1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Interface-assisted molecular spintronics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/3/10.1063/1.4890496
1.
1. M. Verdaguer, “ Molecular electronics emerges from molecular magnetism,” Science 272, 698699 (1996).
http://dx.doi.org/10.1126/science.272.5262.698
2.
2. J. S. Miller and D. Gatteschi, “ Molecular-based magnets,” Chem. Soc. Rev. 40, 30653066 (2011).
http://dx.doi.org/10.1039/c1cs90019f
3.
3. H. M. McConnell, “ Ferromagnetism in solid free radicals,” J. Chem. Phys. 39, 1910 (1963).
http://dx.doi.org/10.1063/1.1734562
4.
4. J. S. Miller, A. J. Epstein, and W. M. Reiff, “ Ferromagnetic molecular charge-transfer complexes,” Chem. Rev. 88, 201220 (1988).
http://dx.doi.org/10.1021/cr00083a010
5.
5. J. S. Miller et al., “ Ferromagnetically coupled decamethylmetallocenium salts of 2, 5-dimethyl-N,N′- dicyanoquinonediimine, [M(C5Me5)2] +[Me2DCNQI], (M = Fe,Mn),” Adv. Mater. 5, 448450 (1993).
http://dx.doi.org/10.1002/adma.19930050607
6.
6. J. M. Manriquez et al., “ A room-temperature molecular/organic-based magnet,” Science 252, 14151417 (1991).
http://dx.doi.org/10.1126/science.252.5011.1415
7.
7. M. Mannini et al., “ Magnetic memory of a single-molecule quantum magnet wired to a gold surface,” Nat. Mater. 8, 194197 (2009).
http://dx.doi.org/10.1038/nmat2374
8.
8. K. V. Raman et al., “ Interface-engineered templates for molecular spin memory devices,” Nature 493, 509513 (2013).
http://dx.doi.org/10.1038/nature11719
9.
9. T. Miyamachi et al., “ Robust spin crossover and memristance across a single molecule,” Nat. Commun. 3, 938 (2012).
http://dx.doi.org/10.1038/ncomms1940
10.
10. M. N. Leuenberger and D. Loss, “ Quantum computing in molecular magnets,” Nature 410, 789793 (2001).
http://dx.doi.org/10.1038/35071024
11.
11. A. R. Rocha et al., “ Towards molecular spintronics,” Nat. Mater. 4, 335339 (2005).
http://dx.doi.org/10.1038/nmat1349
12.
12. L. Bogani and W. Wernsdorfer, “ Molecular spintronics using single-molecule magnets,” Nat. Mater. 7, 179186 (2008).
http://dx.doi.org/10.1038/nmat2133
13.
13. D. Gatteschi, A. Caneschi, L. Pardi, and R. Sessoli, “ Large clusters of metal ions: The transition from molecular to bulk magnets,” Science 265, 10541058 (1994).
http://dx.doi.org/10.1126/science.265.5175.1054
14.
14. E. M. Chudnovsky, “ Quantum hysteresis in molecular magnets,” Science 274, 938939 (1996).
http://dx.doi.org/10.1126/science.274.5289.938
15.
15. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “ Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3830
16.
16. M. Mannini et al., “ Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets,” Nature 468, 417421 (2010).
http://dx.doi.org/10.1038/nature09478
17.
17. L. Malavolti et al., “ Erratic magnetic hysteresis of TbPc2 molecular nanomagnets,” J. Mater. Chem. C 1, 29352942 (2013).
http://dx.doi.org/10.1039/c3tc00925d
18.
18. P. Gambardella et al., “ Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface,” Nat. Mater. 8, 189193 (2009).
http://dx.doi.org/10.1038/nmat2376
19.
19. A. Cornia, M. Mannini, P. Sainctavitc, and R. Sessoli, “ Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces,” Chem. Soc. Rev. 40, 30763091 (2011).
http://dx.doi.org/10.1039/c0cs00187b
20.
20. A. Scheybal et al., “ Induced magnetic ordering in a molecular monolayer,” Chem. Phys. Lett. 411, 214220 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.06.017
21.
