnyi, N. N. Denisov, H. K. Roth, E. Fanghänel, and K. Lüders, “ Dynamics of paramagnetic charge carriers in poly(tetrathiafulvalene),” Polym. Sci., Ser. A 40(12), 12591269 (1998).
230.
230. V. I. Krinichnyi, “ The 140-GHz (D-band) saturation transfer electron paramagnetic resonance studies of macromolecular dynamics in conducting polymers,” J. Phys. Chem. B 112(32), 97469752 (2008).
http://dx.doi.org/10.1021/jp803035j
231.
231. V. I. Krinichnyi, “ 2-mm Waveband saturation transfer electron paramagnetic resonance of conducting polymers,” J. Chem. Phys. 129(13), 134510134518 (2008).
http://dx.doi.org/10.1063/1.2977991
232.
232. R. Pelster, G. Nimtz, and B. Wessling, “ Fully protonated polyaniline: Hopping transport on a mesoscopic scale,” Phys. Rev. B 49(18), 1271812723 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.12718
233.
233. G. Harsanyi, Polymer Films in Sensor Applications (CRC Press, Boca Raton, 1995), p. 465.
234.
234. P. N. Bartlett and S. K. Ling-Chung, “ Conducting polymer gas sensors,” Sens. Actuators 20, 287292 (1989).
http://dx.doi.org/10.1016/0250-6874(89)80127-1
235.
235. A. S. Davydov, Solitons in Molecular Systems (Russ.) (Naukova Dumka, Kiev, 1984), p. 288.
236.
236. W. Heywang, Sensorik, 4 ed (Springer-Verlag, Berlin Heidelberg New York, 1993), 231 p.
237.
237. V. I. Krinichnyi, O. N. Eremenko, G. G. Rukhman, Y. A. Letuchii, and V. M. Geskin, “ Sensors based on conducting organic polymers. Polyaniline,” Polym. Sci. USSR 31(8), 18191825 (1989).
http://dx.doi.org/10.1016/0032-3950(89)90015-4
238.
238. V. I. Krinichnyi, O. N. Eremenko, G. G. Rukhman, V. M. Geskin, and Y. A. Letuchy, “ Polyaniline based sensors for solution components,” Synth. Met. 41(3), 11371137 (1991).
http://dx.doi.org/10.1016/0379-6779(91)91571-Q
239.
239. V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, “ Spin routes in organic semiconductors,” Nature Mater. 8, 707716 (2009).
http://dx.doi.org/10.1038/nmat2510
240.
240. Concepts in Spin Electronics, edited by S. Maekawa (Oxford University Press, Oxford, 2006), p. 416.
241.
241. Y. Zhang, T. P. Basel, B. R. Gautam, X. M. Yang, D. J. Mascaro, F. Liu, and Z. V. Vardeny, “ Spin-enhanced organic bulk heterojunction photovoltaic solar cells,” Nat. Commun. 3, 1043 (2012).
http://dx.doi.org/10.1038/ncomms2057
242.
242. Y. Zhang, B. R. Gautam, T. P. Basel, D. J. Mascaro, and Z. V. Vardeny, “ Organic bulk heterojunction solar cells enhanced by spin interaction,” Synth. Met. 173(1), 29 (2013).
http://dx.doi.org/10.1016/j.synthmet.2012.12.035
243.
243. J. M. Lupton, D. R. McCamey, and C. Boehme, “ Coherent spin manipulation in molecular semiconductors: Getting a handle on organic spintronics,” Chem. Phys. Chem. 11(14), 30403058 (2010).
http://dx.doi.org/10.1002/cphc.201000186
244.
244. M. Kinoshita, N. Iwasaki, and N. Nishi, “ Molecular spectroscopy of the triplet state through optical detection of zero-field magnetic resonance,” Appl. Spectrosc. Rev. 17(1), 194 (1981).
http://dx.doi.org/10.1080/05704928108060401
245.
245. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, edited by C. Brabec, U. Scherf, and V. Dyakonov (Wiley-VCH, Weinheim, 2008), p. 575.
246.
246. V. I. Krinichnyi, “ LEPR spectroscopy of charge carriers photoinduced in polymer/fullerene composites,” in Encyclopedia of Polymer Composites: Properties, Performance and Applications, edited by M. Lechkov and S. Prandzheva (Nova Science Publishers, Hauppauge, New York, 2009), pp. 417446.
247.
247. V. Dyakonov, “ Spectroscopy on conjugated polymer devices,” in Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model, edited by N. S. Sariciftci (World Scientific, Singapore, 1997), Chap. 10.
248.
248. V. I. Krinichnyi, “ Dynamics of charge carriers photoinduced in 3 poly(3-dodecylthiophene)/fullerene composite,” Acta Mater. 56(7), 14271434 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.11.043
249.
