In 1959, Lawson and co-workers published the paper which triggered development of variable band gap Hg1−xCdxTe (HgCdTe) alloys providing an unprecedented degree of freedom in infrared detector design. HgCdTe ternary alloy has been used for realization of detectors operating under various modalities including: photoconductor, photodiode, and metal-insulator-semiconductor detector designs. Over the last five decades, this material system has successfully overcome the challenges from other material systems. It is important to notice that none of these competitors can compete in terms of fundamental properties. The competition may represent more mature technology but not higher performance or, with the exception of thermal detectors, higher operating temperatures (HOTs) for ultimate performance. In the last two decades, several new concepts for improvement of the performance of photodetectors have been proposed. These new concepts are particularly addressing the drive towards the so called HOT detectors aiming to increase detector operating temperatures. In this paper, new strategies in photodetector designs are reviewed, including barrier detectors, unipolar barrier photodiodes, multistage detectors and trapping detectors. Some of these new solutions have emerged as a real competitor to HgCdTe photodetectors.

1.
A.
Rogalski
,
Infrared Detectors
, 2nd ed. (
CRC Press
,
Boca Raton
,
2010
).
2.
W. D.
Lawson
,
S.
Nielson
,
E. H.
Putley
, and
A. S.
Young
, “
Preparation and properties of HgTe and mixed crystals of HgTe-CdTe
,”
J. Phys. Chem. Solids
9
,
325
329
(
1959
).
3.
W. S.
Boyle
and
G. E.
Smith
, “
Charge-coupled semiconductor devices
,”
Bell Syst. Tech. J.
49
,
587
593
(
1970
).
4.
S.
Krishna
, “
The infrared retina
,”
J. Phys. D: Appl. Phys.
42
,
234005
(
2009
).
5.
S. J.
Lee
,
Z.
Ku
,
A.
Barve
,
J.
Montoya
,
W.-Y.
Jang
,
S. R. J.
Brueck
,
M.
Sundaram
,
A.
Reisinger
,
S.
Krishna
, and
S. K.
Noh
, “
A monolithically integrated plasmonic infrared quantum dot camera
,”
Nat. Commun.
2
,
286
(
2011
).
6.
J.
Piotrowski
and
A.
Rogalski
, “
Uncooled long wavelength infrared photon detectors
,”
Infrared Phys. Technol.
46
,
115
131
(
2004
).
7.
J.
Piotrowski
and
A.
Rogalski
,
High-Operating Temperature Infrared Photodetectors
(
SPIE Press
,
Bellingham
,
2007
).
8.
J.
Piotrowski
and
A.
Piotrowski
, “
Room temperature IR photodetectors
,” in
Mercury Cadmium Telluride. Growth, Properties and Applications
, edited by
P.
Capper
and
J.
Garland
(
Wiley
,
West Sussex
,
2011
), pp.
513
537
.
9.
C. T.
Elliott
and
N. T.
Gordon
, “
Infrared detectors
,” in
Handbook on Semiconductors
, edited by
C.
Hilsum
(
North-Holland
,
Amsterdam
,
1993
), Vol. 4, pp.
841
936
.
10.
C. T.
Elliott
, “
New infrared and other applications of narrow gap semiconductors
,”
Proc. SPIE
3436
,
763
775
(
1998
).
11.
C. T.
Elliott
, “
Photoconductive and non-equilibrium devices in HgCdTe and related alloys
,” in
Infrared Detectors and Emitters: Materials and Devices
, edited by
P.
Capper
and
C. T.
Elliott
(
Kluwer Academic Publishers
,
Boston
,
2001
), pp.
279
312
.
12.
J.
Piotrowski
and
A.
Rogalski
, “
Comment on “Temperature limits on infrared detectivities of InAs/InxGa1xSb superlltices and bulk Hg1xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]
,”
J. Appl. Phys.
80
(
4
),
2542
2544
(
1996
).
13.
J.
Piotrowski
and
W.
Gawron
, “
Ultimate performance of infrared photodetectors and figure of merit of detector material
,”
Infrared Phys. Technol.
38
,
63
68
(
1997
).
14.
A.
Rogalski
, “
Quantum well photoconductors in infrared detectors technology
,”
J. Appl. Phys.
93
,
4355
4391
(
2003
).
15.
P.
