Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/1/3/10.1063/1.4893546
1.
1. M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, Nanoscale 4, 2783 (2012).
http://dx.doi.org/10.1039/c2nr30437f
2.
2. T. Song, H. Cheng, H. Choi, J.-H. Lee, H. Han, D. H. Lee, D. S. Yoo, M.-S. Kwon, J.-M. Choi, S. G. Doo et al., ACS Nano 6, 303 (2012).
http://dx.doi.org/10.1021/nn203572n
3.
3. Y. Hayamizu, T. Yamada, K. Mizuno, R. C. Davis, D. N. Futaba, M. Yumura, and K. Hata, Nat. Nanotechnol. 3, 289 (2008).
http://dx.doi.org/10.1038/nnano.2008.98
4.
4. R. Shabani and H. J. Cho, Rev. Nanosci. Nanotechnol. 1, 85 (2012).
http://dx.doi.org/10.1166/rnn.2012.1006
5.
5. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. S. Baturin, and V. I. Balykin, Opt. Express 21, 13896 (2013).
http://dx.doi.org/10.1364/OE.21.013896
6.
6. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. V. Gopa, A. M. Grishin, S. I. Khartsev et al., Nat. Commun. 4, 2128 (2013).
http://dx.doi.org/10.1038/ncomms3128
7.
7. M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. Garcia de Abajo, and M. D. Lukin, Phys. Rev. Lett. 111, 247401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.247401
8.
8. M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutierrez, M. P. Morales, I. B. Bohm, J. T. Heverhagen, D. Prosperi, and W. J. Parak, Chem. Soc. Rev. 41, 4306 (2012).
http://dx.doi.org/10.1039/c2cs15337h
9.
9. M. Safi, M. Yan, M.-A. Guedeau-Boudeville, H. Conjeaud, V. Garnier-Thibaud, N. Boggetto, A. Baeza-Squiban, F. Niedergang, D. Averbeck, and J.-F. Berret, ACS Nano 5, 5354 (2011).
http://dx.doi.org/10.1021/nn201121e
10.
10. J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, Nano Lett. 10, 3223 (2010).
http://dx.doi.org/10.1021/nl102184c
11.
11. K. M. Pondman, A. W. Maijenburg, F. B. Celikkol, A. A. Pathan, U. Kishore, B. ten Haken, and J. E. ten Elshof, J. Mater. Chem. B 1, 6129 (2013).
http://dx.doi.org/10.1039/c3tb20808g
12.
12. H. Masuda and K. Fukuda, Science 268, 1466 (1995).
http://dx.doi.org/10.1126/science.268.5216.1466
13.
13. W. Lee, R. Ji, U. Gosele, and K. Nielsch, Nat. Mater. 5, 741 (2006).
http://dx.doi.org/10.1038/nmat1717
14.
14. D. Losic and D. Losic, Langmuir 25, 5426 (2009).
http://dx.doi.org/10.1021/la804281v
15.
15. B. Platschek, A. Keilbach, and T. Bein, Adv. Mater. 23, 2395 (2011).
http://dx.doi.org/10.1002/adma.201002828
16.
16. S. J. Son, X. Bai, and S. B. Lee, Drug Discovery Today 12, 650 (2007).
http://dx.doi.org/10.1016/j.drudis.2007.06.002
17.
17. R. P. Cowburn, A. O. Adeyeye, and J. A. C. Bland, Appl. Phys. Lett. 70, 2309 (1997).
http://dx.doi.org/10.1063/1.118845
18.
18. R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000).
http://dx.doi.org/10.1126/science.287.5457.1466
19.
19. R. C. Furneaux, W. R. Rigby, and A. P. Davidson, Nature 337, 147 (1989).
http://dx.doi.org/10.1038/337147a0
20.
20. G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, Nature 272, 433 (1978).
http://dx.doi.org/10.1038/272433a0
21.
21. J. W. Diggle, T. C. Downie, and C. W. Goulding, Chem. Rev. 69, 365 (1969).
http://dx.doi.org/10.1021/cr60259a005
22.
22. J. Woods, “ Process for anodizing aluminum and its alloys,” U.S. patent 3,857,766 (1974).
23.
23. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, J. Electrochem. Soc. 153, B384 (2006).
http://dx.doi.org/10.1149/1.2218822
24.
24. F. Zhang, X. H. Liu, C. F. Pan, and J. Zhu, Nanotechnology 18, 345302 (2007).
http://dx.doi.org/10.1088/0957-4484/18/34/345302
25.
25. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, Adv. Mater. 13, 189 (2001).
http://dx.doi.org/10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
26.
26. O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwande, S. B. Cronin, and M. S. Dresselhaus, Adv. Funct. Mater. 13, 631 (2003).
http://dx.doi.org/10.1002/adfm.200304394
27.
27. A. F. Feil, M. V. da Costa, L. Amaral, S. R. Teixeira, P. Migowski, J. Dupont, G. Machado, and S. B. Peripolli, J. Appl. Phys. 107, 026103 (2010).
http://dx.doi.org/10.1063/1.3291115
28.
28. A. D. Franklin, D. B. Janes, J. C. Claussen, T. S. Fisher, and T. D. Sands, Appl. Phys. Lett. 92, 013122 (2008).
http://dx.doi.org/10.1063/1.2831002
29.
29. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Adv. Mater. 11, 483 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199904)11:6<483::AID-ADMA483>3.0.CO;2-I
30.
30. D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits, Adv. Mater. 12, 1252 (2000).
http://dx.doi.org/10.1002/1521-4095(200009)12:17<1252::AID-ADMA1252>3.0.CO;2-0
31.
31. H. Masuda, K. Yasui, and K. Nishio, Adv. Mater. 12, 1031 (2000).
http://dx.doi.org/10.1002/1521-4095(200007)12:14<1031::AID-ADMA1031>3.0.CO;2-R
32.
32. Q. Y. Huang, W. K. Lye, and M. L. Reed, Appl. Phys. Lett. 88, 233112 (2006).
http://dx.doi.org/10.1063/1.2212535
33.
33. J. Zou, X. Y. Qi, L. W. Tan, and B. J. H. Stadler, Appl. Phys. Lett. 89, 093106 (2006).
http://dx.doi.org/10.1063/1.2337560
34.
34. B. Wolfrum, Y. Mourzina, D. Mayer, D. Schwaab, and A. Offenhausser, Small 2, 1256 (2006).
http://dx.doi.org/10.1002/smll.200600311
35.
35. J. Choi, R. B. Wehrspohn, and U. Gosele, Electrochim. Acta 50, 2591 (2005).
http://dx.doi.org/10.1016/j.electacta.2004.11.004
36.
36. W. Lee, R. Ji, C. A. Ross, U. Gosele, and K. Nielsch, Small 2, 978 (2006).
http://dx.doi.org/10.1002/smll.200600100
37.
37. A. P. Robinson, G. Burnell, M. Hu, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 91, 143123 (2007).
http://dx.doi.org/10.1063/1.2794031
38.
38. S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G. A. Ozin, Adv. Mater. 16, 2193 (2004).
http://dx.doi.org/10.1002/adma.200400484
39.
39. Z. Sun and H. K. Kim, Appl. Phys. Lett. 81, 3458 (2002).
http://dx.doi.org/10.1063/1.1517719
40.
40. J. M. Montero-Moreno, M. Waleczek, S. Martens, R. Zierold, D. Gorlitz, V. V. Martinez, V. M. Prida, and K. Nielsch, Adv. Funct. Mater. 24, 1857 (2014).
http://dx.doi.org/10.1002/adfm.201303268
41.
41. D. Lo and R. A. Budiman, J. Electrochem. Soc. 154, C60 (2007).
http://dx.doi.org/10.1149/1.2387104
42.
42. K. Nielsch, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S. F. Fischer, and H. Kronmuller, Appl. Phys. Lett. 79, 1360 (2001).
http://dx.doi.org/10.1063/1.1399006
43.