249. V. I. Krinichnyi, “ Dynamics of charge carriers photoinduced in poly(3-dodecylthiophene)/fullerene bulk heterojunction,” Sol. Energy Mater. Sol. Cells 92(8), 942948 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.02.040
250.
250. V. I. Krinichnyi and E. I. Yudanova, “ LEPR spectroscopy of charge carriers photoinduced in polymer/fullerene bulk heterojunctions,” J. Renew. Sust. Energ. 1(4), 043110 (2009).
http://dx.doi.org/10.1063/1.3212827
251.
251. V. I. Krinichnyi and A. A. Balakai, “ Light-induced spin localization in poly(3-dodecylthiophen)/PCBM composite,” Appl. Magn. Reson. 39(3), 319328 (2010).
http://dx.doi.org/10.1007/s00723-010-0164-6
252.
252. V. I. Krinichnyi, E. I. Yudanova, and N. G. Spitsina, “ Light-induced EPR study of poly(3-alkylthiophene)/fullerene composites,” J. Phys. Chem. C 114(39), 1675616766 (2010).
http://dx.doi.org/10.1021/jp105873r
253.
253. R. A. J. Janssen, D. Moses, and N. S. Sariciftci, “ Electron and energy transfer processes of photoexcited oligothiophenes onto tetracyanoethylene and C60,” J. Chem. Phys. 101(11), 95199527 (1994).
http://dx.doi.org/10.1063/1.467983
254.
254. K. Marumoto, Y. Muramatsu, N. Takeuchi, and S. Kuroda, “ Light-induced ESR studies of polarons in regioregular poly(3- alkylthiophene)-fullerene composites,” Synth. Met. 135(1–3), 433434 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00557-X
255.
255. K. Takeda, H. Hikita, Y. Kimura, H. Yokomichi, and K. Morigaki, “ Electron spin resonance study of light-induced annealing of dangling bonds in glow discharge hydrogenated amorphous silicon: Deconvolution of electron spin resonance spectra,” Jpn. J. Appl. Phys., Part 1 37(12A), 63096317 (1998).
http://dx.doi.org/10.1143/JJAP.37.6309
256.
256. V. V. Yanilkin, N. V. Nastapova, V. I. Morozov, V. P. Gubskaya, F. G. Sibgatullina, L. S. Berezhnaya, and I. A. Nuretdinov, “ Competitive conversions of carbonyl-containing methanofullerenes induced by electron transfer,” Russ. J. Electrochem. 43(2), 184203 (2007).
http://dx.doi.org/10.1134/S1023193507020073
257.
257. O. G. Poluektov, S. Filippone, N. Martín, A. Sperlich, C. Deibel, and V. Dyakonov, “ Spin signatures of photogenerated radical anions in polymer-[70]fullerene bulk heterojunctions: High frequency pulsed EPR spectroscopy,” J. Phys. Chem. B 114(45), 1442614429 (2010).
http://dx.doi.org/10.1021/jp1012347
258.
258. V. I. Krinichnyi and E. I. Yudanova, “ Structural effect of electron acceptor on charge transfer in poly(3-hexylthiophene)/methanofullerene bulk heterojunctions,” Sol. Energy Mater. Sol. Cells 95(8), 23022313 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.03.045
259.
259. V. I. Krinichnyi and E. I. Yudanova, “ Light-induced EPR study of charge transfer in P3HT/PC71BM bulk heterojunctions,” J. Phys. Chem. C 116(16), 91899195 (2012).
http://dx.doi.org/10.1021/jp2120516
260.
260. B. Wessling, “ New insight into organic metal polyaniline morphology and structure,” Polymers 2, 786798 (2010).
http://dx.doi.org/10.3390/polym2040786
261.
261. V. I. Krinichnyi, H. K. Roth, M. Schrödner, and B. Wessling, “ EPR study of polyaniline highly doped by p-toluenesulfonic acid,” Polymer 47(21), 74607468 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.08.025
262.
262. V. I. Krinichnyi, S. V. Tokarev, H. K. Roth, M. Schrödner, and B. Wessling, “ EPR study of charge transfer in polyaniline highly doped by p-toluenesulfonic acid,” Synth. Met. 156(21–24), 13681377 (2006).
http://dx.doi.org/10.1016/j.synthmet.2006.10.008
263.
263. P. K. Kahol, “ Magnetic susceptibility of polyaniline and polyaniline- polymethylmethacrylate blends,” Phys. Rev. B 62(21), 1380313804 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13803
264.
264. F. J. Adrain and L. Monchick, “ Theory of chemically induced magnetic polarization. Effects of S–T±1 mixing in strong magnetic fields,” J. Chem. Phys. 71(6), 26002610 (1979).
http://dx.doi.org/10.1063/1.438616
265.
