Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. D. Ellington and J. W. Szostak, Nature 346(6287), 818822 (1990).
2. G. F. Joyce, Gene 82(1), 8387 (1989).
3. C. Tuerk and L. Gold, Science 249(4968), 505510 (1990).
4. M. Kuwahara, in Chemical Biology of Nucleic Acids, edited by V. A. Erdmann, W. T. Markiewicz, and J. Barciszewski ( Springer, Berlin, Heidelberg, 2014), pp. 243270.
5. J. Ciesiolka, J. Gorski, and M. Yarus, RNA 1(5), 538550 (1995).
6. M. Homann and H. U. Goringer, Nucleic Acids Res. 27(9), 20062014 (1999).
7. S. J. Xiao, P. P. Hu, X. D. Wu, Y. L. Zou, L. Q. Chen, L. Peng, J. Ling, S. J. Zhen, L. Zhan, Y. F. Li, and C. Z. Huang, Anal. Chem. 82(23), 97369742 (2010).
8. H. Shi, X. Fan, A. Sevilimedu, and J. T. Lis, Proc. Natl. Acad. Sci. U. S. A. 104(10), 37423746 (2007).
9. K. Ikebukuro, C. Kiyohara, and K. Sode, Biosens. Bioelectron. 20(10), 21682172 (2005).
10. Q. Gong, J. P. Wang, K. M. Ahmad, A. T. Csordas, J. H. Zhou, J. Nie, R. Stewart, J. A. Thomson, J. J. Rossi, and H. T. Soh, Anal. Chem. 84(12), 53655371 (2012).
11. P. R. Mallikaratchy, A. Ruggiero, J. R. Gardner, V. Kuryavyi, W. F. Maguire, M. L. Heaney, M. R. McDevitt, D. J. Patel, and D. A. Scheinberg, Nucleic Acids Res. 39(6), 24582469 (2011).
12. D. A. Di Giusto, S. M. Knox, Y. Lai, G. D. Tyrelle, M. T. Aung, and G. C. King, ChemBioChem 7(3), 535544 (2006).
13. E. W. Ng, D. T. Shima, P. Calias, E. T. Cunningham, Jr., D. R. Guyer, and A. P. Adamis, Nat. Rev. Drug Discovery 5(2), 123132 (2006).
14. A. Z. Wang and O. C. Farokhzad, J. Nucl. Med. 55(3), 353356 (2014).
15. H. Xing, K. Hwang, J. Li, S.-F. Torabi, and Y. Lu, Curr. Opin. Chem. Eng. 4, 7987 (2014).
16. A. D. Keefe, S. Pai, and A. Ellington, Nat. Rev. Drug Discovery 9(7), 537550 (2010).
17. W. W. Gao, O. C. Farokhzad, and N. Kamaly, Adv. Drug Delivery Rev. 201 (2013).
18. W. Zhou, P.-J. J. Huang, J. Ding, and J. Liu, Analyst 139(11), 26272640 (2014).
19. P. Hong, W. Li, and J. Li, Sensors (Basel) 12(2), 11811193 (2012).
20. B. S. Ferguson, D. A. Hoggarth, D. Maliniak, K. Ploense, R. J. White, N. Woodward, K. Hsieh, A. J. Bonham, M. Eisenstein, T. E. Kippin, K. W. Plaxco, and H. T. Soh, Sci. Transl. Med. 5(213), 213ra165 (2013).
21. W. Zhao, C. H. Cui, S. Bose, D. Guo, C. Shen, W. P. Wong, K. Halvorsen, O. C. Farokhzad, G. S. Teo, J. A. Phillips, D. M. Dorfman, R. Karnik, and J. M. Karp, Proc. Natl. Acad. Sci. U. S. A. 109(48), 1962619631 (2012).