21. H. Wende et al., “ Substrate-induced magnetic ordering and switching of iron porphyrin molecules,” Nat. Mater. 6, 516520 (2007).
http://dx.doi.org/10.1038/nmat1932
22.
22. M. Bernien et al., “ Tailoring the nature of magnetic coupling of Fe-porphyrin molecules to ferromagnetic substrates,” Phys. Rev. Lett. 102, 047202 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.047202
23.
23. C. Iacovita et al., “ Visualizing the spin of individual cobalt-phthalocyanine molecules,” Phys. Rev. Lett. 101, 116602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.116602
24.
24. S. Lach et al., “ Metal–organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics,” Adv. Funct. Mater. 22, 989997 (2012).
http://dx.doi.org/10.1002/adfm.201102297
25.
25. C. Herper et al., “ Iron porphyrins molecules on Cu (001): Influence of adlayers and ligands on the magnetic properties,” Phys. Rev. B 87, 174425 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.174425
26.
26. J. V. Barth, “ Fresh perspectives for surface coordination chemistry,” Surf. Sci. 603, 15331541 (2009).
http://dx.doi.org/10.1016/j.susc.2008.09.049
27.
27. H. Wende, “ Revelation of the crucial interactions in spin-hybrid systems by means of X-ray adsorption spectroscopy,” J. Electron Spectrosc. Relat. Phenom. 189, 171177 (2013).
http://dx.doi.org/10.1016/j.elspec.2013.04.010
28.
28. C. Wäckerlin et al., “ On-surface coordination chemistry of planar molecular spin systems: Novel magnetochemical effects induced by axial ligands,” Chem. Sci. 3, 31543160 (2012).
http://dx.doi.org/10.1039/c2sc20828h
29.
29. J. Brede et al., “ Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution,” Phys. Rev. Lett. 105, 047204 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.047204
30.
30. N. Atodiresei et al., “ Design of the local spin polarization at the organic ferromagnetic interface,” Phys. Rev. Lett. 105, 066601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.066601
31.
31. S. Bhandary et al., “ Manipulation of spin state of iron porphyrins by chemisorption on magnetic substrates,” Phys. Rev. B 88, 024401 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024401
32.
32. N. Atodiresei, V. Caciuc, P. Laźic, and S. Blügel, Chemical and van der Waals Interactions at Hybrid Organic-Metal Interfaces, see http://www.psi-k.org.
33.
33. M. A. Baldo and S. R. Forrest, “ Interface-limited injection in amorphous organic semiconductor,” Phys. Rev. B 64, 085201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085201
34.
34. R. Hoffmann, “ A chemical and theoretical way to look at bonding on surfaces,” Rev. Mod. Phys. 60, 601628 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.601
35.
35. J. B. Neaton, M. S. Hybertsen, and S. G. Louie, “ Renormalization of molecular electronic levels at metal-molecule interfaces,” Phys. Rev. Lett. 97, 216405 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216405
36.
36. J. M. Garcia-Lastra, C. Rostgaard, A. Rubio, and K. S. Thygesen, “ Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces,” Phys. Rev. B 80, 245427 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245427
37.
37. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “ Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces,” Adv. Mater. 11, 605625 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
38.
38. K. V. Raman et al., “ Effect of molecular ordering on spin and charge injection in organic semiconductors,” Phys. Rev. B 80, 195212 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195212
39.
39. N. Atodiresei, V. Caciuc, P. Laźic, and S. Blügel, “ Chemical versus van der Waals interaction: The role of the heteroatom in the flat absorption of aromatic molecules C6H6, C5NH5, and C4N2H4 on the Cu(110) surface,” Phys. Rev. Lett. 102, 136809 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.136809
40.
40. K. V. Raman, “ Spin injection and manipulation in organic semiconductors,” Ph.D. thesis ( MIT, 2011), see http://dspace.mit.edu/handle/1721.1/69795.
41.
41. H. C. Siegmann, “ Surface and 2D magnetism,” J. Phys.: Condens. Matter 4, 83958434 (1992).
http://dx.doi.org/10.1088/0953-8984/4/44/004
42.
42. J. S. Miller and M. Drillon, Magnetism: Nanosized Magnetic Materials, Magnetism: Molecules to Materials Vol. 3 ( Wiley-VCH, 2002).