Norton
, “
Detector focal plane array technology
,” in
Encyclopedia of Optical Engineering
, edited by
R.
Driggers
(
Marcel Dekker Inc.
,
New York
,
2003
), pp.
320
348
.
16.
L.
Pillans
,
R. M.
Ash
,
L.
Hipwood
, and
P.
Knowles
, “
MWIR mercury cadmium telluride detectors for high operating temperatures
,”
Proc. SPIE
8353
,
83532W
(
2012
).
17.
C.
Li
,
G.
Skidmore
,
C.
Howard
,
E.
Clarke
, and
C. J.
Han
, “
Advancement in 17 micron pixel pitch uncooled focal plane arrays
,”
Proc. SPIE
7298
,
72980S
(
2009
).
18.
G.
Destefanis
,
P.
Tribolet
,
M.
Vuillermet
, and
D. B.
Lanfrey
, “
MCT IR detectors in France
,”
Proc. SPIE
8012
,
801235
(
2011
).
20.
P. B.
Catrysse
and
T.
Skauli
, “
Pixel scaling in infrared focal plane arrays
,”
Appl. Opt.
52
(
7
),
C72
C76
(
2013
).
21.
W. E.
Tennant
, “
Limits of infrared imaging
,”
Int. J. High Speed Electron. Syst.
20
,
529
539
(
2011
).
22.

See nird_darpa_baa_08_54_final_for_posting_28aug08.pdf for the link to the description of the Darpa Nyquist-Limited Infrared Detectors (NIRD) Program. Goal of the program is to develop 5-micrometer pitch IR detectors. This value, if attained, will reach diffraction limit on most practical optical systems.

23.
R. D.
Driggers
,
R.
Vollmerhausen
,
J. P.
Reynolds
,
J.
Fanning
, and
G. C.
Holt
, “
Infrared detector size: how low should you go?
,”
Opt. Eng.
51
(
6
),
063202
(
2012
).
24.
K. T.
Posani
,
V.
Tripathi
,
S.
Annamalai
,
N. R.
Weisse-Bernstein
,
S.
Krishna
,
R.
Perahia
,
O.
Crisafulli
, and
O. J.
Painter
, “
Nanoscale quantum dot infrared sensors with photonic crystal cavity
,”
Appl. Phys. Lett.
88
,
151104
(
2006
).
25.
K. T.
Posani
,
V.
Tripathi
,
S.
Annamalai
,
S.
Krishna
,
R.
Perahia
,
O.
Crisafulli
, and
O.
Painter
, “
Quantum dot photonic crystal detectors
,”
Proc. SPIE
6129
,
612906-1
8
(
2006
).
26.
S. C.
Lee
,
S.
Krishna
, and
S. R. J.
Brueck
, “
Quantum dot infrared photodetector enhanced by surface plasma wave excitation
,”
Opt. Exp.
17
(
25
)
23160
23168
(
2009
).
27.
S.
Kalchmair
,
H.
Detz
,
G. D.
Cole
,
A. M.
Andrews
,
P.
Klang
,
M.
Nobile
,
R.
Gansch
,
C.
Ostermaier
,
W.
Schrenk
, and
G.
Strasser
, “
Photonic crystal slab quantum well infrared photodetector
,”
Appl. Phys. Lett.
98
,
011105
(
2011
).
28.
S. A.
Maier
,
Plasmonic: Fundamentals and Applications
(
Springer
,
New York
,
2007
).
29.
J.
Zhang
,
L.
Zhang
, and
W.
Xu
, “
Surface plasmon polaritons: physics and applications
,”
J. Phys. D: Appl. Phys.
45
,
113001
(
2012
).
30.
P.
Berini
, “
Surface plasmon photodetectors and their applications
,”
Laser Photonics Rev.
8
,
197
220
(
2013
).
31.
R.
Stanley
, “
Plasmonics in the mid-infrared
,”
Nat. Photonics
6
,
409
411
(
2012
).
32.
D.
Li
and
C. Z.
Ning
, “
All-semiconductor active plasmonic system in mid-infrared wavelengths
,”
Opt. Express
19
(
15
),
14594
14603
(
2011
).
33.
J.
Rosenberg
,
R. V.
Shenoi
,
S.
Krishna
, and
O.
Painter
, “
Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors
,”
Opt. Express
18
(
4
),
3672
3686
(
2010
).
34.