22. Y. J. Seo, M. Nilsen-Hamilton, and H. A. Levine, Bull. Math. Biol. 76(7), 14551521 (2014).
23. X. Yu and Y. Yu, Appl. Biochem. Biotechnol. 173(8), 20192027 (2014).
24. D. Irvine, C. Tuerk, and L. Gold, J. Mol. Biol. 222(3), 739761 (1991).
25. F. Sun, D. Galas, and M. S. Waterman, J. Mol. Biol. 258(4), 650660 (1996).
26. C. V. Forst, J. Biotechnol. 64(1), 101118 (1998).
27. B. Levitan, J. Mol. Biol. 277(4), 893916 (1998).
28. B. Vant-Hull, A. Payano-Baez, R. H. Davis, and L. Gold, J. Mol. Biol. 278(3), 579597 (1998).
29. B. Vant-Hull, L. Gold, and D. A. Zichi, in Current Protocols in Nucleic Acid Chemistry, edited by S. L. Beaucage et al. ( Wiley, 2000), Chap. 9, Unit 9, Vol. 1.
30. M. Djordjevic and A. M. Sengupta, Phys. Biol. 3(1), 1328 (2006).
31. C. K. Chen, Comput. Methods Programs Biomed. 87(3), 189200 (2007).
32. C. K. Chen, T. L. Kuo, P. C. Chan, and L. Y. Lin, Comput. Biol. Med. 37(6), 750759 (2007).
33. H. A. Levine and M. Nilsen-Hamilton, Comput. Biol. Chem. 31(1), 1135 (2007).
34. T. Aita, K. Nishigaki, and Y. Husimi, Math. Biosci. 240(2), 201211 (2012).
35. J. Wang, J. F. Rudzinski, Q. Gong, H. T. Soh, and P. J. Atzberger, PloS One 7(8), e43940 (2012).
36. A. Ozer, B. S. White, J. T. Lis, and D. Shalloway, Nucleic Acids Res. 41(14), 71677175 (2013).
37. C. Daniel, Y. Roupioz, D. Gasparutto, T. Livache, and A. Buhot, PloS One 8(9), e75419 (2013).
38. O. G. Berg and P. H. von Hippel, J. Mol. Biol. 193(4), 723750 (1987).
39. J. Gevertz, H. H. Gan, and T. Schlick, RNA 11(6), 853863 (2005).
40. Y. Chushak and M. O. Stone, Nucleic Acids Res. 37(12), e87 (2009).
41. S. J. Montgomery-Smith and F. J. Schmidt, J. Theor. Biol. 264(3), 10431046 (2010).
42. T. Aita, K. Nishigaki, and Y. Husimi, Math. Biosci. 247, 5968 (2014).
43. B. Hall, S. Arshad, K. Seo, C. Bowman, M. Corley, S. D. Jhaveri, and A. D. Ellington, Current Protocols in Nucleic Acid Chemistry ( John Wiley & Sons, Inc., 2001).
44. R. C. Conrad, L. Giver, Y. Tian, and A. D. Ellington, Methods Enzymol. 267, 336367 (1996).
45. L. Giver, D. P. Bartel, M. L. Zapp, M. R. Green, and A. D. Ellington, Gene 137(1), 1924 (1993).
46. A. Ellington and J. W. Szostak, Nat. Biotechnol. 355, 850852 (1992).
47. R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, Science 263(5152), 14251429 (1994).
48. C. Berens, A. Thain, and R. Schroeder, Bioorg. Med. Chem. 9(10), 25492556 (2001).
49. M. N. Win, J. S. Klein, and C. D. Smolke, Nucleic Acids Res. 34(19), 56705682 (2006).
50. L. A. Holeman, S. L. Robinson, J. W. Szostak, and C. Wilson, Folding Des. 3(6), 423431 (1998).
51. R. Y. Tsai and R. R. Reed, Mol. Cell. Biol. 18(11), 64476456 (1998).
52. S. D. Goodman, N. J. Velten, Q. Gao, S. Robinson, and A. M. Segall, J. Bacteriol. 181(10), 32463255 (1999).
53. J. G. Bruno, Biochem. Biophys. Res. Commun. 234(1), 117120 (1997).
54. J. G. Bruno and J. L. Kiel, BioTechniques 32(1), 178 (2002).
55. R. Wilson, C. Bourne, R. R. Chaudhuri, R. Gregory, J. Kenny, and A. Cossins, PloS One 9(6), e100572 (2014).
56. M. Fan, S. R. McBurnett, C. J. Andrews, A. M. Allman, J. G. Bruno, and J. L. Kiel, J. Biomol. Tech. 19(5), 311319 (2008).