43. R. Karmhag, T. Tesfamichael, E. Wackelgard, A. Niklasson, and M. Nygren, Sol. Energy 68, 329 (2000).
http://dx.doi.org/10.1016/S0038-092X(00)00025-6
44.
44. F. Gadot, A. Chelnokov, A. De Lustrac, P. Crozat, J. M. Lourtioz, D. Cassagne, and C. Jouanin, Appl. Phys. Lett. 71, 1780 (1997).
http://dx.doi.org/10.1063/1.119396
45.
45. H. Asoh, M. Matsuo, M. Yoshihama, and S. Ono, Appl. Phys. Lett. 83, 4408 (2003).
http://dx.doi.org/10.1063/1.1629385
46.
46. Y. Lei and W. K. Chim, Chem. Mater. 17, 580 (2005).
http://dx.doi.org/10.1021/cm048609c
47.
47. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Ruoff, Chem. Mater. 10, 260 (1998).
http://dx.doi.org/10.1021/cm970412f
48.
48. G. Gorokh, A. Mozalev, D. Solovei, V. Khatko, E. Llobet, and X. Correig, Electrochim. Acta 52, 1771 (2006).
http://dx.doi.org/10.1016/j.electacta.2006.01.081
49.
49. H. J. Kang, D. J. Kim, S. J. Park, J. B. Yoo, and Y. S. Ryu, Thin Solid Films 515, 5184 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.10.029
50.
50. C. T. Sousa, C. Nunes, M. P. Proenca, D. C. Leitao, J. L. F. C. Lima, S. Reis, J. P. Araujo, and M. Lucio, Colloids Surf., B 94, 288 (2012).
http://dx.doi.org/10.1016/j.colsurfb.2012.02.003
51.
51. F. Y. Li, L. Zhang, and R. M. Metzger, Chem. Mater. 10, 2470 (1998).
http://dx.doi.org/10.1021/cm980163a
52.
52. J. Choi, Ph.D. thesis, Martin-Luther University, 2004.
53.
53. P. Skeldon, K. Shimizu, G. E. Thompson, and G. C. Wood, Thin Solid Films 123, 127 (1985).
http://dx.doi.org/10.1016/0040-6090(85)90014-8
54.
54. R. B. Wehrspohn, Ordered Porous Nanostructures and Applications, Nanostructure Science and Technology ( Springer, New York, 2005).
55.
55. G. E. Thompson and G. C. Wood, Corrosion: Aqueous Processes and Passive Films, Treatise on Materials Science and Technology Vol. 23 ( Academic Press, New York, 1983).
56.
56. R. B. Mason, J. Electrochem. Soc. 102, 671 (1955).
http://dx.doi.org/10.1149/1.2429940
57.
57. Y. Xu, G. E. Thompson, G. C. Wood, and B. Bethune, Corros. Sci. 27, 83 (1987).
http://dx.doi.org/10.1016/0010-938X(87)90121-1
58.
58. D. H. Fan, G. Q. Ding, W. Z. Shen, and M. J. Zheng, Microporous Mesoporous Mater. 100, 154 (2007).
http://dx.doi.org/10.1016/j.micromeso.2006.10.025
59.
59. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, Nano Lett. 2, 677 (2002).
http://dx.doi.org/10.1021/nl025537k
60.
60. J. P. O'Sullivan and G. C. Wood, Proc. R. Soc. London, Ser. A 317, 511 (1970).
http://dx.doi.org/10.1098/rspa.1970.0129
61.
61. B. Scharifker and G. Hills, Electrochim. Acta 28, 879 (1983).
http://dx.doi.org/10.1016/0013-4686(83)85163-9
62.
62. G. E. Thompson and G. C. Wood, Nature 290, 230 (1981).
http://dx.doi.org/10.1038/290230a0
63.
63. S. Ono, M. Saito, and H. Asoh, Electrochim. Acta 51, 827 (2005).
http://dx.doi.org/10.1016/j.electacta.2005.05.058
64.
64. T. P. Hoar and N. F. Mott, J. Phys. Chem. Solids 9, 97 (1959).
http://dx.doi.org/10.1016/0022-3697(59)90199-4
65.
65. K. Shimizu, K. Kobayashi, G. E. Thompson, and G. C. Wood, Philos. Mag. B 64, 345 (1991).
http://dx.doi.org/10.1080/13642819108207625
66.
66. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. 25, 1258 (1992).
http://dx.doi.org/10.1088/0022-3727/25/8/017
67.
67. S. K. Thamida and H. C. Chang, Chaos 12, 240 (2002).
http://dx.doi.org/10.1063/1.1436499
68.
68. D. C. Leitao, A. Apolinario, C. T. Sousa, J. Ventura, J. B. Sousa, M. Vazquez, and J. P. Araujo, J. Phys. Chem. C 115, 8567 (2011).
http://dx.doi.org/10.1021/jp202336j
69.
69. S. Tajima, Electrochim. Acta 22, 995 (1977).
http://dx.doi.org/10.1016/0013-4686(77)85011-1
70.
70. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998).
http://dx.doi.org/10.1063/1.121004
71.
71. O. Jessensky, F. Muller, and U. Gosele, J. Electrochem. Soc. 145, 3735 (1998).
http://dx.doi.org/10.1149/1.1838867
72.
72. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys. 84, 6023 (1998).
http://dx.doi.org/10.1063/1.368911
73.
73. M. P. Proenca, C. T. Sousa, D. C. Leitao, J. Ventura, J. B. Sousa, and J. P. Araujo, J. Non-Cryst. Solids 354, 5238 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2008.04.055
74.
74. S. Ono, M. Saito, and H. Asoh, Electrochem. Solid-State Lett. 7, B21 (2004).
http://dx.doi.org/10.1149/1.1738553
75.
75. Z. X. Su and W. Z. Zhou, Adv. Mater. 20, 3663 (2008).
http://dx.doi.org/10.1002/adma.200800845
76.
76. Z. X. Su, G. Hahner, and W. Z. Zhou, J. Mater. Chem. 18, 5787 (2008).
http://dx.doi.org/10.1039/B812432A
77.
77. G. D. Sulka and K. G. Parkola, Electrochim. Acta 52, 1880 (2007).
http://dx.doi.org/10.1016/j.electacta.2006.07.053
78.
78. G. Patermarakis, J. Solid State Electrochem. 10, 211 (2006).
http://dx.doi.org/10.1007/s10008-005-0665-7
79.
79. M. A. Kashi, A. Ramazani, Y. Mayamai, and M. Noormohammadi, Jpn. J. Appl. Phys., Part 1 49, 015202 (2010).
http://dx.doi.org/10.1143/JJAP.49.015202
80.
80. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997).
http://dx.doi.org/10.1063/1.120128
81.
81. A. Eftekhari, Nanostructured Materials in Electrochemistry ( Wiley-VHC Verlag GmbH & Co. KGaA, Weinheim, 2008).
82.
82. J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gosele, J. Vac. Sci. Technol., B 21, 763 (2003).
http://dx.doi.org/10.1116/1.1556397
83.
83. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, Adv. Mater. 17, 2115 (2005).
http://dx.doi.org/10.1002/adma.200500401
84.
84. S. Y. Zhao, K. Chan, A. Yelon, and T. Veres, Adv. Mater. 19, 3004 (2007).
http://dx.doi.org/10.1002/adma.200701284
85.
85. Y. Li, Z. Y. Ling, S. S. Chen, X. Hu, and X. H. He, Chem. Commun. 46, 309 (2010).
http://dx.doi.org/10.1039/b914703a
86.
86. W. Lee, J. C. Kim, and U. Gosele, Adv. Funct. Mater. 20, 21 (2010).
http://dx.doi.org/10.1002/adfm.200901213
87.
87. Y. B. Li, M. J. Zheng, L. Ma, and W. Z. Shen, Nanotechnology 17, 5101 (2006).
http://dx.doi.org/10.1088/0957-4484/17/20/010
88.