43.
43. D. A. Dimitrov and G. M. Wysin, “ Magnetic properties of spherical fcc clusters with radial surface anisotropy,” Phys. Rev. B 51, 1194711950 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.11947
44.
44. S. Stepanow et al., “ Giant spin and orbital moment anisotropies of a Cu-phthalocyanine monolayer,” Phys. Rev. B 82, 014405 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.014405
45.
45. N. Atodiresei, V. Caciuc, P. Lazic, and S. Blügel, “ Engineering the magnetic properties of hybrid organic-ferromagnetic interfaces by molecular chemical functionalization,” Phys. Rev. B 84, 172402 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.172402
46.
46. A. J. Cohen, P. Mori-Sanchez, and W. Yang, “ Challenges for density functional theory,” Chem. Rev. 112, 289320 (2012).
http://dx.doi.org/10.1021/cr200107z
47.
47. D. M. Ceperley and B. J. Alder, “ Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
48.
48. J. P. Perdew, K. Burke, and M. Ernzerhof, “ Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
49.
49. M. Dion et al., “ Van der Waals density functional for general geometries,” Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
50.
50. R. Wiesendanger et al., “ Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope,” Phys. Rev. Lett. 65, 247 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.247
51.
51. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, “ Spin-dependent conductance of Fe/MgO/Fe sandwiches,” Phys. Rev. B 63, 054416 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.054416
52.
52. J. S. Moodera, G. X. Miao, and T. S. Santos, “ Frontiers in spin-polarized tunneling,” Phys. Today 63(4), 4651 (2010).
http://dx.doi.org/10.1063/1.3397043
53.
53. R. Meservey and P. M. Tedrow, “ Spin-polarized electron tunneling,” Phys. Rep. 238, 173243 (1994).
http://dx.doi.org/10.1016/0370-1573(94)90105-8
54.
54. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, “ Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett. 74, 3273 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3273
55.
55. K. V. Raman, “ Focusing on the molecular scale,” Nat. Nanotechnol. 8, 886 (2013).
http://dx.doi.org/10.1038/nnano.2013.262
56.
56. F. Djeghloul et al., “ Direct observation of a highly spin-polarized organic spinterface at room temperature,” Sci. Rep. 3, 1272 (2013).
http://dx.doi.org/10.1038/srep01272
57.
57. M. Cinchetti et al., “ Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission,” Nat. Mater. 8, 115119 (2009).
http://dx.doi.org/10.1038/nmat2334
58.
58. Y.-J. Hsu et al., “ Enhanced magnetic anisotropy via quasi-molecular magnet at organic-ferromagnetic contact,” J. Phys. Chem. Lett. 4, 310−316 (2013).
http://dx.doi.org/10.1021/jz301757x
59.
59. J. Miguel et al., “ Reversible manipulation of the magnetic coupling of single molecular spins in Fe-porphyrins to a ferromagnetic substrate,” J. Phys. Chem. Lett. 2, 14551459 (2011).
http://dx.doi.org/10.1021/jz200489y
60.
60. C. F. Hermanns et al., “ Switching the electronic properties of Co-octaethylporphyrin molecules on oxygen-covered Ni films by NO adsorption,” J. Phys.: Condens. Matter 24, 394008 (2012).
http://dx.doi.org/10.1088/0953-8984/24/39/394008
61.
61. R. Decker et al., “ Atomic-scale magnetism of cobalt-intercalated graphene,” Phys. Rev. B 87, 041403(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.87.041403
62.
62. E. Durgun, R. T. Senger, H. Mehrez, H. Sevincli, and S. Ciraci, “ Size-dependent alternation of magnetoresistive properties in atomic chains,” J. Chem. Phys. 125, 121102 (2006).
http://dx.doi.org/10.1063/1.2354080
63.
63. H. Sevincli et al., “ Oscillatory exchange coupling in magnetic molecules,” J. Phys.: Condens. Matter 19, 216205 (2007).
http://dx.doi.org/10.1088/0953-8984/19/21/216205
64.