57. R. Stoltenburg, C. Reinemann, and B. Strehlitz, Anal. Bioanal. Chem. 383(1), 8391 (2005).
58. J. C. Lai and C. Y. Hong, ACS Comb. Sci. 16(7), 321327 (2014).
59. J.-C. Lai and C. Y. Hong, J. Mater. Chem. B 2(26), 4114 (2014).
60. D. R. Latulippe, K. Szeto, A. Ozer, F. M. Duarte, C. V. Kelly, J. M. Pagano, B. S. White, D. Shalloway, J. T. Lis, and H. G. Craighead, Anal. Chem. 85(6), 34173424 (2013).
61. K. Szeto, S. J. Reinholt, F. M. Duarte, J. M. Pagano, A. Ozer, L. Yao, J. T. Lis, and H. G. Craighead, Anal. Bioanal. Chem. 406(11), 27272732 (2014).
62. K. Szeto, D. R. Latulippe, A. Ozer, J. M. Pagano, B. S. White, D. Shalloway, J. T. Lis, and H. G. Craighead, PloS One 8(12), e82667 (2013).
63. J. M. Pagano, H. Kwak, C. T. Waters, R. O. Sprouse, B. S. White, A. Ozer, K. Szeto, D. Shalloway, H. G. Craighead, and J. T. Lis, PLoS Genet. 10(1), e1004090 (2014).
64. A. Nitsche, A. Kurth, A. Dunkhorst, O. Panke, H. Sielaff, W. Junge, D. Muth, F. Scheller, W. Stocklein, C. Dahmen, G. Pauli, and A. Kage, BMC Biotechnol. 7, 48 (2007).
65. J. B. H. Tok and N. O. Fischer, Chem. Commun. 2008(16), 18831885.
66. S. D. Mendonsa and M. T. Bowser, Anal. Chem. 76(18), 53875392 (2004).
67. S. D. Mendonsa and M. T. Bowser, J. Am. Chem. Soc. 126(1), 2021 (2004).
68. R. K. Mosing, S. D. Mendonsa, and M. T. Bowser, Anal. Chem. 77(19), 61076112 (2005).
69. M. Jing and M. T. Bowser, Anal. Chem. 85(22), 1076110770 (2013).
70. J. Yang and M. T. Bowser, Anal. Chem. 85(3), 15251530 (2013).
71. M. Berezovski, A. Drabovich, S. M. Krylova, M. Musheev, V. Okhonin, A. Petrov, and S. N. Krylov, J. Am. Chem. Soc. 127(9), 31653171 (2005).
72. M. Berezovski, M. Musheev, A. Drabovich, and S. N. Krylov, J. Am. Chem. Soc. 128(5), 14101411 (2006).
73. J. Ashley, K. L. Ji, and S. F. Y. Li, Electrophoresis 33(17), 27832789 (2012).
74. A. Wochner, B. Cech, M. Menger, V. A. Erdmann, and J. Glokler, BioTechniques 43(3), 344 (2007).
75. T. Schutze, B. Wilhelm, N. Greiner, H. Braun, F. Peter, M. Morl, V. A. Erdmann, H. Lehrach, Z. Konthur, M. Menger, P. F. Arndt, and J. Glokler, PloS One 6(12), e29604 (2011).
76. J. C. Cox, P. Rudolph, and A. D. Ellington, Biotechnol. Prog. 14(6), 845850 (1998).
77. J. C. Cox and A. D. Ellington, Bioorg. Med. Chem. 9(10), 25252531 (2001).
78. J. C. Cox, A. Hayhurst, J. Hesselberth, T. S. Bayer, G. Georgiou, and A. D. Ellington, Nucleic Acids Res. 30(20), e108 (2002).
79. J. C. Cox, M. Rajendran, T. Riedel, E. A. Davidson, L. J. Sooter, T. S. Bayer, M. Schmitz-Brown, and A. D. Ellington, Comb. Chem. High Throughput Screening 5(4), 289299 (2002).
80. P. W. Goertz, J. C. Cox, and A. D. Ellington, JALA 9(3), 150154 (2004).
81. D. Eulberg, K. Buchner, C. Maasch, and S. Klussmann, Nucleic Acids Res. 33(4), e45 (2005).
82. D. W. Drolet, R. D. Jenison, D. E. Smith, D. Pratt, and B. J. Hicke, Comb. Chem. High Throughput Screening 2(5), 271278 (1999).