265. B. Yan, N. A. Schultz, A. L. Efros, and P. C. Taylor, “ Universal distribution of residual carriers in tetrahedrally coordinated amorphous semiconductors,” Phys. Rev. Lett. 84(18), 41804183 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4180
266.
266. V. I. Krinichnyi and E. I. Yudanova, “ Light-induced EPR study of charge transfer in P3HT/bis-PCBM bulk heterojunctions,” AIP Adv. 1(2), 022131 (2011).
http://dx.doi.org/10.1063/1.3599411
267.
267. J. S. Moon, J. Jo, and A. J. Heeger, “ Nanomorphology of PCDTBT:PC70BM bulk heterojunction solar cells,” Adv. Energy Mater. 2(3), 304308 (2012).
http://dx.doi.org/10.1002/aenm.201100667
268.
268. F. Lux, “ Syntheis and characterization of electrically conductive polyaniline and its mixtures with conventional polymers,” Ph.D. thesis (Technical University of Berlin, 1993).
269.
269. O. N. Timofeeva, B. Z. Lubentsov, Y. Z. Sudakova, D. N. Chernyshov, and M. L. Khidekel, “ Conducting polymer interaction with gaseous substances.I.Water,” Synth. Met. 40(1), 111116 (1991).
http://dx.doi.org/10.1016/0379-6779(91)91493-T
270.
270. P. N. Adams, P. J. Laughlin, A. P. Monkman, and A. M. Kenwright, “ Low temperature synthesis of high molecular weight polyaniline,” Polymer 37(15), 34113417 (1996).
http://dx.doi.org/10.1016/0032-3861(96)88489-8
271.
271. P. N. Adams and A. P. Monkman, UK patent application 2287030 (1997).
272.
272. P. N. Adams, P. Devasagayam, S. J. Pomfret, L. Abell, and A. P. Monkman, “ A new acid-processing route to polyaniline films which exhibit metallic conductivity and electrical transport strongly dependent upon intrachain molecular dynamics,” J. Phys.: Condens. Matter 10(37), 82938303 (1998).
http://dx.doi.org/10.1088/0953-8984/10/37/015
273.
273. J. S. Hyde and W. Froncisz, “ The role of microwave frequency in EPR spectroscopy of copper complexes,” Annu. Rev. Biophys. Bioeng. 11, 391417 (1982).
http://dx.doi.org/10.1146/annurev.bb.11.060182.002135
274.
274. A. A. Galkin, O. Y. Grinberg, A. A. Dubinskii, N. N. Kabdin, V. N. Krymov, V. I. Kurochkin, Y. S. Lebedev, L. G. Oransky, and V. F. Shuvalov, “ EPR spectrometer in 2-mm range for chemical research,” Instrum. Exp. Tech. 20(4), 12291229 (1977).
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4873329
Loading
/content/aip/journal/apr2/1/2/10.1063/1.4873329
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/2/10.1063/1.4873329
2014-05-09
2015-03-06

Abstract

The review summarizes the results of the study of emeraldine forms of polyaniline by multifrequency (9.7–140 GHz, 3-cm and 2-mm) wavebands Electron Paramagnetic Resonance (EPR) spectroscopy combined with the spin label and probe, steady-state saturation of spin-packets, and saturation transfer methods. Spin excitations formed in emeraldine form of polyaniline govern structure, magnetic resonance, and electronic properties of the polymer. Conductivity in neutral or weakly doped samples is defined mainly by interchain charge tunneling in the frames of the Kivelson theory. As the doping level increases, this process is replaced by a charge thermal activation transport by molecular-lattice polarons. In heavily doped polyaniline, the dominating is the Mott charge hopping between well-conducting crystalline ravels embedded into amorphous polymer matrix. The main properties of polyaniline are described in the first part. The theoretical background of the magnetic, relaxation, and dynamics study of nonlinear spin carriers transferring a charge in polyaniline is briefly explicated in the second part. An original data obtained in the EPR study of the nature, relaxation, and dynamics of polarons as well as the mechanism of their transfer in polyaniline chemically modified by sulfuric, hydrochloric, camphorsulfonic, 2-acrylamido-2-methyl-1-propanesulfonic, and -toluenesulfonic acids up to different doping levels are analyzed in the third part. Some examples of utilization of polyaniline in molecular electronics and spintronics are described.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/2/1.4873329.html;jsessionid=8elfg4egqg5e6.x-aip-live-02?itemId=/content/aip/journal/apr2/1/2/10.1063/1.4873329&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamics of spin charge carriers in polyaniline
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/2/10.1063/1.4873329
10.1063/1.4873329
SEARCH_EXPAND_ITEM