C.-C.
Chang
,
Y. D.
Sharma
,
Y.-S.
Kim
,
J. A.
Bur
,
R. V.
Shenoi
,
S.
Krishna
,
D.
Huang
, and
S.-Y.
Lin
, “
A surface plasmon enhanced infrared photodetector based on InAs quantum dots
,”
Nano Lett.
10
,
1704
1709
(
2010
).
35.
P.
Biagioni
,
J.-S.
Huang
, and
B.
Hecht
, “
Nanoantennas for visible and infrared radiation
,”
Rep. Prog. Phys.
75
,
024402
(
2012
).
36.
K.
Ishihara
,
K.
Ohashi
,
T.
Ikari
,
H.
Minamide
,
H.
Yokoyama
,
J.-I.
Shikata
, and
H.
Ito
, “
Therahertz-wave near field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture
,”
Appl. Phys. Lett.
89
,
201120
(
2006
).
37.
P.
Bouchon
,
F.
Pardo
,
B.
Portier
,
L.
Ferlazzo
,
P.
Ghenuche
,
G.
Dagher
,
C.
Dupuis
,
N.
Bardou
,
R.
Haidar
, and
J.-L.
Pelouard
, “
Total funneling of light aspect ratio plasmonic nanoresonators
,”
Appl. Phys. Lett.
98
,
191109
(
2011
).
38.
J. G. A.
Wehner
,
E. P. G.
Smith
,
G. M.
Venzor
,
K. D.
Smith
,
A. M.
Ramirez
,
B. P.
Kolasa
,
K. R.
Olsson
, and
M. F.
Vilela
, “
HgCdTe photon trapping structure for broadband mid-wavelength infrared absorption
,”
J. Electron. Mater.
40
,
1840
1846
(
2011
).
39.
K. D.
Smith
,
J. G. A.
Wehner
,
R. W.
Graham
,
J. E.
Randolph
,
A. M.
Ramirez
,
G. M.
Venzor
,
K.
Olsson
,
M. F.
Vilela
, and
E. P. G.
Smith
, “
High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays
,”
Proc. SPIE
8353
,
83532R
(
2012
).
40.
D. A. G.
Bruggeman
, “
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen
,”
Ann. Phys. (Leipzig)
416
,
636
679
(
1935
).
41.
N. K.
Dhar
and
R.
Dat
, “
Advanced imaging research and development at DARPA
,”
Proc. SPIE
8353
,
835302
(
2012
).
42.
A. I.
D'Souza
,
E.
Robinson
,
A. C.
Ionescu
,
D.
Okerlund
,
T. J. de
Lyon
,
R. D.
Rajavel
,
H.
Sharifi
,
D.
Yap
,
N.
Dhar
,
P. S.
Wijewarnasuriya
, and
C.
Grein
, “
MWIR InAs1xSbx nCBn detectors data and analysis
,”
Proc. SPIE
8353
,
835333
(
2012
).
43.
H.
Sharifi
,
M.
Roebuck
,
T. De
Lyon
,
H.
Nguyen
,
M.
Cline
,
D.
Chang
,
D.
Yap
,
S.
Mehta
,
R.
Rajavel
,
A.
Ionescu
,
A.
D'Souza
,
E.
Robinson
,
D.
Okerlund
, and
N.
Dhar
, “
Fabrication of high operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays
,”
Proc. SPIE
8704
,
87041U
(
2013
).
44.
A. I.
D'Souza
,
E.
Robinson
,
A. C.
Ionescu
,
D.
Okerlund
,
T. J. de
Lyon
,
R. D.
Rajavel
,
H.
Sharifi
,
N. K.
Dhar
,
P. S.
Wijewarnasuriya
, and
C.
Grein
, “
MWIR InAsSb barrier detector data and analysis
,”
Proc. SPIE
8704
,
87041U
(
2013
).
45.
J.
Schuster
and
E.
Bellotti
, “
Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays
,”
Opt. Express
21
(
12
)
14712
(
2013
).
46.
A.
White
, “
Infrared detectors
,” U.S. Patent 4,679,063 (22 September
1983
).
47.
P. C.
Klipstein
, “
Depletionless photodiode with suppressed dark current and method for producing the same
,” U.S. Patent 7,795,640 (2 July
2003
).
48.
S.
Maimon
and
G.