83. A. Jolma, T. Kivioja, J. Toivonen, L. Cheng, G. Wei, M. Enge, M. Taipale, J. M. Vaquerizas, J. Yan, M. J. Sillanpaa, M. Bonke, K. Palin, S. Talukder, T. R. Hughes, N. M. Luscombe, E. Ukkonen, and J. Taipale, Genome Res. 20(6), 861873 (2010).
84. M. S. L. Raddatz, A. Dolf, E. Endl, P. Knolle, M. Famulok, and G. Mayer, Angew. Chem., Int. Ed. 47(28), 51905193 (2008).
85. G. Mayer, M. S. Ahmed, A. Dolf, E. Endl, P. A. Knolle, and M. Famulok, Nat. Protoc. 5(12), 19932004 (2010).
86. X. Yang, S. E. Bassett, X. Li, B. A. Luxon, N. K. Herzog, R. E. Shope, J. Aronson, T. W. Prow, J. F. Leary, R. Kirby, A. D. Ellington, and D. G. Gorenstein, Nucleic Acids Res. 30(23), e132 (2002).
87. X. Yang, X. Li, T. W. Prow, L. M. Reece, S. E. Bassett, B. A. Luxon, N. K. Herzog, J. Aronson, R. E. Shope, J. F. Leary, and D. G. Gorenstein, Nucleic Acids Res. 31(10), 54e (2003).
88. Z. Zhu, Y. Song, C. Li, Y. Zou, L. Zhu, Y. An, and C. J. Yang, Anal. Chem. 86(12), 58815888 (2014).
89. W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, Anal. Chem. 84(1), 350355 (2012).
90. J. Wang, Q. Gong, N. Maheshwari, M. Eisenstein, M. L. Arcila, K. S. Kosik, and H. T. Soh, Angew Chem Int Ed Engl 53(19), 47964801 (2014).
91. J. S. Paige, K. Y. Wu, and S. R. Jaffrey, Science 333(6042), 642646 (2011).
92. L. H. Lauridsen, H. A. Shamaileh, S. L. Edwards, E. Taran, and R. N. Veedu, PloS One 7(7), e41702 (2012).
93. L. Peng, B. J. Stephens, K. Bonin, R. Cubicciotti, and M. Guthold, Microsc. Res. Tech. 70(4), 372381 (2007).
94. Y. Miyachi, N. Shimizu, C. Ogino, and A. Kondo, Nucleic Acids Res. 38(4), e21 (2010).
95. F. Pileur, M. L. Andreola, E. Dausse, J. Michel, S. Moreau, H. Yamada, S. A. Gaidamakov, R. J. Crouch, J. J. Toulme, and C. Cazenave, Nucleic Acids Res. 31(19), 57765788 (2003).
96. M. Khati, M. Schuman, J. Ibrahim, Q. Sattentau, S. Gordon, and W. James, J. Virol. 77(23), 1269212698 (2003).
97. T. S. Misono and P. K. R. Kumar, Anal. Biochem. 342(2), 312317 (2005).
98. N. A. C. Ngubane, L. Gresh, A. Pym, E. J. Rubin, and M. Khati, Biochem. Biophys. Res. Commun. 449(1), 114119 (2014).
99. O. Aminova and M. D. Disney, Methods Mol. Biol. 669, 209224 (2010).
100. O. Aminova, D. J. Paul, J. L. Childs-Disney, and M. D. Disney, Biochemistry 47(48), 1267012679 (2008).
101. J. L. Childs-Disney, M. L. Wu, A. Pushechnikov, O. Aminova, and M. D. Disney, ACS Chem. Biol. 2(11), 745754 (2007).
102. M. D. Disney, L. P. Labuda, D. J. Paul, S. G. Poplawski, A. Pushechnikov, T. Tran, S. P. Velagapudi, M. Wu, and J. L. Childs-Disney, J. Am. Chem. Soc. 130(33), 1118511194 (2008).
103. C. G. Knight, M. Platt, W. Rowe, D. C. Wedge, F. Khan, P. J. Day, A. McShea, J. Knowles, and D. B. Kell, Nucleic Acids Res. 37(1), e6 (2009).