64. M. Callsen et al., “ Magnetic hardening induced by non-magnetic organic molecules,” Phys. Rev. Lett. 111, 106805 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.106805
65.
65. K. V. Raman and J. S. Moodera, “ High density molecular memory with read and write capabilities,” US patent 20,130,100,724 (2013).
66.
66. S. Steil et al., “ Spin-dependent trapping of electrons at spinterfaces,” Nat. Phys. 9, 242247 (2013).
http://dx.doi.org/10.1038/nphys2548
67.
67. K. V. Raman, J. Chang, and J. S. Moodera, “ New method of spin injection into organic semiconductor using spin-filtering tunnel barriers,” Org. Electron. 12, 12751278 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.04.012
68.
68. J. Schwöbel et al., “ Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets,” Nat. Commun. 3, 953 (2012).
http://dx.doi.org/10.1038/ncomms1953
69.
69. S. L. Kawahara et al., “ Large magnetoresistance through a single molecule due to a spin-split hybridized orbital,” Nano Lett. 12, 45584563 (2012).
http://dx.doi.org/10.1021/nl301802e
70.
70. S. Bhandary et al., “ Graphene as a reversible spin manipulator of molecular magnets,” Phys. Rev. Lett. 107, 257202 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.257202
71.
71. Y. Wang, J. G. Che, J. N. Fry, and H.-P. Cheng, “ Reversible spin polarization at hybrid organic−ferromagnetic interfaces,” J. Phys. Chem. Lett. 4, 35083512 (2013).
http://dx.doi.org/10.1021/jz401800m
72.
72. C. Wedge et al., “ Chemical engineering of molecular qubits,” Phys. Rev. Lett. 108, 107204 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.107204
73.
73. G. A. Timco et al., “ Engineering the coupling between molecular spin qubits by coordination chemistry,” Nat. Nanotechnol. 4, 173178 (2009).
http://dx.doi.org/10.1038/nnano.2008.404
74.
74. A. Morello et al., “ Nuclear spin dynamics in the quantum regime of a single-molecule magnet,” Phys. Rev. Lett. 93, 197202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.197202
75.
75. D. Chylarecka et al., “ Self-assembly and superexchange coupling of magnetic molecules on oxygen-reconstructed ferromagnetic thin film,” J. Phys. Chem. Lett. 1, 14081413 (2010).
http://dx.doi.org/10.1021/jz100253c
76.
76. A. Saywell et al., “ Self-assembled aggregates formed by single-molecule magnets on a gold surface,” Nat. Commun. 1, 75 (2010).
http://dx.doi.org/10.1038/ncomms1075
77.
77. R. Vincent et al., “ Electrical read-out of a single nuclear spin using a molecular spin transistor,” Nature 488, 357360 (2012).
http://dx.doi.org/10.1038/nature11341
78.
78. S. Fahrendorf et al., “ Accessing 4f-states in single-molecular spintronics,” Nat. Commun. 4, 2425 (2013).
http://dx.doi.org/10.1038/ncomms3425
79.
79. Z.-K. Tang et al., “ Enhanced ferromagnetism by adding electrons in triple-decker Gd–phthalocyanine,” Phys. Scr. 87, 045701 (2013).
http://dx.doi.org/10.1088/0031-8949/87/04/045701
80.
80. S. Marocchi et al., “ Graphene-mediated exchange coupling between a molecular spin and magnetic substrates,” Phys. Rev. B 88, 144407 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.144407
81.
81. N. Atodiresei and K. V. Raman, “ Interface-assisted spintronics: Tailoring at the molecular scale,” MRS Bull. 39, 596601 (2014).
http://dx.doi.org/10.1557/mrs.2014.130
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/3/10.1063/1.4890496
Loading
/content/aip/journal/apr2/1/3/10.1063/1.4890496
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/3/10.1063/1.4890496
2014-07-22
2014-10-24

Abstract

Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/3/1.4890496.html;jsessionid=kz9kfvubameu.x-aip-live-02?itemId=/content/aip/journal/apr2/1/3/10.1063/1.4890496&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interface-assisted molecular spintronics
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/3/10.1063/1.4890496
10.1063/1.4890496
SEARCH_EXPAND_ITEM