88. M. A. Kashi, A. Ramazani, M. Noormohammadi, M. Zarei, and P. Marashi, J. Phys. D: Appl. Phys. 40, 7032 (2007).
http://dx.doi.org/10.1088/0022-3727/40/22/025
89.
89. M. Kim, Y.-C. Ha, T. N. Nguyen, H. Y. Choi, and D. Kim, Nanotechnology 24, 505304 (2013).
http://dx.doi.org/10.1088/0957-4484/24/50/505304
90.
90. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gosele, Nat. Nanotechnol. 3, 234 (2008).
http://dx.doi.org/10.1038/nnano.2008.54
91.
91. W. Lee, R. Scholz, and U. Gosele, Nano Lett. 8, 2155 (2008).
http://dx.doi.org/10.1021/nl080280x
92.
92. W. Lee and J. C. Kim, Nanotechnology 21, 485304 (2010).
http://dx.doi.org/10.1088/0957-4484/21/48/485304
93.
93. D. Losic, M. Lillo, and D. Losic, Small 5, 1392 (2009).
http://dx.doi.org/10.1002/smll.200801645
94.
94. K. Pitzschel, J. M. Montero Moreno, J. Escrig, O. Albrecht, K. Nielsch, and J. Bachmann, ACS Nano 3, 3463 (2009).
http://dx.doi.org/10.1021/nn900909q
95.
95. K. Pitzschel, J. Bachmann, S. Martens, J. M. Montero-Moreno, J. Kimling, G. Meier, J. Escrig, K. Nielsch, and D. Gorlitz, J. Appl. Phys. 109, 033907 (2011).
http://dx.doi.org/10.1063/1.3544036
96.
96. J.-H. Lim, A. Rotaru, S.-G. Min, L. Malkinski, and J. B. Wiley, J. Mater. Chem. 20, 9246 (2010).
http://dx.doi.org/10.1039/C0JM01365J
97.
97. M. S. Salem, P. Sergelius, R. M. Corona, J. Escrig, D. Gorlitz, and K. Nielsch, Nanoscale 5, 3941 (2013).
http://dx.doi.org/10.1039/c3nr00633f
98.
98. G. D. Sulka and K. Hnida, Nanotechnology 23, 075303 (2012).
http://dx.doi.org/10.1088/0957-4484/23/7/075303
99.
99. C. K. Y. Ng and A. H. W. Ngan, Chem. Mater. 23, 5264 (2011).
http://dx.doi.org/10.1021/cm202461z
100.
100. G. K. Singh, A. A. Golovin, and I. S. Aranson, Phys. Rev. B 73, 205422 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205422
101.
101. D. C. Leitao, C. T. Sousa, J. Ventura, F. Carpinteiro, J. G. Correia, M. M. Amado, J. B. Sousa, and J. P. Araujo, Phys. Status Solidi C 5, 3488 (2008).
http://dx.doi.org/10.1002/pssc.200779430
102.
102. A. Rauf, M. Mehmood, M. A. Rasheed, and M. Aslam, J. Solid State Electrochem. 13, 321 (2009).
http://dx.doi.org/10.1007/s10008-008-0550-2
103.
103. V. V. Yuzhakov, H. C. Chang, and A. E. Miller, Phys. Rev. B 56, 12608 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.12608
104.
104. V. V. Yuzhakov, P. V. Takhistov, A. E. Miller, and H. C. Chang, Chaos 9, 62 (1999).
http://dx.doi.org/10.1063/1.166380
105.
105. L. B. Kong, Y. Huang, Y. Guo, and H. L. Li, Mater. Lett. 59, 1656 (2005).
http://dx.doi.org/10.1016/j.matlet.2005.01.036
106.
106. B. Lu, S. Bharathulwar, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys. 87, 4721 (2000).
http://dx.doi.org/10.1063/1.373138
107.
107. Y. D. Gamburg and G. Zangari, Theory and Practice of Metal Electrodeposition ( Springer, New York, 2011).
108.
108. M. Schlesinger and M. Paunovic, Modern Electroplating ( Wiley, 2000).
109.
109. T. M. Whitney, P. C. Searson, J. S. Jiang, and C. L. Chien, Science 261, 1316 (1993).
http://dx.doi.org/10.1126/science.261.5126.1316
110.
110. M. P. Proenca, C. T. Sousa, J. Ventura, M. Vazquez, and J. P. Araujo, Electrochim. Acta 72, 215 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.04.036
111.
111. J. Qin, J. Nogues, M. Mikhaylova, A. Roig, J. S. Munoz, and M. Muhammed, Chem. Mater. 17, 1829 (2005).
http://dx.doi.org/10.1021/cm047870q
112.
112. V. Haehnel, S. Fahler, P. Schaaf, M. Miglierini, C. Mickel, L. Schultz, and H. Schlorb, Acta Mater. 58, 2330 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.12.019
113.
113. N. Winkler, J. Leuthold, Y. Lei, and G. Wilde, J. Mater. Chem. 22, 16627 (2012).
http://dx.doi.org/10.1039/C2JM33224H
114.
114. C.-G. Wu, H. L. Lin, and N.-L. Shau, J. Solid State Electrochem. 10, 198 (2006).
http://dx.doi.org/10.1007/s10008-004-0622-x
115.
115. X. Zhang, H. Zhang, T. Wu, Z. Li, Z. Zhang, and H. Sun, J. Magn. Magn. Mater. 331, 162 (2013).
http://dx.doi.org/10.1016/j.jmmm.2012.11.033
116.
116. V. Vega, T. Bohnert, S. Martens, M. Waleczek, J. M. Montero-Moreno, D. Gorlitz, V. M. Prida, and K. Nielsch, Nanotechnology 23, 465709 (2012).
http://dx.doi.org/10.1088/0957-4484/23/46/465709
117.
117. L. G. Vivas, M. Vazquez, J. Escrig, S. Allende, D. Altbir, D. C. Leitao, and J. P. Araujo, Phys. Rev. B 85, 035439 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035439
118.
118. A. Llavona, L. Perez, M. C. Sanchez, and V. de Manuel, Electrochim. Acta 106, 392 (2013).
http://dx.doi.org/10.1016/j.electacta.2013.05.116
119.
119. M. Martin-Gonzalez, G. J. Snyder, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Nano Lett. 3, 973 (2003).
http://dx.doi.org/10.1021/nl034079s
120.
120. K. Y. Kok, C. M. Hangarter, B. Goldsmith, I. K. Ng, N. B. Saidin, and N. V. Myung, J. Magn. Magn. Mater. 322, 3876 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.08.012
121.
121. F. S. Fedorov, I. Monch, C. Mickel, K. Tschulik, B. Zhao, M. Uhlemann, A. Gebert, and J. Eckert, J. Electrochem. Soc. 160, D13 (2013).
http://dx.doi.org/10.1149/2.006302jes
122.
122. P. Cojocaru, A. Leserri, L. Magagnin, M. Vazquez, and G. Carac, ECS Trans. 33, 43 (2011).
http://dx.doi.org/10.1149/1.3573587
123.
123. V. M. Prida, J. Garcia, L. Iglesias, V. Vega, D. Gorlitz, K. Nielsch, E. D. Barriga-Castro, R. Mendoza-Resendez, A. Ponce, and C. Luna, Nanoscale Res. Lett. 8, 263 (2013).
http://dx.doi.org/10.1016/j.progsolidstchem.2003.08.001
124.
124. S. M. Reddy, J. J. Park, S.-M. Na, M. M. Maqableh, A. B. Flatau, and B. J. H. Stadler, Adv. Funct. Mater. 21, 4677 (2011).
http://dx.doi.org/10.1002/adfm.201101390
125.
125. X. W. Wang, Z. H. Yuan, and B. C. Fang, Mater. Chem. Phys. 125, 1 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2010.08.083
126.
126. M. P. Proenca, C. T. Sousa, J. Ventura, M. Vazquez, and J. P. Araujo, Nanoscale Res. Lett. 7, 280 (2012).
http://dx.doi.org/10.1016/j.jmmm.2009.02.035
127.