104. M. Platt, W. Rowe, D. C. Wedge, D. B. Kell, J. Knowles, and P. J. Day, Anal. Biochem. 390(2), 203205 (2009).
105. J. R. Collett, E. J. Cho, J. F. Lee, M. Levy, A. J. Hood, C. Wan, and A. D. Ellington, Anal. Biochem. 338(1), 113123 (2005).
106. M. Cho, S. Soo Oh, J. Nie, R. Stewart, M. Eisenstein, J. Chambers, J. D. Marth, F. Walker, J. A. Thomson, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 110(46), 1846018465 (2013).
107. N. O. Fischer and T. M. Tarasow, Methods Mol. Biol. 723, 5766 (2011).
108. N. O. Fischer, J. B. H. Tok, and T. M. Tarasow, PloS One 3(7), e2720 (2008).
109. E. Katilius, C. Flores, and N. W. Woodbury, Nucleic Acids Res. 35(22), 76267635 (2007).
110. Y. Zhu, P. Chandra, C. Ban, and Y. B. Shim, Electroanalysis 24(5), 10571064 (2012).
111. Y. Li, H. J. Lee, and R. M. Corn, Nucleic Acids Res. 34(22), 64166424 (2006).
112. G. Hybarger, J. Bynum, R. F. Williams, J. J. Valdes, and J. P. Chambers, Anal. Bioanal. Chem. 384(1), 191198 (2006).
113. X. Lou, J. Qian, Y. Xiao, L. Viel, A. E. Gerdon, E. T. Lagally, P. Atzberger, T. M. Tarasow, A. J. Heeger, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 106(9), 29892994 (2009).
114. S. S. Oh, K. Plakos, X. Lou, Y. Xiao, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 107(32), 1405314058 (2010).
115. J. Qian, X. Lou, Y. Zhang, Y. Xiao, and H. T. Soh, Anal. Chem. 81(13), 54905495 (2009).
116. L. Gold, D. Ayers, J. Bertino, C. Bock, A. Bock, E. N. Brody, J. Carter, A. B. Dalby, B. E. Eaton, T. Fitzwater, D. Flather, A. Forbes, T. Foreman, C. Fowler, B. Gawande, M. Goss, M. Gunn, S. Gupta, D. Halladay, J. Heil, J. Heilig, B. Hicke, G. Husar, N. Janjic, T. Jarvis, S. Jennings, E. Katilius, T. R. Keeney, N. Kim, T. H. Koch, S. Kraemer, L. Kroiss, N. Le, D. Levine, W. Lindsey, B. Lollo, W. Mayfield, M. Mehan, R. Mehler, S. K. Nelson, M. Nelson, D. Nieuwlandt, M. Nikrad, U. Ochsner, R. M. Ostroff, M. Otis, T. Parker, S. Pietrasiewicz, D. I. Resnicow, J. Rohloff, G. Sanders, S. Sattin, D. Schneider, B. Singer, M. Stanton, A. Sterkel, A. Stewart, S. Stratford, J. D. Vaught, M. Vrkljan, J. J. Walker, M. Watrobka, S. Waugh, A. Weiss, S. K. Wilcox, A. Wolfson, S. K. Wolk, C. Zhang, and D. Zichi, PloS One 5(12), e15004 (2010).
117. S. S. Oh, K. M. Ahmad, M. Cho, S. Kim, Y. Xiao, and H. T. Soh, Anal. Chem. 83(17), 68836889 (2011).
118. M. Cho, Y. Xiao, J. Nie, R. Stewart, A. T. Csordas, S. S. Oh, J. A. Thomson, and H. T. Soh, Proc. Natl. Acad. Sci. U. S. A. 107(35), 1537315378 (2010).
119. J. Y. Ahn, M. Jo, P. Dua, D. K. Lee, and S. Kim, Oligonucleotides 21(2), 93100 (2011).
120. H. Bae, S. Ren, J. Kang, M. Kim, Y. Jiang, M. M. Jin, I. M. Min, and S. Kim, Nucleic Acid Ther. 23(6), 443449 (2013).
