Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/1/3/10.1063/1.4894851
1.
1. A. D. Ellington and J. W. Szostak, Nature 346(6287), 818822 (1990).
http://dx.doi.org/10.1038/346818a0
2.
2. G. F. Joyce, Gene 82(1), 8387 (1989).
http://dx.doi.org/10.1016/0378-1119(89)90033-4
3.
3. C. Tuerk and L. Gold, Science 249(4968), 505510 (1990).
http://dx.doi.org/10.1126/science.2200121
4.
4. M. Kuwahara, in Chemical Biology of Nucleic Acids, edited by V. A. Erdmann, W. T. Markiewicz, and J. Barciszewski ( Springer, Berlin, Heidelberg, 2014), pp. 243270.
5.
5. J. Ciesiolka, J. Gorski, and M. Yarus, RNA 1(5), 538550 (1995).
6.
6. M. Homann and H. U. Goringer, Nucleic Acids Res. 27(9), 20062014 (1999).
http://dx.doi.org/10.1093/nar/27.9.2006
7.
7. S. J. Xiao, P. P. Hu, X. D. Wu, Y. L. Zou, L. Q. Chen, L. Peng, J. Ling, S. J. Zhen, L. Zhan, Y. F. Li, and C. Z. Huang, Anal. Chem. 82(23), 97369742 (2010).
http://dx.doi.org/10.1021/ac101865s
8.
8. H. Shi, X. Fan, A. Sevilimedu, and J. T. Lis, Proc. Natl. Acad. Sci. U. S. A. 104(10), 37423746 (2007).
http://dx.doi.org/10.1073/pnas.0607805104
9.
9. K. Ikebukuro, C. Kiyohara, and K. Sode, Biosens. Bioelectron. 20(10), 21682172 (2005).
http://dx.doi.org/10.1016/j.bios.2004.09.002
10.
10. Q. Gong, J. P. Wang, K. M. Ahmad, A. T. Csordas, J. H. Zhou, J. Nie, R. Stewart, J. A. Thomson, J. J. Rossi, and H. T. Soh, Anal. Chem. 84(12), 53655371 (2012).
http://dx.doi.org/10.1021/ac300873p
11.
11. P. R. Mallikaratchy, A. Ruggiero, J. R. Gardner, V. Kuryavyi, W. F. Maguire, M. L. Heaney, M. R. McDevitt, D. J. Patel, and D. A. Scheinberg, Nucleic Acids Res. 39(6), 24582469 (2011).
http://dx.doi.org/10.1093/nar/gkq996
12.
12. D. A. Di Giusto, S. M. Knox, Y. Lai, G. D. Tyrelle, M. T. Aung, and G. C. King, ChemBioChem 7(3), 535544 (2006).
http://dx.doi.org/10.1002/cbic.200500316
13.
13. E. W. Ng, D. T. Shima, P. Calias, E. T. Cunningham, Jr., D. R. Guyer, and A. P. Adamis, Nat. Rev. Drug Discovery 5(2), 123132 (2006).
http://dx.doi.org/10.1038/nrd1955
14.
14. A. Z. Wang and O. C. Farokhzad, J. Nucl. Med. 55(3), 353356 (2014).
http://dx.doi.org/10.2967/jnumed.113.126144
15.
15. H. Xing, K. Hwang, J. Li, S.-F. Torabi, and Y. Lu, Curr. Opin. Chem. Eng. 4, 7987 (2014).
http://dx.doi.org/10.1016/j.coche.2014.01.007
16.
16. A. D. Keefe, S. Pai, and A. Ellington, Nat. Rev. Drug Discovery 9(7), 537550 (2010).
http://dx.doi.org/10.1038/nrd3141
17.
17. W. W. Gao, O. C. Farokhzad, and N. Kamaly, Adv. Drug Delivery Rev. 201 (2013).
18.
18. W. Zhou, P.-J. J. Huang, J. Ding, and J. Liu, Analyst 139(11), 26272640 (2014).
http://dx.doi.org/10.1039/c4an00132j
19.
19. P. Hong, W. Li, and J. Li, Sensors (Basel) 12(2), 11811193 (2012).
http://dx.doi.org/10.3390/s120201181
20.
20. B. S. Ferguson, D. A. Hoggarth, D. Maliniak, K. Ploense, R. J. White, N. Woodward, K. Hsieh, A. J. Bonham, M. Eisenstein, T. E. Kippin, K. W. Plaxco, and H. T. Soh, Sci. Transl. Med. 5(213), 213ra165 (2013).
http://dx.doi.org/10.1126/scitranslmed.3007095
21.
21. W. Zhao, C. H. Cui, S. Bose, D. Guo, C. Shen, W. P. Wong, K. Halvorsen, O. C. Farokhzad, G. S. Teo, J. A. Phillips, D. M. Dorfman, R. Karnik, and J. M. Karp, Proc. Natl. Acad. Sci. U. S. A. 109(48), 1962619631 (2012).
http://dx.doi.org/10.1073/pnas.1211234109
22.
22. Y. J. Seo, M. Nilsen-Hamilton, and H. A. Levine, Bull. Math. Biol. 76(7), 14551521 (2014).
http://dx.doi.org/10.1007/s11538-014-9954-6
23.
23. X. Yu and Y. Yu, Appl. Biochem. Biotechnol. 173(8), 20192027 (2014).
http://dx.doi.org/10.1007/s12010-014-0989-9
24.
24. D. Irvine, C. Tuerk, and L. Gold, J. Mol. Biol. 222(3), 739761 (1991).
http://dx.doi.org/10.1016/0022-2836(91)90509-5
25.
25. F. Sun, D. Galas, and M. S. Waterman, J. Mol. Biol. 258(4), 650660 (1996).
http://dx.doi.org/10.1006/jmbi.1996.0276
26.
26. C. V. Forst, J. Biotechnol. 64(1), 101118 (1998).
http://dx.doi.org/10.1016/S0168-1656(98)00107-2
27.
27. B. Levitan, J. Mol. Biol. 277(4), 893916 (1998).
http://dx.doi.org/10.1006/jmbi.1997.1555
28.
28. B. Vant-Hull, A. Payano-Baez, R. H. Davis, and L. Gold, J. Mol. Biol. 278(3), 579597 (1998).
http://dx.doi.org/10.1006/jmbi.1998.1727
29.
29. B. Vant-Hull, L. Gold, and D. A. Zichi, in Current Protocols in Nucleic Acid Chemistry, edited by S. L. Beaucage et al. ( Wiley, 2000), Chap. 9, Unit 9, Vol. 1.
30.
30. M. Djordjevic and A. M. Sengupta, Phys. Biol. 3(1), 1328 (2006).
http://dx.doi.org/10.1088/1478-3975/3/1/002
31.
31. C. K. Chen, Comput. Methods Programs Biomed. 87(3), 189200 (2007).
http://dx.doi.org/10.1016/j.cmpb.2007.05.008
32.
32. C. K. Chen, T. L. Kuo, P. C. Chan, and L. Y. Lin, Comput. Biol. Med. 37(6), 750759 (2007).
http://dx.doi.org/10.1016/j.compbiomed.2006.06.015
33.
33. H. A. Levine and M. Nilsen-Hamilton, Comput. Biol. Chem. 31(1), 1135 (2007).
http://dx.doi.org/10.1016/j.compbiolchem.2006.10.002
34.
34. T. Aita, K. Nishigaki, and Y. Husimi, Math. Biosci. 240(2), 201211 (2012).
http://dx.doi.org/10.1016/j.mbs.2012.07.006
35.
35. J. Wang, J. F. Rudzinski, Q. Gong, H. T. Soh, and P. J. Atzberger, PloS One 7(8), e43940 (2012).
http://dx.doi.org/10.1371/journal.pone.0043940
36.
36. A. Ozer, B. S. White, J. T. Lis, and D. Shalloway, Nucleic Acids Res. 41(14), 71677175 (2013).
http://dx.doi.org/10.1093/nar/gkt477
37.
37. C. Daniel, Y. Roupioz, D. Gasparutto, T. Livache, and A. Buhot, PloS One 8(9), e75419 (2013).
http://dx.doi.org/10.1371/journal.pone.0075419
38.
38. O. G. Berg and P. H. von Hippel, J. Mol. Biol. 193(4), 723750 (1987).
http://dx.doi.org/10.1016/0022-2836(87)90354-8
39.
39. J. Gevertz, H. H. Gan, and T. Schlick, RNA 11(6), 853863 (2005).
http://dx.doi.org/10.1261/rna.7271405
40.
40. Y. Chushak and M. O. Stone, Nucleic Acids Res. 37(12), e87 (2009).
http://dx.doi.org/10.1093/nar/gkp408
41.
41. S. J. Montgomery-Smith and F. J. Schmidt, J. Theor. Biol. 264(3), 10431046 (2010).
http://dx.doi.org/10.1016/j.jtbi.2010.02.046
42.
42. T. Aita, K. Nishigaki, and Y. Husimi, Math. Biosci. 247, 5968 (2014).
http://dx.doi.org/10.1016/j.mbs.2013.10.012
43.
43. B. Hall, S. Arshad, K. Seo, C. Bowman, M. Corley, S. D. Jhaveri, and A. D. Ellington, Current Protocols in Nucleic Acid Chemistry ( John Wiley & Sons, Inc., 2001).
44.
44. R. C. Conrad, L. Giver, Y. Tian, and A. D. Ellington, Methods Enzymol. 267, 336367 (1996).
http://dx.doi.org/10.1016/S0076-6879(96)67022-0
45.
45. L. Giver, D. P. Bartel, M. L. Zapp, M. R. Green, and A. D. Ellington, Gene 137(1), 1924 (1993).
http://dx.doi.org/10.1016/0378-1119(93)90246-Y
46.
46. A. Ellington and J. W. Szostak, Nat. Biotechnol. 355, 850852 (1992).
47.
47. R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, Science 263(5152), 14251429 (1994).
http://dx.doi.org/10.1126/science.7510417
48.
48. C. Berens, A. Thain, and R. Schroeder, Bioorg. Med. Chem. 9(10), 25492556 (2001).
http://dx.doi.org/10.1016/S0968-0896(01)00063-3
49.
49. M. N. Win, J. S. Klein, and C. D. Smolke, Nucleic Acids Res. 34(19), 56705682 (2006).
http://dx.doi.org/10.1093/nar/gkl718
50.
50. L. A. Holeman, S. L. Robinson, J. W. Szostak, and C. Wilson, Folding Des. 3(6), 423431 (1998).
http://dx.doi.org/10.1016/S1359-0278(98)00059-5
51.
51. R. Y. Tsai and R. R. Reed, Mol. Cell. Biol. 18(11), 64476456 (1998).
52.
52. S. D. Goodman, N. J. Velten, Q. Gao, S. Robinson, and A. M. Segall, J. Bacteriol. 181(10), 32463255 (1999).
53.
53. J. G. Bruno, Biochem. Biophys. Res. Commun. 234(1), 117120 (1997).
http://dx.doi.org/10.1006/bbrc.1997.6517
54.
54. J. G. Bruno and J. L. Kiel, BioTechniques 32(1), 178 (2002).
55.
55. R. Wilson, C. Bourne, R. R. Chaudhuri, R. Gregory, J. Kenny, and A. Cossins, PloS One 9(6), e100572 (2014).
http://dx.doi.org/10.1371/journal.pone.0100572
56.
56. M. Fan, S. R. McBurnett, C. J. Andrews, A. M. Allman, J. G. Bruno, and J. L. Kiel, J. Biomol. Tech. 19(5), 311319 (2008).
57.
57. R. Stoltenburg, C. Reinemann, and B. Strehlitz, Anal. Bioanal. Chem. 383(1), 8391 (2005).
http://dx.doi.org/10.1007/s00216-005-3388-9
58.
58. J. C. Lai and C. Y. Hong, ACS Comb. Sci. 16(7), 321327 (2014).
59.
59. J.-C. Lai and C. Y. Hong, J. Mater. Chem. B 2(26), 4114 (2014).
http://dx.doi.org/10.1039/c3tb21729a
60.
60. D. R. Latulippe, K. Szeto, A. Ozer, F. M. Duarte, C. V. Kelly, J. M. Pagano, B. S. White, D. Shalloway, J. T. Lis, and H. G. Craighead, Anal. Chem. 85(6), 34173424 (2013).
http://dx.doi.org/10.1021/ac400105e
61.
61. K. Szeto, S. J. Reinholt, F. M. Duarte, J. M. Pagano, A. Ozer, L. Yao, J. T. Lis, and H. G. Craighead, Anal. Bioanal. Chem. 406(11), 27272732 (2014).
http://dx.doi.org/10.1007/s00216-014-7661-7
62.
62. K. Szeto, D. R. Latulippe, A. Ozer, J. M. Pagano, B. S. White, D. Shalloway, J. T. Lis, and H. G. Craighead, PloS One 8(12), e82667 (2013).
http://dx.doi.org/10.1371/journal.pone.0082667
63.
63. J. M. Pagano, H. Kwak, C. T. Waters, R. O. Sprouse, B. S. White, A. Ozer, K. Szeto, D. Shalloway, H. G. Craighead, and J. T. Lis, PLoS Genet. 10(1), e1004090 (2014).
http://dx.doi.org/10.1371/journal.pgen.1004090
64.
64. A. Nitsche, A. Kurth, A. Dunkhorst, O. Panke, H. Sielaff, W. Junge, D. Muth, F. Scheller, W. Stocklein, C. Dahmen, G. Pauli, and A. Kage, BMC Biotechnol. 7, 48 (2007).
http://dx.doi.org/10.1186/1472-6750-7-48
65.
65. J. B. H. Tok and N. O. Fischer, Chem. Commun. 2008(16), 18831885.
http://dx.doi.org/10.1039/b717936g
66.
66. S. D. Mendonsa and M. T. Bowser, Anal. Chem. 76(18), 53875392 (2004).
http://dx.doi.org/10.1021/ac049857v
67.
67. S. D. Mendonsa and M. T. Bowser, J. Am. Chem. Soc. 126(1), 2021 (2004).
http://dx.doi.org/10.1021/ja037832s
68.
68. R. K. Mosing, S. D. Mendonsa, and M. T. Bowser, Anal. Chem. 77(19), 61076112 (2005).
http://dx.doi.org/10.1021/ac050836q
69.
69. M. Jing and M. T. Bowser, Anal. Chem. 85(22), 1076110770 (2013).
http://dx.doi.org/10.1021/ac401875h
70.
70. J. Yang and M. T. Bowser, Anal. Chem. 85(3), 15251530 (2013).
http://dx.doi.org/10.1021/ac302721j
71.
71. M. Berezovski, A. Drabovich, S. M. Krylova, M. Musheev, V. Okhonin, A. Petrov, and S. N. Krylov, J. Am. Chem. Soc. 127(9), 31653171 (2005).
http://dx.doi.org/10.1021/ja042394q
72.
72. M. Berezovski, M. Musheev, A. Drabovich, and S. N. Krylov, J. Am. Chem. Soc. 128(5), 14101411 (2006).
http://dx.doi.org/10.1021/ja056943j
73.
73. J. Ashley, K. L. Ji, and S. F. Y. Li, Electrophoresis 33(17), 27832789 (2012).
http://dx.doi.org/10.1002/elps.201200032
74.
74. A. Wochner, B. Cech, M. Menger, V. A. Erdmann, and J. Glokler, BioTechniques 43(3), 344 (2007).
http://dx.doi.org/10.2144/000112532
75.
75. T. Schutze, B. Wilhelm, N. Greiner, H. Braun, F. Peter, M. Morl, V. A. Erdmann, H. Lehrach, Z. Konthur, M. Menger, P. F. Arndt, and J. Glokler, PloS One 6(12), e29604 (2011).
http://dx.doi.org/10.1371/journal.pone.0029604
76.
76. J. C. Cox, P. Rudolph, and A. D. Ellington, Biotechnol. Prog. 14(6), 845850 (1998).
http://dx.doi.org/10.1021/bp980097h
77.
77. J. C. Cox and A. D. Ellington, Bioorg. Med. Chem. 9(10), 25252531 (2001).
http://dx.doi.org/10.1016/S0968-0896(01)00028-1
78.
78. J. C. Cox, A. Hayhurst, J. Hesselberth, T. S. Bayer, G. Georgiou, and A. D. Ellington, Nucleic Acids Res. 30(20), e108 (2002).
http://dx.doi.org/10.1093/nar/gnf107
79.
79. J. C. Cox, M. Rajendran, T. Riedel, E. A. Davidson, L. J. Sooter, T. S. Bayer, M. Schmitz-Brown, and A. D. Ellington, Comb. Chem. High Throughput Screening 5(4), 289299 (2002).
http://dx.doi.org/10.2174/1386207023330291
80.
80. P. W. Goertz, J. C. Cox, and A. D. Ellington, JALA 9(3), 150154 (2004).
http://dx.doi.org/10.1016/j.jala.2004.04.008
81.