127. K. Z. Rozman, D. Pecko, L. Suhodolcan, P. J. McGuiness, and S. Kobe, J. Alloys Compd. 509, 551 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.09.108
128.
128. H.-M. Zhang, X.-L. Zhang, J.-J. Zhang, Z.-Y. Li, and H.-Y. Sun, J. Electrochem. Soc. 160, D41 (2013).
http://dx.doi.org/10.1149/2.049302jes
129.
129. M. P. Proenca, J. Ventura, C. T. Sousa, M. Vazquez, and J. P. Araujo, Phys. Rev. B 87, 134404 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.134404
130.
130. C. T. Sousa, A. Apolinario, D. C. Leitao, A. M. Pereira, J. Ventura, and J. P. Araujo, J. Mater. Chem. 22, 3110 (2012).
http://dx.doi.org/10.1039/C2JM14828E
131.
131. C. T. Sousa, A. Apolinario, M. P. Proenca, D. C. Leitao, J. Azevedo, J. Ventura, and J. P. Araujo, “ Dendritic nanostructures grown in hierarchical branched pores,” in Advances in Nanotechnology ( Nova Science Publishers, USA, 2014), Vol. 12.
132.
132. A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, Appl. Phys. Lett. 79, 1039 (2001).
http://dx.doi.org/10.1063/1.1389765
133.
133. N. J. Gerein and J. A. Haber, J. Phys. Chem. B 109, 17372 (2005).
http://dx.doi.org/10.1021/jp051320d
134.
134. K. Nielsch, F. Muller, A. P. Li, and U. Gosele, Adv. Mater. 12, 582 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
135.
135. J. Azevedo, C. T. Sousa, A. Mendes, and J. P. Araujo, J. Nanosci. Nanotechnol. 12, 9112 (2012).
http://dx.doi.org/10.1166/jnn.2012.6769
136.
136. C. T. Sousa, D. C. Leitao, M. P. Proenca, A. Apolinario, J. G. Correia, J. Ventura, and J. P. Araujo, Nanotechnology 22, 315602 (2011).
http://dx.doi.org/10.1088/0957-4484/22/31/315602
137.
137. J. M. Baik, M. Schierhorn, and M. Moskovits, J. Phys. Chem. C 112, 2252 (2008).
http://dx.doi.org/10.1021/jp711621v
138.
138. A. Cai, H. Zhang, H. Hua, and Z. Zhang, Nanotechnology 13, 627 (2002).
http://dx.doi.org/10.1088/0957-4484/13/5/317
139.
139. P. Liu, V. P. Singh, and S. Rajaputra, Nanotechnology 21, 115303 (2010).
http://dx.doi.org/10.1088/0957-4484/21/11/115303
140.
140. J. Sanchez-Barriga, M. Lucas, F. Radu, E. Martin, M. Multigner, P. Marin, A. Hernando, and G. Rivero, Phys. Rev. B 80, 184424 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.184424
141.
141. K. R. Pirota and M. Vazquez, Adv. Eng. Mater. 7, 1111 (2005).
http://dx.doi.org/10.1002/adem.200500162
142.
142. L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, and A. Fert, Appl. Phys. Lett. 65, 2484 (1994).
http://dx.doi.org/10.1063/1.112672
143.
143. C. T. Sousa, D. C. Leitao, J. Ventura, P. B. Tavares, and J. P. Araujo, Nanoscale Res. Lett. 7, 168 (2012).
http://dx.doi.org/10.1186/1556-276X-7-168
144.
144. J. M. D. Coey, Magnetism and Magnetic Materials ( Cambridge University Press, New York, 2009).
145.
145. A. P. Guimaraes, Principles of Nanomagnetism ( Springer, 2009).
146.
146. A. Prina-Mello, Z. Diao, and J. Coey, J. Nanobiotechnol. 4, 9 (2006).
http://dx.doi.org/10.1186/1477-3155-4-9
147.
147. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
148.
148. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005).
http://dx.doi.org/10.1126/science.1108813
149.
149. Y. Peng, H. L. Zhang, S. L. Pan, and H. L. Li, J. Appl. Phys. 87, 7405 (2000).
http://dx.doi.org/10.1063/1.373001
150.
150. J. E. Wegrowe, D. Kelly, A. Franck, S. E. Gilbert, and J. P. Ansermet, Phys. Rev. Lett. 82, 3681 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3681
151.
151. R. Ferre, K. Ounadjela, J. M. George, L. Piraux, and S. Dubois, Phys. Rev. B 56, 14066 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.14066
152.
152. M. Vazquez, K. Pirota, J. Torrejon, D. Navas, and M. Hernandez-Velez, J. Magn. Magn. Mater. 294, 174 (2005).
http://dx.doi.org/10.1016/j.jmmm.2005.03.032
153.
153. A. Blondel, J. P. Meier, B. Doudin, and J. P. Ansermet, Appl. Phys. Lett. 65, 3019 (1994).
http://dx.doi.org/10.1063/1.112495
154.
154. L. P. Carignan, C. Lacroix, A. Ouimet, M. Ciureanu, A. Yelon, and D. Menard, J. Appl. Phys. 102, 023905 (2007).
http://dx.doi.org/10.1063/1.2756522
155.
155. D. D. Li, R. S. Thompson, G. Bergmann, and J. G. Lu, Adv. Mater. 20, 4575 (2008).
http://dx.doi.org/10.1002/adma.200801455
156.
156. J. Escrig, M. Daub, P. Landeros, K. Nielsch, and D. Altbir, Nanotechnology 18, 445706 (2007).
http://dx.doi.org/10.1088/0957-4484/18/44/445706
157.
157. H. Schlorb, V. Haehnel, M. S. Khatri, A. Srivastav, A. Kumar, L. Schultz, and S. Fahler, Phys. Status Solidi B 247, 2364 (2010).
http://dx.doi.org/10.1002/pssb.201046189
158.
158. Y. Velazquez-Galvan, J. M. Martinez-Huerta, J. De La Torre Medina, Y. Danlee, L. Piraux, and A. Encinas, J. Phys.: Condens. Matter 26, 026001 (2014).
http://dx.doi.org/10.1088/0953-8984/26/2/026001
159.
159. I. Minguez-Bacho, S. Rodriguez-Lopez, M. Vazquez, M. Hernandez-Velez, and K. Nielsch, Nanotechnology 25, 145301 (2014).
http://dx.doi.org/10.1088/0957-4484/25/14/145301
160.
160. J. De La Torre Medina, L. Piraux, J. M. Olais Govea, and A. Encinas, Phys. Rev. B 81, 144411 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.144411
161.
161. M. Vazquez, K. Pirota, M. Hernandez-Velez, V. M. Prida, D. Navas, R. Sanz, F. Batallan, and J. Velazquez, J. Appl. Phys. 95, 6642 (2004).
http://dx.doi.org/10.1063/1.1687539
162.
162. S. Da Col, M. Darques, O. Fruchart, and L. Cagnon, Appl. Phys. Lett. 98, 112501 (2011).
http://dx.doi.org/10.1063/1.3562963
163.
163. A. Aharoni, Introduction to Ferromagnetism ( Oxford Science Publications, 1960).
164.
164. M. Beleggia, S. Tandon, Y. Zhu, and M. De Graef, J. Magn. Magn. Mater. 278, 270 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.1314
165.
165. W. Wernsdorfer, B. Doudin, D. Mailly, K. Hasselbach, A. Benoit, J. Meier, J. P. Ansermet, and B. Barbara, Phys. Rev. Lett. 77, 1873 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1873
166.
166. P. Landeros, S. Allende, J. Escrig, E. Salcedo, D. Altbir, and E. E. Vogel, Appl. Phys. Lett. 90, 102501 (2007).
http://dx.doi.org/10.1063/1.2437655
167.
167. R. Hertel, J. Appl. Phys. 90, 5752 (2001).
http://dx.doi.org/10.1063/1.1412275
168.