121. S. M. Park, J. Y. Ahn, M. Jo, D. K. Lee, J. T. Lis, H. G. Craighead, and S. Kim, Lab Chip 9(9), 12061212 (2009).
122. T. K. Kim, S. W. Lee, J. Y. Ahn, T. Laurell, S. Y. Kim, and O. C. Jeong, Jpn. J. Appl. Phys., Part 1 50(6), 06GL05 (2011).
123. S. Lee, J. Kang, S. Ren, T. Laurell, S. Kim, and O. C. Jeong, Biochip J. 7(1), 3845 (2013).
124. Q. Wang, W. Liu, Y. Xing, X. Yang, K. Wang, R. Jiang, P. Wang, and Q. Zhao, Anal. Chem. 86(13), 65726579 (2014).
125. M. Jing and M. T. Bowser, Lab Chip 11(21), 37033709 (2011).
126. J. Kim, J. P. Hilton, K. A. Yang, R. Pei, K. Ennis, M. Stojanovic, and Q. Lin, paper presented at the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012.
127. J. Kim, J. P. Hilton, K. A. Yang, R. J. Pei, M. Stojanovic, and Q. Lin, Sens. Actuators, A 195, 183190 (2013).
128. J. Kim, J. P. Hilton, K. A. Yang, R. Pei, J. Zhu, M. Stojanovic, and Q. Lin, paper presented at the IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 2013.
129. J. Zhu, T. Olsen, R. Pei, M. Stojanovic, and Q. Lin, paper presented at the IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014.
130. J. P. Hilton, K. Jinho, N. ThaiHuu, M. Barbu, P. Renjun, M. Stojanovic, and L. Qiao, paper presented at the IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012.
131. C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, Biosens. Bioelectron. 25(7), 17611766 (2010).
132. C. J. Huang, H. I. Lin, S. C. Shiesh, and G. B. Lee, Biosens. Bioelectron. 35(1), 5055 (2012).
133. Y. H. Chen, H. I. Lin, C. J. Huang, S. C. Shiesh, and G. B. Lee, Microfluid. Nanofluid. 13(6), 929939 (2012).
134. H.-C. Lai, C.-H. Wang, T.-M. Liou, and G.-B. Lee, Lab Chip 14(12), 20022013 (2014).
135. C. H. Weng, I. S. Hsieh, L. Y. Hung, H. I. Lin, S. C. Shiesh, Y. L. Chen, and G. B. Lee, Microfluid. Nanofluid. 14(3–4), 753765 (2013).
136. R. Nutiu, R. C. Friedman, S. Luo, I. Khrebtukova, D. Silva, R. Li, L. Zhang, G. P. Schroth, and C. B. Burge, Nat. Biotechnol. 29(7), 659664 (2011).
137. J. D. Buenrostro, C. L. Araya, L. M. Chircus, C. J. Layton, H. Y. Chang, M. P. Snyder, and W. J. Greenleaf, Nat. Biotechnol. 32(6), 562568 (2014).
138. J. M. Tome, A. Ozer, J. M. Pagano, D. Gheba, G. P. Schroth, and J. T. Lis, Nat. Methods 11(6), 683688 (2014).
139. P. Calik, O. Balci, and T. H. Ozdamar, Protein Expression Purif. 69(1), 2128 (2010).
140. S. Arnold, G. Pampalakis, K. Kantiotou, D. Silva, C. Cortez, S. Missailidis, and G. Sotiropoulou, Biol. Chem. 393(5), 343353 (2012).
141. J. S. Tao and A. D. Frankel, Biochemistry 35(7), 22292238 (1996).
142. Y. Liu, C. Wang, F. Li, S. Shen, D. L. Tyrrell, X. C. Le, and X. F. Li, Anal. Chem. 84(18), 76037606 (2012).
143. B. Zimmermann, T. Gesell, D. Chen, C. Lorenz, and R. Schroeder, PloS One 5(2), e9169 (2010).
144. W. H. Thiel, T. Bair, K. W. Thiel, J. P. Dassie, W. M. Rockey, C. A. Howell, X. Y. Y. Liu, A. J. Dupuy, L. Y. Huang, R. Owczarzy, M. A. Behlke, J. O. McNamara, and P. H. Giangrande, Nucleic Acid Ther. 21(4), 253263 (2011).

Data & Media loading...


Article metrics loading...



High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd