Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/1/3/10.1063/1.4895117
1.
1. R. Wang, R. Mahesh, and M. Itoh, Phys. Rev. B 60, 14513 (1999);
http://dx.doi.org/10.1103/PhysRevB.60.14513
1. Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. B 63, 24421 (2000).
http://dx.doi.org/10.1103/PhysRevB.63.024421
2.
2. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
3.
3. Y. M. Xiong, T. Chen, G. Y. Wang, X. H. Chen, and C. L. Chen, Phys. Rev. B 70, 094407 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.094407
4.
4. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
http://dx.doi.org/10.1103/PhysRev.100.545
5.
5. M. R. Lees, J. Barratt, G. Balakrishnan, D. M. Paul, and C. D. Dewhurst, J. Phys.: Condens. Matter 8, 2967 (1996).
http://dx.doi.org/10.1088/0953-8984/8/17/009
6.
6. H. Kawano, R. Kajimoto, M. Kubota, and H. Yoshizawa, Phys. Rev. B 53, 2202 (1991).
http://dx.doi.org/10.1103/PhysRevB.53.2202
7.
7. Z. Jirak, E. Pollert, A. F. Andersen, J. C. Grenier, and P. Hagenmuller, Eur. J. Solid State Inorg. Chem. 27, 421 (1990).
8.
8. Z. Jirak, J. Hejtmanek, K. Knizek, and R. Sonntag, J. Solid State Chem. 132, 98 (1997).
http://dx.doi.org/10.1006/jssc.1997.7414
9.
9. D. P. Kozlenko, Z. Jirák, I. N. Goncharenko, and B. N. Savenko, J. Phys.: Condens. Matter 16, 2381 (2004).
http://dx.doi.org/10.1088/0953-8984/16/13/017
10.
10. T. Qian, G. Li, T. Zhang, T. F. Zhou, X. W. Kang, and X. G. Li, Phys. Rev. B 76, 014433 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.014433
11.
11. T. Qian, G. Li, T. Zhang, T. F. Zhou, and X. G. Li, Appl. Phys. Lett. 90, 012503 (2007).
http://dx.doi.org/10.1063/1.2426887
12.
12. X. G. Li, X. J. Fan, G. Ji, W. B. Wu, K. H. Wong, C. L. Choy, and H. C. Ku, J. Appl. Phys. 85, 1663 (1999).
http://dx.doi.org/10.1063/1.369302
13.
13. J. C. Loudon, N. D. Mathur, and P. A. Midgley, Nature 420, 797 (2002).
http://dx.doi.org/10.1038/nature01299
14.
14. T. Qian, R. K. Zheng, T. Zhang, T. F. Zhou, W. B. Wu, and X. G. Li, Phys. Rev. B 72, 024432 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024432
15.
15.Colossal Magnetoresistive Oxides, edited by Y. Tokura ( Gordon and Breach, New York, 2000), p. 259.
16.
16. C. L. Wang and S. R. P. Smith, J. Phys.: Condens. Matter 7, 7163 (1995).
http://dx.doi.org/10.1088/0953-8984/7/36/006
17.
17. Y. Wang and H. J. Fan, Small 8, 1060 (2012);
http://dx.doi.org/10.1002/smll.201102070
17. P. Katiyar, D. Kumar, T. K. Nath, Alex V. Kvit, J. Narayan, S. Chattopadhyay, W. M. Gilmore, S. Coleman, C. B. Lee, J. Sankar, and R. K. Singh, Appl. Phys. Lett. 79, 1327 (2001).
http://dx.doi.org/10.1063/1.1399001
18.
18. X. H. Huang, J. F. Ding, Z. L. Jiang, Y. W. Yin, Q. X. Yu, and X. G. Li, J. Appl. Phys. 106, 083904 (2009).
http://dx.doi.org/10.1063/1.3246869
19.
19. L. Balcells, J. Fontcuberta, B. Martinez, and X. Obradors, Phys. Rev. B 58, R14697 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R14697
20.
20. T. Zhu, B. G. Shen, J. R. Sun, H. W. Zhao, and W. S. Zhan, Appl. Phys. Lett. 78, 3863 (2001).
http://dx.doi.org/10.1063/1.1379597
21.
21. M. A. López-Quintela, L. E. Hueso, J. Rivas, and F. Rivadulla, Nanotechnology 14, 212 (2003).
http://dx.doi.org/10.1088/0957-4484/14/2/322
22.
22. P. Dey and T. K. Nath, Phys. Rev. B 73, 214425 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.214425
23.
23. S. Dong, F. Gao, Z. Q. Wang, J. M. Liu, and Z. F. Ren, Appl. Phys. Lett. 90, 082508 (2007).
http://dx.doi.org/10.1063/1.2709911
24.
24. S. Shankar, S. Kar, G. N. Subbanna, and A. K. Raychaudhuri, Solid State Commun. 129, 479 (2004).
http://dx.doi.org/10.1016/j.ssc.2003.10.029
25.
25. J. Curiale, M. Granada, H. E. Troiani, R. D. S ánchez, A. G. Leyva, P. Levy, and K. Samwer, Appl. Phys. Lett. 95, 043106 (2009).
http://dx.doi.org/10.1063/1.3187538
26.
26. T. Zhang, T. F. Zhou, T. Qian, and X. G. Li, Phys. Rev. B 76, 174415 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.174415
27.
27. Y. W. Duan and J. G. Li, Mod. Phys. Lett. B 18, 597 (2004).
http://dx.doi.org/10.1142/S0217984904007153
28.
28. T. Zhang, G. Li, T. Qian, J. F. Qu, and X. G. Li, J. Appl. Phys. 100, 094324 (2006).
http://dx.doi.org/10.1063/1.2364622
29.
29. T. Sarkar, B. Ghosh, and A. K. Raychaudhuri, Phys. Rev. B 77, 235112 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235112
30.
30. M. Dlouha, S. Vratislav, Z. Jirak, J. Hejtmanek, K. Knizek, and D. Sedmidubsky, Appl. Phys. A: Mater. Sci. Process. 74, s673 (2002).
http://dx.doi.org/10.1007/s003390101141
31.
31. C. Dhital, C. de la Cruz, C. Opeil, A. Treat, K. F. Wang, J.-M. Liu, Z. F. Ren, and S. D. Wilson, Phys. Rev. B 84, 14401 (2011);
http://dx.doi.org/10.1103/PhysRevB.84.144401
31. Z. Jirák, E. Hadová, O. Kaman, K. Knížek, M. Maryško, and E. Pollert, Phys. Rev. B 81, 024403 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.024403
32.
32. A. Martinelli, M. Ferretti, C. Castellano, M. R. Cimberle, R. Masini, D. Peddisand, and C. Ritter, J. Phys.: Condens. Matter 25, 176003 (2013).
http://dx.doi.org/10.1088/0953-8984/25/17/176003
33.
33. R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, Appl. Phys. Lett. 68, 2291 (1996).
http://dx.doi.org/10.1063/1.116167
34.
34. L. Zheng, K. B. Li, and Y. H. Zhang, Phys. Rev. B 58, 8613 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.8613
35.
35. A. Dutta, N. Gayathri, and R. Ranganathan, Phys. Rev. B 68, 054432 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.054432
36.
36. E. Rozenberg, A. I. Shames, M. Auslender, G. Jung, I. Felner, Jaivardhan Sinha, S. S. Banerjee, D. Mogilyansky, E. Sominski, A. Gedanken, Ya. M. Mukovskii, and G. Gorodetsky, Phys. Rev. B 76, 214429 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.214429
37.
37. S. K. Shantha, K. Sohini, and G. N. Subbanna, Appl. Phys. Lett. 84, 993 (2004).
http://dx.doi.org/10.1063/1.1646761
38.
38. M. Muroi, R. Street, and P. G. McCormic, J. Appl. Phys. 87, 3424 (2000).
http://dx.doi.org/10.1063/1.372362
39.
39. M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, and K. Gobrecht, Phys. Rev. B 52, 9248 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.9248
40.
40. Y. K. Liu, Y. W. Yin, and X. G. Li, Chin. Phys. B 22, 087502 (2013).
http://dx.doi.org/10.1088/1674-1056/22/8/087502
41.
41. T. Zhang, C. G. Jin, J. Zhang, X. L. Lu, T. Qian, and X. G. Li, Nanotechnology 16, 2743 (2005).
http://dx.doi.org/10.1088/0957-4484/16/11/047
42.
42. E. Restrepo-Parra, G. Orozco-Hernandez, and J. C. Riano-Rojas, J. Magn. Magn. Mater. 344, 44 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.05.002
43.
43. E. F. Kneller and F. E. Luborsky, J. Appl. Phys. 34, 656 (1963).
http://dx.doi.org/10.1063/1.1729324
44.
44. S. Roy, I. Dubenko, D. D. Edorh, and N. Alib, J. Appl. Phys. 96, 1202 (2004).
http://dx.doi.org/10.1063/1.1760230
45.
45. T. Zhang, X. G. Li, X. P. Wang, Q. F. Fang, and M. Dressel, Eur. Phys. J. B 74, 309 (2010).
http://dx.doi.org/10.1140/epjb/e2010-00094-5
46.
46. G. M. Tsoi, L. E. Wenger, U. Senaratne, R. J. Tackett, E. C. Buc, R. Naik, P. P. Vaishnava, and V. Naik, Phys. Rev. B 72, 014445 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014445
47.
47. V. Markovich, G. Jung, A. Wisniewski, R. Puzniak, I. Fita, Y. Yuzhelevski, D. Mogilyansky, L. Titelman, and G. Gorodetsky, J. Supercond. Novel Magn. 24, 861 (2011).
http://dx.doi.org/10.1007/s10948-010-1032-1
48.
48. M. H. Zhu, Y. G. Zhao, W. Cai, X. S. Wu, S. N. Gao, K. Wang, L. B. Luo, H. S. Huang, and L. Lu, Phys. Rev. B 75, 34424 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.134424
49.
49. M. Muroi, P. G. McCormick, and R. Street, Rev. Adv. Mater. Sci. 5, 76 (2003).
50.
50. N. Zhang, W. P. Ding, W. Zhong, D. Y. Xing, and Y. W. Du, Phys. Rev. B 56, 8138 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.8138
51.
51. J. I. Glittleman, Y. Goldstein, and S. Bozowski, Phys. Rev. B 5, 3609 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.3609
52.
52. G. Venkataiah and P. Venugopal Reddy, J. Magn. Magn. Mater. 285, 343 (2005).
http://dx.doi.org/10.1016/j.jmmm.2004.07.051
53.
53. J. R. Thomson, M. Paranthaman, D. K. Chrissten, K. D. Sorge, H. J. Kim, and J. G. Osson, Supercond. Sci. Technol. 14, 17 (2001).
http://dx.doi.org/10.1088/0953-2048/14/5/102
54.
54. H. Y. Hwang, S.-W. Cheong, N. P. Ong, and B. Battlogg, Phys. Rev. Lett. 77, 2041 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2041
55.
55. L. Martin, L. Morellon, P. A. Algarabel, L. A. Rodriguez, C. Magen, J. M. De Teresa, and M. R. Ibarra, Nano Lett. 14, 423 (2014).
http://dx.doi.org/10.1021/nl402911w
56.
56. T. Zhang, Y. Z. Fang, M. Dressel, X. P. Wang, and Q. F. Fang, J. App. Phys. 108, 113901 (2010).
http://dx.doi.org/10.1063/1.3516486
57.
57. A. Sadhu, T. Kramer, A. Datta, S. A. Wiedigen, J. Norpoth, C. Jooss, and S. Bhattacharyya, Chem. Mater. 24, 3758 (2012).
http://dx.doi.org/10.1021/cm3018924
58.
58. S. S. Rao, S. Tripathi, D. Pandey, and S. V. Bhat, Phys. Rev. B 74, 144416 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.144416
59.
59. P. Levy, F. Parisi, G. Polla, D. Vega, G. Leyva, H. Lanza, R. S. Freitas, and L. Ghivelder, Phys. Rev. B 62, 6437 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.6437
60.
60. S. Kundu and T. K. Nath, Philos. Mag. 93, 2527 (2013).
http://dx.doi.org/10.1080/14786435.2013.776719
61.
61. A. Fernandez-Martinez, A. Garcia-Santiago, J. M. Hernandez, and T. Zhang, J. Magn. Magn. Mater. 361, 94 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.02.080
62.
62. A. Biswas and I. Das, J. Appl. Phys. 102, 064303 (2007).
http://dx.doi.org/10.1063/1.2781306
63.
63. X. H. Huang, J. F. Ding, G. Q. Zhang, Y. Hou, Y. P. Yao, and X. G. Li, Phys. Rev. B 78, 224408 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.224408
64.
64. B. Dolgin, R. Puzniak, D. Mogilyansky, A. Wisniewski, V. Markovich, and G. Jung, J. Phys.: Condens. Matter 25, 076004 (2013).
http://dx.doi.org/10.1088/0953-8984/25/7/076004
65.
65. L. Z. Liang, L. Li, H. Wu, and X. H. Zhu, Nanoscale Res. Lett. 9, 325 (2014).
http://dx.doi.org/10.1186/1556-276X-9-325
66.
66. S. S. Rao, K. N. Anuradha, S. Sarangi, and S. V. Bhat, Appl. Phys. Lett. 87, 182503 (2005).
http://dx.doi.org/10.1063/1.2125129
67.
67. V. Markovich, D. Mogilyansky, A. Wisniewski, I. Fita, R. Puzniak, P. Iwanowski, X. D. Wu, K. Suzuki, S. Chen, and G. Gorodetsky, J. Nanosci. Nanotechnol. 12, 8607 (2012).
http://dx.doi.org/10.1166/jnn.2012.6834
68.
68. V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, D. Mogilyansky, A. Kohn, B. Dolgin, P. Iwanowski, G. Gorodetsky, and G. Jung, J. Appl. Phys. 112, 063921 (2012).
http://dx.doi.org/10.1063/1.4754310
69.
69. G. Singh and S. V. Bhat, J. Appl. Phys. 111, 123913 (2012).
http://dx.doi.org/10.1063/1.4730612
70.
70. A. I. Shames, E. Rozenberg, E. Sominski, and A. Gedanken, J. Appl. Phys. 111, 07D701 (2012).
http://dx.doi.org/10.1063/1.3670059
71.
71. S. S. Rao and S. V. Bhat, J. Nanosci. Nanotechnol. 7, 2025 (2007).
http://dx.doi.org/10.1166/jnn.2007.762
72.
72. T. Zhang, C. G. Jin, X. L. Lu, and X. G. Li, J. Mater. Chem. 14, 2787 (2004).
http://dx.doi.org/10.1039/b405288a
73.
73. S. M. Zhou, Y. Q. Guo, Z. Q. Jiang, J. Y. Zhao, X. Cai, and L. Shi, J. Phys. Chem. C 117, 8989 (2013).
http://dx.doi.org/10.1021/jp400590p
74.
74. T. Zhang and M. Dressel, Phys. Rev. B 80, 014435 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014435
75.
75. S. M. Zhou, L. Shi, H. P. Yang, Y. Wang, L. F. He, and J. Y. Zhao, Appl. Phys. Lett. 93, 182509 (2008).
http://dx.doi.org/10.1063/1.3021370
76.
76. S. Narayana Jammalamadaka, S. S. Rao, J. Vanacken, A. Stesmans, S. V. Bhat, and V. V. Moshchalkov, AIP Adv. 1, 042151 (2011).
http://dx.doi.org/10.1063/1.3664786
77.
77. M. Tokunaga, N. Miura, Y. Tomioka, and Y. Tokura, Phys. Rev. B 57, 5259 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.5259
78.
78. S. M. Zhou, Y. Q. Guo, C. L. Wang, L. F. He, J. Y. Zhao, and L. Shi, Dalton Trans. 41, 7109 (2012).
http://dx.doi.org/10.1039/c2dt00029f
79.
79. X. G. Li, R. K. Zheng, G. Li, H. D. Zhou, and R. X. Huang, Europhys. Lett. 60, 670 (2002).
http://dx.doi.org/10.1209/epl/i2002-00361-2
80.
80. R. Bhowmik, R. Nagarajan, and R. Ranganathan, Phys. Rev. B 69, 054430 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.054430
81.
81. S. Dong, R. Yu, S. Yunoki, J. M. Liu, and E. Dagotto, Phys. Rev. B 78, 064414 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.064414
82.
82. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2003).
http://dx.doi.org/10.1103/PhysRevB.64.174420
83.
83. M. Pissas, I. Margiolaki, K. Prassides, and E. Suard, Phys. Rev. B 72, 064426 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064426
84.
84. M. Koyano, M. Suezawa, H. Watanabe, and M. Inoue, J. Phys. Soc. Jpn. 63, 1114 (1994);
http://dx.doi.org/10.1143/JPSJ.63.1114
84. D. N. H. Nam, K. Jonason, P. Nordblad, N. V. Khiem, and N. X. Phuc, Phys. Rev. B 59, 4189 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.4189
85.
85. M. D. Mukadam, A. Kumar, S. M. Yusuf, J. V. Yakhmi, R. Tewari, and G. K. Dey, J. Appl. Phys. 103, 123902 (2008).
http://dx.doi.org/10.1063/1.2938837
86.
86. D. P. Rojas, L. F. Barquín, J. R. Fernández, J. I. Espeso, and J. C. G. Sal, J. Phys.: Condens. Matter 19, 186214 (2007).
http://dx.doi.org/10.1088/0953-8984/19/18/186214
87.
87. C. L. Lu, S. Dong, K. F. Wang, F. Gao, P. L. Li, L. Y. Lv, and J.-M. Liu, Appl. Phys. Lett. 91, 032502 (2007).
http://dx.doi.org/10.1063/1.2753749
88.
88. E. Rozenberg, M. Auslender, A. I. Shames, D. Mogilyansky, I. Felner, E. Sominskii, A. Gedanken, and Ya. M. Mukovskii, Phys. Rev. B 78, 052405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.052405
89.
89. C. L. Lu, K. F. Wang, S. Dong, J. G. Wan, J.-M. Liu, and Z. F. Ren, J. Appl. Phys. 103, 07F714 (2008).
http://dx.doi.org/10.1063/1.2836712
90.
90. Y. Wang and H. J. Fan, Phys. Rev. B 83, 224409 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.224409
91.
91. V. Markovich, I. Fita, A. Wisniewski, R. Puzniak, D. Mogilyansky, L. Titelman, L. Vradman, M. Herskowitz, and G. Gorodetsky, Phys. Rev. B 77, 054410 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.054410
92.
92. V. Markovich, R. Puzniak, D. Mogilyansky, X. D. Wu, K. Suzuki, I. Fita, A. Wisniewski, S. J. Chen, and G. Gorodetsky, J. Phys. Chem. C 115, 1582 (2011).
http://dx.doi.org/10.1021/jp109035n
93.
93. T. Zhang, X. P. Wang, and Q. F. Fang, J. Phys. Chem. C 114, 11796 (2010).
http://dx.doi.org/10.1021/jp103071g
94.
94. L. Liu, J. J. Zheng, S. L. Yuan, Z. M. Tian, and C. H. Wang, J. Nanopart. Res. 13, 2305 (2011).
http://dx.doi.org/10.1007/s11051-010-9988-0
95.
95. S. M. Zhou, L. Shi, H. P. Yang, Y. Wang, L. F. He, and J. Y. Zhao, App. Phys. Lett. 93, 182509 (2009).
http://dx.doi.org/10.1063/1.3021370
96.
96. L. Liu, J. J. Zheng, Z. C. Xia, S. L. Yuan, and Z. M. Tian, Solid State Commun. 150, 2322 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.10.010
97.
97. S. M. Zhou, S. Y. Zhao, and Y. Q. Guo, J. Appl. Phys. 107, 033906 (2010).
http://dx.doi.org/10.1063/1.3295909
98.
98. D. Niebieskikwiat and M. B. Salamon, Phys. Rev. B 72, 174422 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174422
99.
99. Y. Wang and H. J. Fan, Appl. Phys. Lett. 98, 142502 (2011).
http://dx.doi.org/10.1063/1.3575571
100.
100. A. Biswas, T. Samanta, S. Banerjee, and I. Das, Appl. Phys. Lett. 94, 233109 (2009).
http://dx.doi.org/10.1063/1.3152785
101.
101. T. Zhang, X. P. Wang, and Q. F. Fang, J. Phys. Chem. C 115, 19482 (2011).
http://dx.doi.org/10.1021/jp204432j
102.
102. K. Das, T. Samanta, A. Poddar, and I. Das, AIP Conf. Proc. 1447, 979 (2012).
103.
103. X. B. Zhu, H. C. Lei, S. B. Zhang, X. D. Zhu, B. S. Wang, G. Li, X. Luo, W. H. Song, J. M. Dai, Y. P. Sun, D. Q. Shi, and S. X. Dou, J. Magn. Magn. Mater. 321, 2009 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.01.013
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/3/10.1063/1.4895117
Loading
/content/aip/journal/apr2/1/3/10.1063/1.4895117
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/3/10.1063/1.4895117
2014-09-11
2016-09-25

Abstract

Perovskite manganites exhibit a wide range of functional properties, such as colossal magneto-resistance, magnetocaloric effect, multiferroic property, and some interesting physical phenomena including spin, charge, and orbital ordering. Recent advances in science and technology associated with perovskite oxides have resulted in the feature sizes of microelectronic devices down-scaling into nanoscale dimensions. The nanoscale perovskite manganites display novel magnetic and electronic properties that are different from their bulk and film counterparts. Understanding the size effects of perovskite manganites at the nanoscale is of importance not only for the fundamental scientific research but also for developing next generation of electronic and magnetic nanodevices. In this paper, the current understanding and the fundamental issues related to the size effects on the magnetic properties and charge ordering in manganites are reviewed, which covers lattice structure, magnetic and electronic properties in both ferromagnetic and antiferromagnetic based manganites. In addition to review the literatures, this article identifies the promising avenues for the future research in this area.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/3/1.4895117.html;jsessionid=v60DqtECAhqRB93Iggb1jEgU.x-aip-live-03?itemId=/content/aip/journal/apr2/1/3/10.1063/1.4895117&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/1/3/10.1063/1.4895117&pageURL=http://scitation.aip.org/content/aip/journal/apr2/1/3/10.1063/1.4895117'
Right1,Right2,Right3,