81. D. Eulberg, K. Buchner, C. Maasch, and S. Klussmann, Nucleic Acids Res. 33(4), e45 (2005).
http://dx.doi.org/10.1093/nar/gni044
82.
82. D. W. Drolet, R. D. Jenison, D. E. Smith, D. Pratt, and B. J. Hicke, Comb. Chem. High Throughput Screening 2(5), 271278 (1999).
83.
83. A. Jolma, T. Kivioja, J. Toivonen, L. Cheng, G. Wei, M. Enge, M. Taipale, J. M. Vaquerizas, J. Yan, M. J. Sillanpaa, M. Bonke, K. Palin, S. Talukder, T. R. Hughes, N. M. Luscombe, E. Ukkonen, and J. Taipale, Genome Res. 20(6), 861873 (2010).
http://dx.doi.org/10.1101/gr.100552.109
84.
84. M. S. L. Raddatz, A. Dolf, E. Endl, P. Knolle, M. Famulok, and G. Mayer, Angew. Chem., Int. Ed. 47(28), 51905193 (2008).
http://dx.doi.org/10.1002/anie.200800216
85.
85. G. Mayer, M. S. Ahmed, A. Dolf, E. Endl, P. A. Knolle, and M. Famulok, Nat. Protoc. 5(12), 19932004 (2010).
http://dx.doi.org/10.1038/nprot.2010.163
86.
86. X. Yang, S. E. Bassett, X. Li, B. A. Luxon, N. K. Herzog, R. E. Shope, J. Aronson, T. W. Prow, J. F. Leary, R. Kirby, A. D. Ellington, and D. G. Gorenstein, Nucleic Acids Res. 30(23), e132 (2002).
http://dx.doi.org/10.1093/nar/gnf132
87.
87. X. Yang, X. Li, T. W. Prow, L. M. Reece, S. E. Bassett, B. A. Luxon, N. K. Herzog, J. Aronson, R. E. Shope, J. F. Leary, and D. G. Gorenstein, Nucleic Acids Res. 31(10), 54e (2003).
http://dx.doi.org/10.1093/nar/gng054
88.
88. Z. Zhu, Y. Song, C. Li, Y. Zou, L. Zhu, Y. An, and C. J. Yang, Anal. Chem. 86(12), 58815888 (2014).
http://dx.doi.org/10.1021/ac501423g
89.
89. W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, Anal. Chem. 84(1), 350355 (2012).
http://dx.doi.org/10.1021/ac2026942
90.
90. J. Wang, Q. Gong, N. Maheshwari, M. Eisenstein, M. L. Arcila, K. S. Kosik, and H. T. Soh, Angew Chem Int Ed Engl 53(19), 47964801 (2014).
91.
91. J. S. Paige, K. Y. Wu, and S. R. Jaffrey, Science 333(6042), 642646 (2011).
http://dx.doi.org/10.1126/science.1207339
92.
92. L. H. Lauridsen, H. A. Shamaileh, S. L. Edwards, E. Taran, and R. N. Veedu, PloS One 7(7), e41702 (2012).
http://dx.doi.org/10.1371/journal.pone.0041702
93.
93. L. Peng, B. J. Stephens, K. Bonin, R. Cubicciotti, and M. Guthold, Microsc. Res. Tech. 70(4), 372381 (2007).
http://dx.doi.org/10.1002/jemt.20421
94.
94. Y. Miyachi, N. Shimizu, C. Ogino, and A. Kondo, Nucleic Acids Res. 38(4), e21 (2010).
http://dx.doi.org/10.1093/nar/gkp1101
95.
95. F. Pileur, M. L. Andreola, E. Dausse, J. Michel, S. Moreau, H. Yamada, S. A. Gaidamakov, R. J. Crouch, J. J. Toulme, and C. Cazenave, Nucleic Acids Res. 31(19), 57765788 (2003).
http://dx.doi.org/10.1093/nar/gkg748
96.
96. M. Khati, M. Schuman, J. Ibrahim, Q. Sattentau, S. Gordon, and W. James, J. Virol. 77(23), 1269212698 (2003).
http://dx.doi.org/10.1128/JVI.77.23.12692-12698.2003
97.
97. T. S. Misono and P. K. R. Kumar, Anal. Biochem. 342(2), 312317 (2005).
http://dx.doi.org/10.1016/j.ab.2005.04.013
98.
98. N. A. C. Ngubane, L. Gresh, A. Pym, E. J. Rubin, and M. Khati, Biochem. Biophys. Res. Commun. 449(1), 114119 (2014).
http://dx.doi.org/10.1016/j.bbrc.2014.04.163
99.
99. O. Aminova and M. D. Disney, Methods Mol. Biol. 669, 209224 (2010).
http://dx.doi.org/10.1007/978-1-60761-845-4_17
100.
100. O. Aminova, D. J. Paul, J. L. Childs-Disney, and M. D. Disney, Biochemistry 47(48), 1267012679 (2008).
http://dx.doi.org/10.1021/bi8012615
101.
101. J. L. Childs-Disney, M. L. Wu, A. Pushechnikov, O. Aminova, and M. D. Disney, ACS Chem. Biol. 2(11), 745754 (2007).
http://dx.doi.org/10.1021/cb700174r
102.
102. M. D. Disney, L. P. Labuda, D. J. Paul, S. G. Poplawski, A. Pushechnikov, T. Tran, S. P. Velagapudi, M. Wu, and J. L. Childs-Disney, J. Am. Chem. Soc. 130(33), 1118511194 (2008).
http://dx.doi.org/10.1021/ja803234t
103.
103. C. G. Knight, M. Platt, W. Rowe, D. C. Wedge, F. Khan, P. J. Day, A. McShea, J. Knowles, and D. B. Kell, Nucleic Acids Res. 37(1), e6 (2009).
http://dx.doi.org/10.1093/nar/gkn899
104.
104. M. Platt, W. Rowe, D. C. Wedge, D. B. Kell, J. Knowles, and P. J. Day, Anal. Biochem. 390(2), 203205 (2009).
http://dx.doi.org/10.1016/j.ab.2009.04.013
105.
105. J. R. Collett, E. J. Cho, J. F. Lee, M. Levy, A. J. Hood, C. Wan, and A. D. Ellington, Anal. Biochem. 338(1), 113123 (2005).
http://dx.doi.org/10.1016/j.ab.2004.11.027
106.
106. M. Cho, S. Soo Oh, J. Nie, R. Stewart, M. Eisenstein, J. Chambers, J. D. Marth, F. Walker, J. A. Thomson, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 110(46), 1846018465 (2013).
http://dx.doi.org/10.1073/pnas.1315866110
107.
107. N. O. Fischer and T. M. Tarasow, Methods Mol. Biol. 723, 5766 (2011).
http://dx.doi.org/10.1007/978-1-61779-043-0_5
108.
108. N. O. Fischer, J. B. H. Tok, and T. M. Tarasow, PloS One 3(7), e2720 (2008).
http://dx.doi.org/10.1371/journal.pone.0002720
109.
109. E. Katilius, C. Flores, and N. W. Woodbury, Nucleic Acids Res. 35(22), 76267635 (2007).
http://dx.doi.org/10.1093/nar/gkm922
110.
110. Y. Zhu, P. Chandra, C. Ban, and Y. B. Shim, Electroanalysis 24(5), 10571064 (2012).
http://dx.doi.org/10.1002/elan.201100734
111.
111. Y. Li, H. J. Lee, and R. M. Corn, Nucleic Acids Res. 34(22), 64166424 (2006).
http://dx.doi.org/10.1093/nar/gkl738
112.
112. G. Hybarger, J. Bynum, R. F. Williams, J. J. Valdes, and J. P. Chambers, Anal. Bioanal. Chem. 384(1), 191198 (2006).
http://dx.doi.org/10.1007/s00216-005-0089-3
113.
113. X. Lou, J. Qian, Y. Xiao, L. Viel, A. E. Gerdon, E. T. Lagally, P. Atzberger, T. M. Tarasow, A. J. Heeger, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 106(9), 29892994 (2009).
http://dx.doi.org/10.1073/pnas.0813135106
114.
114. S. S. Oh, K. Plakos, X. Lou, Y. Xiao, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 107(32), 1405314058 (2010).
http://dx.doi.org/10.1073/pnas.1009172107
115.
115. J. Qian, X. Lou, Y. Zhang, Y. Xiao, and H. T. Soh, Anal. Chem. 81(13), 54905495 (2009).
http://dx.doi.org/10.1021/ac900759k
116.
116. L. Gold, D. Ayers, J. Bertino, C. Bock, A. Bock, E. N. Brody, J. Carter, A. B. Dalby, B. E. Eaton, T. Fitzwater, D. Flather, A. Forbes, T. Foreman, C. Fowler, B. Gawande, M. Goss, M. Gunn, S. Gupta, D. Halladay, J. Heil, J. Heilig, B. Hicke, G. Husar, N. Janjic, T. Jarvis, S. Jennings, E. Katilius, T. R. Keeney, N. Kim, T. H. Koch, S. Kraemer, L. Kroiss, N. Le, D. Levine, W. Lindsey, B. Lollo, W. Mayfield, M. Mehan, R. Mehler, S. K. Nelson, M. Nelson, D. Nieuwlandt, M. Nikrad, U. Ochsner, R. M. Ostroff, M. Otis, T. Parker, S. Pietrasiewicz, D. I. Resnicow, J. Rohloff, G. Sanders, S. Sattin, D. Schneider, B. Singer, M. Stanton, A. Sterkel, A. Stewart, S. Stratford, J. D. Vaught, M. Vrkljan, J. J. Walker, M. Watrobka, S. Waugh, A. Weiss, S. K. Wilcox, A. Wolfson, S. K. Wolk, C. Zhang, and D. Zichi, PloS One 5(12), e15004 (2010).
http://dx.doi.org/10.1371/journal.pone.0015004
117.
117. S. S. Oh, K. M. Ahmad, M. Cho, S. Kim, Y. Xiao, and H. T. Soh, Anal. Chem. 83(17), 68836889 (2011).
http://dx.doi.org/10.1021/ac201269f
118.
118. M. Cho, Y. Xiao, J. Nie, R. Stewart, A. T. Csordas, S. S. Oh, J. A. Thomson, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 107(35), 1537315378 (2010).
http://dx.doi.org/10.1073/pnas.1009331107
119.
119. J. Y. Ahn, M. Jo, P. Dua, D. K. Lee, and S. Kim, Oligonucleotides 21(2), 93100 (2011).
http://dx.doi.org/10.1089/oli.2010.0263
120.
120. H. Bae, S. Ren, J. Kang, M. Kim, Y. Jiang, M. M. Jin, I. M. Min, and S. Kim, Nucleic Acid Ther. 23(6), 443449 (2013).
http://dx.doi.org/10.1089/nat.2013.0437
121.
121. S. M. Park, J. Y. Ahn, M. Jo, D. K. Lee, J. T. Lis, H. G. Craighead, and S. Kim, Lab Chip 9(9), 12061212 (2009).
http://dx.doi.org/10.1039/b814993c
122.
122. T. K. Kim, S. W. Lee, J. Y. Ahn, T. Laurell, S. Y. Kim, and O. C. Jeong, Jpn. J. Appl. Phys., Part 1 50(6), 06GL05 (2011).
http://dx.doi.org/10.7567/JJAP.50.06GL05
123.
123. S. Lee, J. Kang, S. Ren, T. Laurell, S. Kim, and O. C. Jeong, Biochip J. 7(1), 3845 (2013).
http://dx.doi.org/10.1007/s13206-013-7106-y
124.
124. Q. Wang, W. Liu, Y. Xing, X. Yang, K. Wang, R. Jiang, P. Wang, and Q. Zhao, Anal. Chem. 86(13), 65726579 (2014).
http://dx.doi.org/10.1021/ac501088q
125.
125. M. Jing and M. T. Bowser, Lab Chip 11(21), 37033709 (2011).
http://dx.doi.org/10.1039/c1lc20461k
126.
126. J. Kim, J. P. Hilton, K. A. Yang, R. Pei, K. Ennis, M. Stojanovic, and Q. Lin, paper presented at the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012.
127.
127. J. Kim, J. P. Hilton, K. A. Yang, R. J. Pei, M. Stojanovic, and Q. Lin, Sens. Actuators, A 195, 183190 (2013).
http://dx.doi.org/10.1016/j.sna.2012.07.022
128.
128. J. Kim, J. P. Hilton, K. A. Yang, R. Pei, J. Zhu, M. Stojanovic, and Q. Lin, paper presented at the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013.
129.
129. J. Zhu, T. Olsen, R. Pei, M. Stojanovic, and Q. Lin, paper presented at the IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014.
130.
130. J. P. Hilton, K. Jinho, N. ThaiHuu, M. Barbu, P. Renjun, M. Stojanovic, and L. Qiao, paper presented at the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012.
131.
131. C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, Biosens. Bioelectron. 25(7), 17611766 (2010).
http://dx.doi.org/10.1016/j.bios.2009.12.029
132.
132. C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, Biosens. Bioelectron. 35(1), 5055 (2012).
http://dx.doi.org/10.1016/j.bios.2012.02.024
133.
133. Y. H. Chen, H. I. Lin, C. J. Huang, S. C. Shiesh, and G. B. Lee, Microfluid. Nanofluid. 13(6), 929939 (2012).
http://dx.doi.org/10.1007/s10404-012-1013-8
134.
134. H.-C. Lai, C.-H. Wang, T.-M. Liou, and G.-B. Lee, Lab Chip 14(12), 20022013 (2014).
http://dx.doi.org/10.1039/c4lc00187g
135.
135. C. H. Weng, I. S. Hsieh, L. Y. Hung, H. I. Lin, S. C. Shiesh, Y. L. Chen, and G. B. Lee, Microfluid. Nanofluid. 14(3–4), 753765 (2013).
http://dx.doi.org/10.1007/s10404-012-1095-3
136.
136. R. Nutiu, R. C. Friedman, S. Luo, I. Khrebtukova, D. Silva, R. Li, L. Zhang, G. P. Schroth, and C. B. Burge, Nat. Biotechnol. 29(7), 659664 (2011).
http://dx.doi.org/10.1038/nbt.1882
137.
137. J. D. Buenrostro, C. L. Araya, L. M. Chircus, C. J. Layton, H. Y. Chang, M. P. Snyder, and W. J. Greenleaf, Nat. Biotechnol. 32(6), 562568 (2014).
http://dx.doi.org/10.1038/nbt.2880
138.
138. J. M. Tome, A. Ozer, J. M. Pagano, D. Gheba, G. P. Schroth, and J. T. Lis, Nat. Methods 11(6), 683688 (2014).
http://dx.doi.org/10.1038/nmeth.2970
139.
139. P. Calik, O. Balci, and T. H. Ozdamar, Protein Expression Purif. 69(1), 2128 (2010).
http://dx.doi.org/10.1016/j.pep.2009.05.015
140.
140. S. Arnold, G. Pampalakis, K. Kantiotou, D. Silva, C. Cortez, S. Missailidis, and G. Sotiropoulou, Biol. Chem. 393(5), 343353 (2012).
http://dx.doi.org/10.1515/hsz-2011-0253
141.
141. J. S. Tao and A. D. Frankel, Biochemistry 35(7), 22292238 (1996).
http://dx.doi.org/10.1021/bi951844b
142.
142. Y. Liu, C. Wang, F. Li, S. Shen, D. L. Tyrrell, X. C. Le, and X. F. Li, Anal. Chem. 84(18), 76037606 (2012).
http://dx.doi.org/10.1021/ac302047e
143.
143. B. Zimmermann, T. Gesell, D. Chen, C. Lorenz, and R. Schroeder, PloS One 5(2), e9169 (2010).
http://dx.doi.org/10.1371/journal.pone.0009169
144.
144. W. H. Thiel, T. Bair, K. W. Thiel, J. P. Dassie, W. M. Rockey, C. A. Howell, X. Y. Y. Liu, A. J. Dupuy, L. Y. Huang, R. Owczarzy, M. A. Behlke, J. O. McNamara, and P. H. Giangrande, Nucleic Acid Ther. 21(4), 253263 (2011).
http://dx.doi.org/10.1089/nat.2011.0288
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/3/10.1063/1.4894851
Loading
/content/aip/journal/apr2/1/3/10.1063/1.4894851
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/3/10.1063/1.4894851
2014-09-10
2016-12-05

Abstract

High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/3/1.4894851.html;jsessionid=t3P4VF3AN3moNlcIw22vV0R7.x-aip-live-02?itemId=/content/aip/journal/apr2/1/3/10.1063/1.4894851&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/1/3/10.1063/1.4894851&pageURL=http://scitation.aip.org/content/aip/journal/apr2/1/3/10.1063/1.4894851'
Right1,Right2,Right3,