168. A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen, and U. Ebels, Phys. Rev. B 63, 104415 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.104415
169.
169. D. C. Leitao, C. T. Sousa, J. Ventura, J. S. Amaral, F. Carpinteiro, K. R. Pirota, M. Vazquez, J. B. Sousa, and J. P. Araujo, J. Non-Cryst. Solids 354, 5241 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2008.05.088
170.
170. P. M. Paulus, F. Luis, M. Kroll, G. Schmid, and L. J. de Jongh, J. Magn. Magn. Mater. 224, 180 (2001).
http://dx.doi.org/10.1016/S0304-8853(00)00711-3
171.
171. J. Escrig, D. Altbir, M. Jaafar, D. Navas, A. Asenjo, and M. Vazquez, Phys. Rev. B 75, 184429 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.184429
172.
172. J. Escrig, R. Lavin, J. L. Palma, J. C. Denardin, D. Altbir, A. Cortes, and H. Gomez, Nanotechnology 19, 075713 (2008).
http://dx.doi.org/10.1088/0957-4484/19/7/075713
173.
173. M. Pardavi-Horvath, P. E. Si, M. Vazquez, W. O. Rosa, and G. Badini, J. Appl. Phys. 103, 07D517 (2008).
http://dx.doi.org/10.1063/1.2833304
174.
174. C. T. Sousa, D. C. Leitao, M. P. Proenca, A. Apolinario, A. M. Azevedo, N. A. Sobolev, S. A. Bunyaev, Y. G. Pogorelov, J. Ventura, J. P. Araujo et al., J. Nanosci. Nanotechnol. 12, 7486 (2012).
http://dx.doi.org/10.1166/jnn.2012.6535
175.
175. J. Velazquez, K. R. Pirota, and M. Vazquez, IEEE Trans. Magn. 39, 3049 (2003).
http://dx.doi.org/10.1109/TMAG.2003.815887
176.
176. I. D. Mayergoyz, J. Appl. Phys. 57, 3803 (1985).
http://dx.doi.org/10.1063/1.334925
177.
177. L. Spinu, A. Stancu, C. Radu, F. Li, and J. B. Wiley, IEEE Trans. Magn. 40, 2116 (2004).
http://dx.doi.org/10.1109/TMAG.2004.829810
178.
178. F. Beron, D. Menard, and A. Yelon, J. Appl. Phys. 103, 07D908 (2008).
http://dx.doi.org/10.1063/1.2830955
179.
179. M. P. Proenca, K. J. Merazzo, L. G. Vivas, D. C. Leitao, C. T. Sousa, J. Ventura, J. P. Araujo, and M. Vazquez, Nanotechnology 24, 475703 (2013).
http://dx.doi.org/10.1088/0957-4484/24/47/475703
180.
180. M. P. Proenca, C. T. Sousa, J. Escrig, J. Ventura, M. Vazquez, and J. P. Araujo, J. Appl. Phys. 113, 093907 (2013).
http://dx.doi.org/10.1063/1.4794335
181.
181. R. M. Bozorth, Ferromagnetism ( IEEE Press, 1951).
182.
182. S. Chikazumi, Physics of Magnetism ( Wiley, 1959).
183.
183. Y. Rheem, B. Y. Yoo, W. P. Beyermann, and N. V. Myung, Nanotechnology 18, 015202 (2007).
http://dx.doi.org/10.1088/0957-4484/18/1/015202
184.
184. H. Zeng, S. Michalski, R. D. Kirby, D. J. Sellmyer, L. Menon, and S. Bandyopadhyay, J. Phys.: Condens. Matter 14, 715 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/306
185.
185. M. Hwang, M. Shima, C. A. Ross, C. Seberino, and H. N. Bertram, J. Appl. Phys. 92, 1018 (2002).
http://dx.doi.org/10.1063/1.1484223
186.
186. F. S. Li, T. Wang, L. Y. Ren, and J. R. Sun, J. Phys.: Condens. Matter 16, 8053 (2004).
http://dx.doi.org/10.1088/0953-8984/16/45/027
187.
187. M. Darques, A. Encinas, L. Vila, and L. Piraux, J. Phys. D: Appl. Phys. 37, 1411 (2004).
http://dx.doi.org/10.1088/0022-3727/37/10/001
188.
188. F. Beron, L. Clime, M. Ciureanu, D. Menard, R. W. Cochrane, and A. Yelon, IEEE Trans. Magn. 42, 3060 (2006).
http://dx.doi.org/10.1109/TMAG.2006.880147
189.
189. K. R. Pirota, F. Beron, D. Zanchet, T. C. R. Rocha, D. Navas, J. Torrejon, M. Vazquez, and M. Knobel, J. Appl. Phys. 109, 083919 (2011).
http://dx.doi.org/10.1063/1.3553865
190.
190. L. G. Vivas, R. Yanes, O. Chubykalo-Fesenko, and M. Vazquez, Appl. Phys. Lett. 98, 232507 (2011).
http://dx.doi.org/10.1063/1.3597227
191.
191. L. G. Vivas, J. Escrig, D. G. Trabada, G. A. Badini-Confalonieri, and M. Vazquez, Appl. Phys. Lett. 100, 252405 (2012).
http://dx.doi.org/10.1063/1.4729782
192.
192. M. Darques, A. Encinas, L. Vila, and L. Piraux, J. Phys.: Condens. Matter 16, S2279 (2004).
http://dx.doi.org/10.1088/0953-8984/16/22/030
193.
193. X. H. Han, Q. F. Liu, J. B. Wang, S. L. Li, Y. Ren, R. L. Liu, and F. S. Li, J. Phys. D: Appl. Phys. 42, 095005 (2009).
http://dx.doi.org/10.1088/0022-3727/42/9/095005
194.
194. M. Vazquez and L. G. Vivas, Phys. Status Solidi B 248, 2368 (2011).
http://dx.doi.org/10.1002/pssb.201147092
195.
195. A. Kumar, S. Fahler, H. Schlorb, K. Leistner, and L. Schultz, Phys. Rev. B 73, 064421 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064421
196.
196. D. C. Leitao, J. Ventura, C. T. Sousa, A. M. Pereira, J. B. Sousa, M. Vazquez, and J. P. Araujo, Phys. Rev. B 84, 014410 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014410
197.
197. D. Navas, K. R. Pirota, P. Mendoza Zelis, D. Velazquez, C. A. Ross, and M. Vazquez, J. Appl. Phys. 103, 07D523 (2008).
http://dx.doi.org/10.1063/1.2834719
198.
198. S. Pignard, G. Goglio, A. Radulescu, L. Piraux, S. Dubois, A. Declemy, and J. L. Duvail, J. Appl. Phys. 87, 824 (2000).
http://dx.doi.org/10.1063/1.371947
199.
199. M. Ciria, F. J. Castano, J. L. Diez-Ferrer, J. I. Arnaudas, B. G. Ng, R. C. O'Handley, and C. A. Ross, Phys. Rev. B 80, 094417 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.094417
200.
200. C. Kittel, Introduction to Solid State Physics ( Wiley, New York, 1996).
201.
201. D. Navas, C. Nam, D. Velazquez, and C. A. Ross, Phys. Rev. B 81, 224439 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.224439
202.
202. R. Lavin, J. C. Denardin, A. P. Espejo, A. Cortes, and H. Gomez, J. Appl. Phys. 107, 09B504 (2010).
http://dx.doi.org/10.1063/1.3350905
203.
203. D. J. Sellmyer, M. Zheng, and R. Skomski, J. Phys.: Condens. Matter 13, R433 (2001).
http://dx.doi.org/10.1088/0953-8984/13/25/201
204.
204. D. C. Leitao, C. T. Sousa, J. Ventura, K. R. Pirota, M. Vazquez, J. B. Sousa, and J. P. Araujo, J. Magn. Magn. Mater. 322, 1319 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.04.001
205.
205. R. Skomski, Simple Models of Magnetism ( Oxford Graduate Texts, 2008).
206.
206. H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, and D. J. Sellmyer, Phys. Rev. B 65, 134426 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.134426
207.
207. H. B. Braun, Phys. Rev. Lett. 71, 3557 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.3557
208.
208. G. Bertotti, Hysteresis in Magnetism - For Physicists, Material Scientists and Engineers, Series in Electromagnetism ( Academic Press, 1998).
209.
209. P. Gaunt, J. Appl. Phys. 59, 4129 (1986).
http://dx.doi.org/10.1063/1.336671
210.
210. R. H. Victora, Phys. Rev. Lett. 63, 457 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.457
211.
211. J. S. Broz, H. B. Braun, O. Brodbeck, W. Baltensperger, and J. S. Helman, Phys. Rev. Lett. 65, 787 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.787
212.
212. R. F. Neumann, M. Bahiana, N. M. Vargas, D. Altbir, S. Allende, D. Gorlitz, and K. Nielsch, Appl. Phys. Lett. 102, 202407 (2013).
http://dx.doi.org/10.1063/1.4807119
213.
213. Q. F. Zhan, Z. Y. Chen, D. S. Xue, F. S. Li, H. Kunkel, X. Z. Zhou, R. Roshko, and G. Williams, Phys. Rev. B 66, 134436 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134436
214.
214. L. G. Vivas, Y. P. Ivanov, D. G. Trabada, M. P. Proenca, O. Chubykalo-Fesenko, and M. Vazquez, Nanotechnology 24, 105703 (2013).
http://dx.doi.org/10.1088/0957-4484/24/10/105703
215.
215. R. Skomski, H. Zeng, M. Zheng, and D. J. Sellmyer, Phys. Rev. B 62, 3900 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.3900
216.
216. R. Skomski, J. Appl. Phys. 91, 7053 (2002).
http://dx.doi.org/10.1063/1.1452251
217.
217. J. Escrig, J. Bachmann, J. Jing, M. Daub, D. Altbir, and K. Nielsch, Phys. Rev. B 77, 214421 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214421
218.
218. S. Allende, J. Escrig, D. Altbir, E. Salcedo, and M. Bahiana, Eur. Phys. J. B 66, 37 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00385-4
219.
219. O. Albrecht, R. Zierold, S. Allende, J. Escrig, C. Patzig, B. Rauschenbach, K. Nielsch, and D. Gorlitz, J. Appl. Phys. 109, 093910 (2011).
http://dx.doi.org/10.1063/1.3583666
220.
220. E. C. Stoner and E. P. Wohlfarth, IEEE Trans. Magn. 27, 3475 (1991).
http://dx.doi.org/10.1109/TMAG.1991.1183750
221.
221. R. Lavin, J. C. Denardin, J. Escrig, D. Altbir, A. Cortes, and H. Gomez, J. Appl. Phys. 106, 103903 (2009).
http://dx.doi.org/10.1063/1.3257242
222.
222. A. N. Abdi and J. P. Bucher, Appl. Phys. Lett. 82, 430 (2003).
http://dx.doi.org/10.1063/1.1539908
223.
223. T. G. S. M. Rijks, R. Coehoorn, M. J. M. de Jong, and W. J. M. de Jonge, Phys. Rev. B 51, 283 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.283
224.
224. H. Q. Cao, L. D. Wang, Y. Qiu, Q. Z. Wu, G. Z. Wang, L. Zhang, and X. W. Liu, ChemPhysChem 7, 1500 (2006).
http://dx.doi.org/10.1002/cphc.200500690
225.
225. X. R. Li, Y. Q. Wang, G. J. Song, Z. Peng, Y. M. Yu, X. L. She, and J. J. Li, Nanoscale Res. Lett. 4, 1015 (2009).
http://dx.doi.org/10.1007/s11671-009-9348-0
226.
226. X. F. Han, S. Shamaila, R. Sharif, J. Y. Chen, H. R. Liu, and D. P. Liu, Adv. Mater. 21, 4619 (2009).
http://dx.doi.org/10.1002/adma.200901065
227.
227. S. J. Son, J. Reichel, B. He, M. Schuchman, and S. B. Lee, J. Am. Chem. Soc. 127, 7316 (2005).
http://dx.doi.org/10.1021/ja0517365
228.
228. K. Z. Rozman, D. Pecko, S. Sturm, U. Maver, P. Nadrah, M. Bele, and S. Kobe, Mater. Chem. Phys. 133, 218 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.01.013
229.
229. M. Daub, M. Knez, U. Goesele, and K. Nielsch, J. Appl. Phys. 101, 09J111 (2007).
http://dx.doi.org/10.1063/1.2712057
230.
230. R. Zierold, Z. Wu, J. Biskupek, U. Kaiser, J. Bachmann, C. E. Krill, and K. Nielsch, Adv. Funct. Mater. 21, 226 (2011).
http://dx.doi.org/10.1002/adfm.201001395
231.
231. H. Pitzschel, J. Bachmann, J. M. Montero-Moreno, J. Escrig, D. Gorlitz, and K. Nielsch, Nanotechnology 23, 495718 (2012).
http://dx.doi.org/10.1088/0957-4484/23/49/495718
232.
232. T.-J. Park, Y. Mao, and S. S. Wong, Chem. Commun. 2004, 27082709.
http://dx.doi.org/10.1039/b409988e
233.
233. C. T. Sousa, A. M. L. Lopes, M. P. Proenca, D. C. Leitao, J. G. Correia, and J. P. Araujo, J. Nanosci. Nanotechnol. 9, 6084 (2009).
http://dx.doi.org/10.1166/jnn.2009.1572
234.
234. X. Zhu, Z. Liu, and N. Ming, J. Mater. Chem. 20, 4015 (2010).
http://dx.doi.org/10.1039/B923119F
235.
235. D. H. Park, Y. B. Lee, M. Y. Cho, B. H. Kim, S. H. Lee, Y. K. Hong, J. Joo, H. C. Cheong, and S. R. Lee, Appl. Phys. Lett. 90, 093122 (2007).
http://dx.doi.org/10.1063/1.2710748
236.
236. F. F. Tao, M. Y. Guan, Y. Jiang, J. M. Zhu, Z. Xu, and Z. L. Xue, Adv. Mater. 18, 2161 (2006).
http://dx.doi.org/10.1002/adma.200600275
237.
237. X. W. Wang, Z. H. Yuan, S. Q. Sun, Y. Q. Duan, and L. J. Bie, Mater. Chem. Phys. 112, 329 (2008).
http://dx.doi.org/10.1016/j.matchemphys.2008.05.077
238.
238. J. C. Bao, C. Y. Tie, Z. Xu, Q. F. Zhou, D. Shen, and Q. Ma, Adv. Mater. 13, 1631 (2001).
http://dx.doi.org/10.1002/1521-4095(200111)13:21<1631::AID-ADMA1631>3.0.CO;2-R
239.
239. B. Zhao, I. Monch, H. Vinzelberg, T. Muhl, and C. M. Schneider, Appl. Phys. Lett. 80, 3144 (2002).
http://dx.doi.org/10.1063/1.1471570
240.
240. M. P. Proenca, C. T. Sousa, J. Ventura, J. P. Araujo, J. Escrig, and M. Vazquez, SPIN 02, 1250014 (2012).
http://dx.doi.org/10.1142/S2010324712500142
241.
241. T. Nakanishi and T. Ando, Phys. Rev. B 54, 8021 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.8021
242.
242. S. Uryu and T. Ando, Phys. Rev. B 58, 10583 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.10583
243.
243. Z. C. Ruan and M. Qiu, Phys. Rev. Lett. 96, 233901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.233901
244.
244. J. Van de Vondel, C. C. de Souza Silva, B. Y. Zhu, M. Morelle, and V. V. Moshchalkov, Phys. Rev. Lett. 94, 057003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.057003
245.
245. S. Neusser and D. Grundler, Adv. Mater. 21, 2927 (2009).
http://dx.doi.org/10.1002/adma.200900809
246.
246. S. Neusser, B. Botters, and D. Grundler, Phys. Rev. B 78, 054406 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.054406
247.
247. J. A. Barnard, H. Fujiwara, V. R. Inturi, J. D. Jarratt, T. W. Scharf, and J. L. Weston, Appl. Phys. Lett. 69, 2758 (1996).
http://dx.doi.org/10.1063/1.117666
248.
248. C. C. Wang, A. O. Adeyeye, N. Singh, Y. S. Huang, and Y. H. Wu, Phys. Rev. B 72, 174426 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174426
249.
249. K. J. Merazzo, D. C. Leitao, E. Jimenez, J. P. Araujo, J. Camarero, R. P. del Real, A. Asenjo, and M. Vazquez, J. Phys. D: Appl. Phys. 44, 505001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/50/505001
250.
250. M. T. Rahman, R. K. Dumas, N. Eibagi, N. N. Shams, Y. C. Wu, K. Liu, and C. H. Lai, Appl. Phys. Lett. 94, 042507 (2009).
http://dx.doi.org/10.1063/1.3075061
251.
251. D. H. Y. Tse, S. J. Steinmuller, T. Trypiniotis, D. Anderson, G. A. C. Jones, J. A. C. Bland, and C. H. W. Barnes, Phys. Rev. B 79, 054426 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.054426
252.
252. M. Kovylina, M. Erekhinsky, R. Morales, J. E. Villegas, I. K. Schuller, A. Labarta, and X. Batlle, Appl. Phys. Lett. 95, 152507 (2009).
http://dx.doi.org/10.1063/1.3248306
253.
253. I. Guedes, M. Grimsditch, V. Metlushko, P. Vavassori, R. Camley, B. Ilic, P. Neuzil, and R. Kumar, Phys. Rev. B 67, 024428 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.024428
254.
254. I. Ruiz-Feal, L. Lopez-Diaz, A. Hirohata, J. Rothman, C. M. Guertler, J. A. C. Bland, L. M. Garcia, J. M. Torres, J. Bartolome, F. Bartolome et al., J. Magn. Magn. Mater. 242–245, 597 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)01108-8
255.
255. C. C. Wang, A. O. Adeyeye, and N. Singh, Nanotechnology 17, 1629 (2006).
http://dx.doi.org/10.1088/0957-4484/17/6/015
256.
256. C. C. Ho, T. W. Hsieh, H. H. Kung, W. T. Juan, K. H. Lin, and W. L. Lee, Appl. Phys. Lett. 96, 122504 (2010).
http://dx.doi.org/10.1063/1.3371692
257.
257. A. A. Zhukov, A. V. Goncharov, P. A. J. de Groot, P. N. Bartlett, and M. A. Ghanem, J. Appl. Phys. 93, 7322 (2003).
http://dx.doi.org/10.1063/1.1540044
258.
258. D. Navas, M. Hernandez-Velez, M. Vazquez, W. Lee, and K. Nielsch, Appl. Phys. Lett. 90, 192501 (2007).
http://dx.doi.org/10.1063/1.2737373
259.
259. Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing et al., Appl. Phys. Lett. 81, 2869 (2002).
http://dx.doi.org/10.1063/1.1512993
260.
260. Z. Konstantinovic, L. Balcells, and B. Martinez, J. Magn. Magn. Mater. 322, 1205 (2010).
http://dx.doi.org/10.1016/j.jmmm.2009.05.031
261.
261. P. Vavassori, G. Gubbiotti, G. Zangari, C. T. Yu, H. Yin, H. Jiang, and G. J. Mankey, J. Appl. Phys. 91, 7992 (2002).
http://dx.doi.org/10.1063/1.1453321
262.
262. D. C. Leitao, J. Ventura, J. M. Teixeira, C. T. Sousa, S. Pinto, J. B. Sousa, J. M. Michalik, J. M. De Teresa, M. Vazquez, and J. P. Araujo, J. Phys.: Condens. Matter 25, 066007 (2013).
http://dx.doi.org/10.1088/0953-8984/25/6/066007
263.
263. A. O. Adeyeye, J. A. C. Bland, and C. Daboo, Appl. Phys. Lett. 70, 3164 (1997).
http://dx.doi.org/10.1063/1.119121
264.
264. C. T. Yu, H. Jiang, L. Shen, P. J. Flanders, and G. J. Mankey, J. Appl. Phys. 87, 6322 (2000).
http://dx.doi.org/10.1063/1.372693
265.
265. I. Guedes, M. Grimsditch, V. Metlushko, P. Vavassori, R. Camley, B. Ilic, P. Neuzil, and R. Kumar, Phys. Rev. B 66, 014434 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.014434
266.
266. M. Jaafar, D. Navas, A. Asenjo, M. Vazquez, M. Hernandez-Velez, and J. M. Garcia-Martin, J. Appl. Phys. 101, 09F513 (2007).
http://dx.doi.org/10.1063/1.2711613
267.
267. M. H. Yu, L. Malkinski, L. Spinu, W. L. Zhou, and S. Whittenburg, J. Appl. Phys. 101, 09F501 (2007).
http://dx.doi.org/10.1063/1.2709501
268.
268. D. C. Leitao, J. Ventura, C. T. Sousa, J. M. Teixeira, J. B. Sousa, M. Jaafar, A. Asenjo, M. Vazquez, J. M. De Teresa, and J. P. Araujo, Nanotechnology 23, 425701 (2012).
http://dx.doi.org/10.1088/0957-4484/23/42/425701
269.
269. W. Van Roy, E. L. Carpi, M. Van Hove, A. Van Esch, R. Bogaerts, J. De Boeck, and G. Borghs, J. Magn. Magn. Mater. 121, 197 (1993).
http://dx.doi.org/10.1016/0304-8853(93)91184-9
270.
270. H. R. Hilzinger and H. Kronmuller, J. Magn. Magn. Mater. 2, 11 (1975).
http://dx.doi.org/10.1016/0304-8853(75)90098-0
271.
271. N. G. Deshpande, M. S. Seo, X. R. Jin, S. J. Lee, Y. P. Lee, J. Y. Rhee, and K. W. Kim, Appl. Phys. Lett. 96, 122503 (2010).
http://dx.doi.org/10.1063/1.3368691
272.
272. F. Haering, U. Wiedwald, S. Nothelfer, B. Koslowski, P. Ziemann, L. Lechner, A. Wallucks, K. Lebecki, U. Nowak, J. Grafe et al., Nanotechnology 24, 465709 (2013).
http://dx.doi.org/10.1088/0957-4484/24/46/465709
273.
273. M. T. Rahman, N. N. Shams, and C. H. Lai, Nanotechnology 19, 325302 (2008).
http://dx.doi.org/10.1088/0957-4484/19/32/325302
274.
274. D. Navas, F. Ilievski, and C. A. Ross, J. Appl. Phys. 105, 113921 (2009).
http://dx.doi.org/10.1063/1.3137195
275.
275. M. T. Rahman, N. N. Shams, D. S. Wang, and C. H. Lai, Appl. Phys. Lett. 94, 082503 (2009).
http://dx.doi.org/10.1063/1.3085965
276.
276. F. J. Castano, K. Nielsch, C. A. Ross, J. W. A. Robinson, and R. Krishnan, Appl. Phys. Lett. 85, 2872 (2004).
http://dx.doi.org/10.1063/1.1800281
277.
277. V. P. Chuang, W. Jung, C. A. Ross, J. Y. Cheng, O. H. Park, and H. C. Kim, J. Appl. Phys. 103, 074307 (2008).
http://dx.doi.org/10.1063/1.2895007
278.
278. K. J. Merazzo, C. Castan-Guerrero, J. Herrero-Albillos, F. Kronast, F. Bartolome, J. Bartolome, J. Sese, R. P. del Real, L. M. Garcia, and M. Vazquez, Phys. Rev. B 85, 184427 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184427
279.
279. F. Beron, K. R. Pirota, V. Vega, V. M. Prida, A. Fernandez, B. Hernando, and M. Knobel, New J. Phys. 13, 013035 (2011).
http://dx.doi.org/10.1088/1367-2630/13/1/013035
280.
280. A. Butera, J. L. Weston, and J. A. Barnard, IEEE Trans. Magn. 34, 1024 (1998).
http://dx.doi.org/10.1109/20.706345
281.
281. G. A. B. Badini Confalonieri, K. R. Pirota, M. Vazquez, N. M. Nemes, M. Garcia-Hernandez, M. Knobel, and F. Batallan, J. Appl. Phys. 107, 083918 (2010).
http://dx.doi.org/10.1063/1.3383039
282.
282. K. J. Merazzo, R. P. del Real, A. Asenjo, and M. Vazquez, J. Appl. Phys. 109, 07B906 (2011).
http://dx.doi.org/10.1063/1.3544483
283.
283. J. R. Lim, J. F. Whitacre, J. P. Fleurial, C. K. Huang, M. A. Ryan, and N. V. Myung, Adv. Mater. 17, 1488 (2005).
http://dx.doi.org/10.1002/adma.200401189
284.
284. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, Science 321, 930 (2008).
http://dx.doi.org/10.1126/science.1157566
285.
285. R. Namgung, Y. Zhang, Q. Y. Fang, K. Singha, H. J. Lee, I. K. Kwon, Y. Y. Jeong, I.-K. Park, S. J. Son, and W. J. Kim, Biomaterials 32, 3042 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2010.12.018
286.
286. A. O. Fung, V. Kapadia, E. Pierstorff, D. Ho, and Y. Chen, J. Phys. Chem. C 112, 15085 (2008).
http://dx.doi.org/10.1021/jp806187r
287.
287. A. Hultgren, M. Tanase, C. S. Chen, G. J. Meyer, and D. H. Reich, J. Appl. Phys. 93, 7554 (2003).
http://dx.doi.org/10.1063/1.1556204
288.
288. D. Choi, A. Fung, H. Moon, D. Ho, Y. Chen, E. Kan, Y. Rheem, B. Yoo, and N. Myung, Biomed. Microdevices 9, 143 (2007).
http://dx.doi.org/10.1007/s10544-006-9008-4
289.
289. D. S. Choi, J. Park, S. Kim, D. H. Gracias, M. K. Cho, Y. K. Kim, A. Fung, S. E. Lee, Y. Chen, S. Khanal et al., J. Nanosci. Nanotechnol. 8, 2323 (2008).
http://dx.doi.org/10.1166/jnn.2008.273
290.
290. K. Licha and C. Olbrich, Adv. Drug Delivery Rev. 57, 1087 (2005).
http://dx.doi.org/10.1016/j.addr.2005.01.021
291.
291. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
292.
292. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and Z. Zhang Nat. Mater. 8, 568 (2009).
http://dx.doi.org/10.1038/nmat2461
293.
293. A. A. Govyadinov and V. A. Podolskiy, Phys. Rev. B 73, 155108 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155108
294.
294. L. M. Custodio, C. T. Sousa, J. Ventura, J. M. Teixeira, P. V. S. Marques, and J. P. Araujo, Phys. Rev. B 85, 165408 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.165408
295.
295. D. R. Smith and D. Schurig, Phys. Rev. Lett. 90, 077405 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.077405
296.
296. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, J. Opt. Soc. Am. B 23, 498 (2006).
http://dx.doi.org/10.1364/JOSAB.23.000498
297.
297. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, Phys. Rev. B 75, 035108 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035108
298.
298. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, Appl. Phys. Lett. 94, 151105 (2009).
http://dx.doi.org/10.1063/1.3115145
299.
299. W. T. Lu and S. Sridhar, Phys. Rev. B 77, 233101 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.233101
300.
300. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
301.
301. M. Martin-Gonzalez, O. Caballero-Calero, and P. Diaz-Chao, Renewable Sustainable Energy Rev. 24, 288 (2013).
http://dx.doi.org/10.1016/j.rser.2013.03.008
302.
302. C. Jin, G. Zhang, T. Qian, X. Li, and Z. Yao, J. Phys. Chem. B 109, 1430 (2005).
http://dx.doi.org/10.1021/jp046100z
303.
303. J. F. Behnke, A. L. Prieto, A. M. Stacy, and T. Sands, in International Conference on Thermoelectrics (1999), pp. 451453.
304.
304. M. Sima, I. Enculescu, T. Visan, R. Spohr, and C. Trautmann, Mol. Cryst. Liq. Cryst. 418, 21 (2004).
http://dx.doi.org/10.1080/15421400490478885
305.
305. J. Martin, C. V. Manzano, O. Caballero-Calero, and M. Martin-Gonzalez, ACS Appl. Mater. Interfaces 5, 72 (2013).
http://dx.doi.org/10.1021/am3020718
306.
306. O. Picht, S. Muller, I. Alber, M. Rauber, J. Lensch-Falk, D. L. Medlin, R. Neumann, and M. E. Toimil-Molares, J. Phys. Chem. C 116, 5367 (2012).
http://dx.doi.org/10.1021/jp210491g
307.
307. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
308.
308. M. S. Sander, R. Gronsky, T. Sands, and A. M. Stacy, Chem. Mater. 15, 335 (2003).
http://dx.doi.org/10.1021/cm0207604
309.
309. N. Peranio, E. Leister, W. Tollner, O. Eibl, and K. Nielsch, Adv. Funct. Mater. 22, 151 (2012).
http://dx.doi.org/10.1002/adfm.201101273
310.
310. W. Wang, G. Zhang, and X. Li, J. Phys. Chem. C 112, 15190 (2008).
http://dx.doi.org/10.1021/jp803207r
311.
311. C.-L. Chen, Y.-Y. Chen, S.-J. Lin, J. C. Ho, P.-C. Lee, C.-D. Chen, and S. R. Harutyunyan, J. Phys. Chem. C 114, 3385 (2010).
http://dx.doi.org/10.1021/jp909926z
312.
312. L. Gravier, A. Fabian, A. Rudolf, A. Cachin, J.-E. Wegrowe, and J.-P. Ansermet, J. Magn. Magn. Mater. 271, 153 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.09.022
313.
313. J. Kimling, J. Gooth, and K. Nielsch, Phys. Rev. B 87, 094409 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094409
314.
314. T. Bohhnert, V. Vega, A.-K. Michel, V. M. Prida, and K. Nielsch, Appl. Phys. Lett. 103, 092407 (2013).
http://dx.doi.org/10.1063/1.4819949
315.
315. S. Serrano-Guisan, L. Gravier, M. Abid, and J.-P. Ansermet, J. Appl. Phys. 99, 08T108 (2006).
http://dx.doi.org/10.1063/1.2176594
316.
316. R. Mitdank, M. Handwerg, C. Steinweg, W. Tollner, M. Daub, K. Nielsch, and S. F. Fischer, J. Appl. Phys. 111, 104320 (2012).
http://dx.doi.org/10.1063/1.4721896
317.
317. V. Franco, K. R. Pirota, V. M. Prida, A. M. J. C. Neto, A. Conde, M. Knobel, B. Hernando, and M. Vazquez, Phys. Rev. B 77, 104434 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104434
318.
318. D. Serantes, V. Vega, W. O. Rosa, V. M. Prida, B. Hernando, M. Pereiro, and D. Baldomir, Phys. Rev. B 86, 104431 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.104431
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/3/10.1063/1.4893546
Loading
/content/aip/journal/apr2/1/3/10.1063/1.4893546
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/3/10.1063/1.4893546
2014-09-03
2016-09-30

Abstract

Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/3/1.4893546.html;jsessionid=G4U8jyh0sZ6JuYTmSvAifK9_.x-aip-live-06?itemId=/content/aip/journal/apr2/1/3/10.1063/1.4893546&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/1/3/10.1063/1.4893546&pageURL=http://scitation.aip.org/content/aip/journal/apr2/1/3/10.1063/1.4893546'
Right1,Right2,Right3,