Wicks
, “
nBn detector, an infrared detector with reduced dark current and higher operating temperature
,”
Appl. Phys. Lett.
89
,
151109-1–3
(
2006
).
49.
D. Z.-Y.
Ting
,
A.
Soibel
,
L.
Höglund
,
J.
Nguyen
,
C. J.
Hill
,
A.
Khoshakhlagh
, and
S. D.
Gunapala
, “
Type-II superlattice infrared detectors
,” in
Semiconductors and Semimetals
, edited by
S. D.
Gunapala
,
D. R.
Rhiger
, and
C.
Jagadish
(
Elsevier
,
Amsterdam
,
2011
), Vol. 84, pp.
1
57
.
50.
G. R.
Savich
,
J. R.
Pedrazzani
,
D. E.
Sidor
, and
G. W.
Wicks
, “
Benefits and limitations of unipolar barriers in infrared photodetectors
,”
Infrared Phys. Technol.
59
,
152
155
(
2013
).
51.
P.
Klipstein
, “
XBn barrier photodetectors for high sensitivity operating temeprature infrared sensors
,”
Proc. SPIE.
6940
,
69402U-1
11
(
2008
).
52.
D. Z.
Ting
,
C. J.
Hill
,
A.
Soibel
,
J.
Nguyen
,
S. A.
Keo
,
M. C.
Lee
,
J. M.
Mumolo
,
J. K.
Liu
, and
S. D.
Gunapala
, “
Antimonide-based barrier infrared detectors
,”
Proc. SPIE
7660
,
76601R
(
2010
).
53.
P.
Klipstein
,
O.
Klin
,
S.
Grossman
,
N.
Snapi
,
I.
Lukomsky
,
D.
Aronov
,
M.
Yassen
,
A.
Glozman
,
T.
Fishman
,
E.
Berkowicz
,
O.
Magen
,
I.
Shtrichman
, and
E.
Weiss
, “
XBn barrier photodetectors based on InAsSb with high operating temperatures
,”
Opt. Eng.
50
,
061002
(
2011
).
54.
G. R.
Savich
,
J. R.
Pedrazzani
,
D. E.
Sidor
,
S.
Maimon
, and
G. W.
Wicks
, “
Use of unipolar barriers to block dark currents in infrared detectors
,”
Proc. SPIE
8012
,
8022T
(
2012
).
55.
P.
Martyniuk
and
A.
Rogalski
, “
HOT infrared photodetectors
,”
Opto-Electron. Rev.
21
,
239
257
(
2013
).
56.
J. B.
Rodriguez
,
E.
Plis
,
G.
Bishop
,
Y. D.
Sharma
,
H.
Kim
,
L. R.
Dawson
, and
S.
Krishna
, “
nBn structure based on InAs/GaSb type-II strained layer superlattices
,”
Appl. Phys. Lett.
91
,
043514-1
2
(
2007
).
57.
P.
Klipstein
,
D.
Aronov
,
E.
Berkowicz
,
R.
Fraenkel
,
A.
Glozman
,
S.
Grossman
,
O.
Klin
,
I.
Lukomsky
,
I.
Shtrichman
,
N.
Snapi
,
M.
Yassem
, and
E.
Weiss
, “
Reducing the cooling requirements of mid-wave IR detector arrys
,”
SPIE Newsroom
(published online).
58.
M.
Razeghi
,
S. P.
Abdollahi
,
E. K.
Huang
,
G.
Chen
,
A.
Haddadi
, and
B. M.
Nquyen
, “
Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures
,”
Opto-Electron. Rev.
19
,
261
269
(
2011
).
59.
M.
Razeghi
, “
Type II superlattice enables high operating temperature
,”
SPIE Newsroom
(published online).
60.
G. R.
Savich
,
J. R.
Pedrazzani
,
D. E.
Sidor
,
S.
Maimon
, and
G. W.
Wicks
, “
Dark current filtering in unipolar barrier infrared detectors
,”
Appl. Phys. Lett.
99
,
121112
(
2011
).
61.
P. C.
Klipstein
,
Y.
Gross
,
A.
Aronov
,
M. ben
Ezra
,
E.
Berkowicz
,
Y.
Cohen
,
R.
Fraenkel
,
A.
Glozman
,
S.
Grossman
,
O.
Kin
,
I.
Lukomsky
,
T.
Markowitz
,
L.
Shkedy
,
I.
Sntrichman
,
N.
Snapi
,
A.
Tuito
,
M.
Yassen
, and
E.
Weiss
, “
Low SWaP MWIR detector based on XBn focal plane array
,”
Proc. SPIE
8704
,
87041S
(
2013
).
62.
A.
Khoshakhlagh
,
S.
Myers
,
E.
Plis
,
M. N.
Kutty
,
B.
Klein
,
N.
Gautam
,
H.
Kim
,
E. P. G.
Smith
,
D.
Rhiger
,
S. M.
Johnson
, and
S.
Krishna
, “
Mid-wavelength InAsSb detectors based on nBn design
,”
Proc. SPIE
7660
,
76602Z
(
2010
).
63.
A. M.
Itsuno
,
J. D.
Philips
, and
S.
Velicu
, “
Design and modeling of HgCdTe nBn detectors
,”
J. Electron. Mater.
40
,
1624
1629
(
2011
).
64.
M.
Kopytko
,
A.
Kębłowski
,
W.
Gawron
,
P.
Madejczyk
,
A.
Kowalewski
, and
K.
Jóźwikowski
, “
High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD
,”
Opto-Electron. Rev.
21
(
42
),
402
405
(
2013
).
65.
J. F.
Klem
,
J. K.
Kim
,
M. J.
Cich
,
S. D.
Hawkins
,
T. R.
Fortune
, and
J. L.
Rienstra
, “
Comparison of nBn and nBp mid-wave barrier infrared photodetectors
,”
Proc. SPIE
7608
,
76081P
(
2010
).
66.
H.
Kroemer
, “
The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review
,”
Physica E
20
,
196
203
(
2004
).
67.
H.
Sakaki
,
L. L.
Chang
,
R.
Ludeke
,
C. A.
Chang
,
G. A.
Sai-Halasz
, and
L.
Esaki
, “
In1xGaxAs‐GaSb1yAsy heterojunctions by molecular beam epitaxy
,”
Appl. Phys. Lett.
31
,
211
213
(
1977
).
68.
Y.
Wei
and
M.
Razeghi
, “
Modelling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering
,”
Phys. Rev. B
69
,
085316
(
2004
).
69.
G. A.
Umana-Membreno
,
B.
Klein
,
H.
Kala
,
J.
Antoszewski
,
N.
Gautam
,
M. N.
Kutty
,
E.
Plis
,
S.
Krishna
, and
L.
Faraone
, “
Vertical minority carrier electron transport in p-type InAs/GaSb type-II superlattices
,”
Appl Phys. Lett.
101
,
253515
(
2012
).
70.
D.
Zuo
,
P.
Qiao
,
D.
Wasserman
, and
S. L.
Chuang
, “
Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control
,”
Appl. Phys. Lett.
102
,
141107
(
2013
).
71.
E.
Weiss
,
O.
Klin
,
S.
Grossmann
,
N.
Snapi
,
I.
Lukomsky
,
D.
Aronov
,
M.
Yassen
,
E.
Berkowicz
,
A.
Glozman
,
P.
Klipstein
,
A.
Fraenkel
, and
I.
Shtrichman
, “
InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs
,”
J. Cryst. Growth
339
,
31
35
(
2012
).
72.
P.
Martyniuk
and
A.
Rogalski
, “
Modeling of InAsSb/AlAsSb nBn HOT detector's performance limits
,”
Proc. SPIE
8704
,
87041X
(
2013
).
73.
E. H.
Aifer
,
J. G.
Tischler
,
J. H.
Warner
,
I.
Vurgaftman
,
W. W.
Bewley
,
J. R.
Meyer
,
J. C.
Kim
, and
L. J.
Whitman
, “
W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency
,”
Appl. Phys. Lett.
89
,
053519
(
2006
).
74.
B.-M.
Nguyen
,
M.
Razeghi
,
V.
Nathan
, and
G. J.
Brown
, “
Type-II “M” structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes
,”
Proc. SPIE
6479
,
64790S
(
2007
).
75.
B.-M.
Nguyen
,
D.
Hoffman
,
P.-Y.
Delaunay
, and
M.
Razeghi
, “
Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure
,”
Appl. Phys. Lett.
91
,
163511
(
2007
).
76.
B.-M.
Nguyen
,
D.
Hoffman
,
P.-Y.
Delaunay
,
E. K.
Huang
,
M.
Razeghi
, and
J.
Pellegrino
, “
Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes
,”
Appl. Phys. Lett.
93
,
163502
(
2008
).
77.
M.
Razeghi
,
H.
Haddadi
,
A. M.
Hoang
,
E. K.
Huang
,
G.
Chen
,
S.
Bogdanov
,
S. R.
Darvish
,
F.
Callewaert
, and
R.
McClintock
, “
Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices
,”
Infrared Phys. Technol.
59
,
41
52
(
2013
).
78.
O.
Salihoglu
,
A.
Muti
,
K.
Kutluer
,
T.
Tansel
,
R.
Turan
,
Y.
Ergun
, and
A.
Aydinli
, “
“N” structure for type-II superlattice photodetectors
,”
Appl. Phys. Lett.
101
,
073505
(
2012
).
79.
J. L.
Johnson
,
L. A.
Samoska
,
A. C.
Gossard
,
J. L.
Merz
,
M. D.
Jack
,
G. H.
Chapman
,
B. A.
Baumgratz
,
K.
Kosai
, and
S. M.
Johnson
, “
Electrical and optical properties of infrared photodiodes using the InAs/Ga1xInxSb superlattice in heterojunctions with GaSb
,”
J. Appl. Phys.
80
,
1116
1127
(
1996
).
80.
A.
Khoshakhlagh
,
J. B.
Rodriguez
,
E.
Plis
,
G. D.
Bishop
,
Y. D.
Sharma
,
H. S.
Kim
,
L. R.
Dawson
, and
S.
Krishna
, “
Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer superlattice detectors
,”
Appl. Phys. Lett.
91
,
263504
(
2007
).
81.
E.
Plis
,
H. S.
Kim
,
G.
Bishop
,
S.
Krishna
,
K.
Banerjee
, and
S.
Ghosh
, “
Lateral diffusion of minority carriers in nBn based type-II InAs/GaSb strained layer superlattice detectors
,”
Appl. Phys. Lett.
93
,
123507
(
2008
).
82.
A. D.
Hood
,
A. J.
Evans
,
A.
Ikhlassi
,
D. L.
Lee
, and
W. E.
Tennant
, “
LWIR strained-layer superlattice materials and devices at Teledyne Imaging Sensors
,”
J. Electron. Mater.
39
,
1001
1006
(
2010
).
83.
I.
Vurgaftman
,
E. H.
Aifer
,
C. L.
Canedy
,
J. G.
Tischler
,
J. R.
Meyer
, and
J. H.
Warner
, “
Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes
,”
Appl. Phys. Lett.
89
,
121114
(
2006
).
84.
E. H.
Aifer
,
J. H.
Warner
,
C. L.
Canedy
,
I.
Vurgaftman
,
E. M.
Jackson
,
J. G.
Tischler
,
J. R.
Meyer
,
S. P.
Powell
,
K.
Olver
, and
W. E.
Tennant
, “
Shallow-etch mesa isolation of graded-bandgap “W”-structured type II superlattice photodiodes
,”
J. Electron. Mater.
39
,
1070
1079
(
2010
).
85.
D. Z.-Y.
Ting
,
C. J.
Hill
,
A.
Soibel
,
S. A.
Keo
,
J. M.
Mumolo
,
J.
Nguyen
, and
S. D.
Gunapala
, “
A high-performance long wavelength superlattice complementary barrier infrared detector
,”
Appl. Phys. Lett.
95
,
023508
(
2009
).
86.
E. A.
DeCuir
,
G. P.
Meissner
,
P. S.
Wijewarnasuriya
,
N.
Gautam
,
S.
Krishna
,
N. K.
Dhar
,
R. E.
Welser
, and
A. K.
Sood
, “
Long-wave type-II superlattice detectors with unipolar electron and hole barriers
,”
Opt. Eng.
51
(
12
),
124001
(
2012
).
87.
N.
Gautam
,
S.
Myers
,
A. V.
Barve
,
B.
Klein
,
E. P.
Smith
,
D.
Rhiger
,
E.
Plis
,
M. N.
Kutty
,
N.
Henry
,
T.
Schuler-Sandyy
, and
S.
Krishna
, “
Band engineering HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices
,”
Infrared Phys. Technol.
59
,
72
77
(
2013
).
88.
W. E.
Tennant
,
D.
Lee
,
M.
Zandian
,
E.
Piquette
, and
M.
Carmody
, “
MBE HgCdTe Technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic
,”
J. Electron. Mater.
37
,
1406
(
2008
).
89.
D. R.
Rhiger
, “
Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe
,”
J. Electron. Mater.
40
,
1815
1822
(
2011
).
90.
S.
Velicu
,
J.
Zhao
,
M.
Morley
,
A. M.
Itsuno
, and
J. D.
Philips
, “
Theoretical and experimental investigation of MWIR HgCdTe nBn detectors
,”
Proc. SPIE
8268
,
82682X-1
13
(
2012
).
91.
P.
Maryniuk
and
A.
Rogalski
, “
Modelling of MWIR HgCdTe complementary barrier HOT detector
,”
Solid-State Electron.
80
,
96
104
(
2013
).
92.
E. F.
Schubert
,
L. W.
Tu
,
G. J.
Zydzik
,
R. F.
Kopf
,
A.
Benvenuti
, and
M. R.
Pinto
, “
Elimination of heterojunction band discontinuities by modulation doping
,”
Appl. Phys. Lett.
60
,
466
468
(
1992
).
93.
S. D.
Gunpala
,
D. Z.
Ting
,
C. J.
Hill
, and
S. V.
Bandara
, U.S. Patent No. 7,737,411 (15 June
2010
).
94.
N. D.
Akhavan
,
G.
Jolley
,
G.
Umana-Membreno
,
J.
Antoszewski
, and
L.
Faraone
, “
Performance modelling of bandgap engineered HgCdTe-based nBn infrared detectors
,” Extended Abstracts, The 2013 Workshop on the Physics and Chemistry of II–VI Materials, Chicago,
2013
.
95.
L.
Zheng
,
M.
Tidrow
,
L.
Aitcheson
,
J.
O'Connor
, and
S.
Brown
, “
Developing high-performance III-V superlattice IRFPAs for defense – challenges and solutions
,”
Proc. SPIE
7660
,
76601E
(
2010
).
96.
C. J.
Hill
,
A.
Soibel
,
S. A.
Keo
,
J. M.
Mumolo
,
D. Z.
Ting
,
S. D.
Gunapala
,
D. R.
Rhiger
,
R. E.
Kvaas
, and
S. F.
Harris
, “
Demonstration of mid and long-wavelength infrared antimonide-based focal plane arrays
,”
Proc. SPIE
7298
,
729804
(
2009
).
97.
A.
Soibel
,
J.
Nguyen
,
B.
Rafol
,
A.
Liao
,
L.
Hoeglund
,
A.
Khoshakhlagh
,
S. A.
Keo
,
J. M.
Mumolo
,
J.
Liu
,
D. Z.-Y.
Ting
, and
S. D.
Gunapala
, “
High-performance LWIR superlattice detectors and FPA based on CBIRD design
,”
Proc. SPIE
8353
,
83530U
(
2012
).
98.
P.
Manurkar
,
S.
Ramezani-Darvish
,
B.-M.
Nguyen
,
M.
Razeghi
, and
J.
Hubbs
, “
High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices
,”
Appl. Phys. Lett.
97
,
193505-1
3
(
2010
).
99.
A.
Rogalski
,
J.
Antoszewski
, and
L.
Faraone
, “
Third-generation infrared photodetector arrays
,”
J. Appl. Phys.
105
,
091101
(
2009
).
100.
A. M.
Hoang
,
G.
Chen
,
A.
Haddadi
, and
M.
Razeghi
, “
Demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
,”
Appl. Phys. Lett.
102
,
011108
(
2013
).
101.
M.
Razeghi
,
A. M.
Hoang
,
A.
Haddadi
,
G.
Chen
,
S.
Ramezani-Darvish
,
P.
Bijjam
,
P.
Wijewarnasuriya
, and
E.
Decuir
, “
High-performance bias-selectable dual-band short-/Mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb type-II superlattices
,”
Proc. SPIE
8704
,
87041W
(
2013
).
102.
M.
Razeghi
,
A.
Haddadi
,
A. M.
Hoang
,
G.
Chen
,
S.
Ramezani-Darvish
, and
P.
Bijjam
, “
High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb type-II superlattices
,”
Proc. SPIE
8704
,
87040S
(
2013
).
103.
M. A.
Kinch
,
H. F.
Schaake
,
R. L.
Strong
,
P. K.
Liao
,
M. J.
Ohlson
,
J.
Jacques
,
C-F.
Wan
,
D.
Chandra
,
R. D.
Burford
, and
C. A.
Schaake
, “
High operating temperature MWIR detectors
,”
Proc. SPIE
7660
,
76602V
(
2010
).
104.
W. W.
Bewley
,
J. R.
Lindle
,
C. S.
Kim
,
M.
Kim
,
C. L.
Canedy
,
I.
Vurgaftman
, and
J. R.
Meyer
, “
Lifetime and Auger coefficients in type-II W interband cascade lasers
,”
Appl. Phys. Lett.
93
,
041118
(
2008
).
105.
M. A.
Kinch
,
Fundamentals of Infrared Detector Materials
(
SPIE Press
,
Bellingham
,
2007
).
106.
A.
Gomez
,
M.
Carras
,
A.
Nedelcu
,
E.
Costard
,
X.
Marcadet
, and
V.
Berger
, “
Advantages of quantum cascade detectors
,”
Proc. SPIE
6900
,
69000J-1
14
(
2008
).
107.
F. R.
Giorgetta
,
E.
Baumann
,
M.
Graf
,
Q.
Yang
,
C.
Manz
,
K.
Köhler
,
H. E.
Beere
,
D. A.
Ritchie
,
E.
Linfield
,
A. G.
Davies
,
Y.
Fedoryshyn
,
H.
Jäckel
,
M.
Fischer
,
J.
Faist
, and
D.
Hofstetter
, “
Quantum cascade detectors
,”
IEEE J. Quantum Electron.
45
,
1039
1052
(
2009
).
108.
D.
Hofstetter
,
F. R.
Giorgetta
,
E.
Baumann
,
Q.
Yang
,
C.
Manz
, and
K.
Köhler
, “
Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry
,”
Appl. Phys. B
100
,
313
320
(
2010
).
109.
A.
Buffaz
,
M.
Carras
,
L.
Doyennette
,
A.
Nedelcu
,
P.
Bois
, and
V.
Berger
, “
State of the art of quantum cascade photodetectors
,”
Proc. SPIE
7660
,
76603Q
(
2010
).
110.
A.
Buffaz
,
A.
Gomez
,
M.
Carras
,
L.
Doyennette
, and
V.
Berger
, “
Role of subband occupancy on electronic transport in quantum cascade detectors
,”
Phys. Rev. B
81
,
075304-1
8
(
2010
).
111.
H.
Schneider
and
H. C.
Liu
,
Quantum Well Infrared Photodetectors
(
Springer
,
Berlin
,
2007
).
112.
R. Q.
Yang
,
Z.
Tian
,
Z.
Cai
,
J. F.
Klem
,
M. B.
Johnson
, and
H. C.
Liu
, “
Interband-cascade infrared photodetectors with superlattice absorbers
,”
J. Appl. Phys.
107
,
054514-1
6
(
2010
).
113.
Z.
Tian
,
R. T.
Hinkey
,
R. Q.
Yang
,
D.
Lubyshev
,
Y.
Qiu
,
J. M.
Fastenau
,
W. K.
Liu
, and
M. B.
Johnson
, “
Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers
,”
J. Appl. Phys.
111
,
024510
(
2012
).
114.
N.
Gautam
,
S.
Myers
,
A. V.
Barve
,
B.
Klein
,
E. P.
Smith
,
D. R.
Rhiger
,
L. R.
Dawson
, and
S.
Krishna
, “
High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice
,”
Appl. Phys. Lett.
101
,
021106-1
4
(
2012
).
115.
J. V.
Li
,
R. Q.
Yang
,
C. J.
Hill
, and
S. L.
Chung
, “
Interbad cascade detectors with room temperature photovoltaic operation
,”
Appl. Phys. Lett.
86
,
101102-1
3
(
2005
).
116.
R. T.
Hinkey
and
R. Q.
Yang
, “
Theory of multiple-stage interband photovoltaic devices and ultimate performance limit comparison of multiple-stage and single-stage interband infrared detectors
,”
J. Appl. Phys.
114
,
104506-1
18
(
2013
).
117.
W.
Pusz
,
A.
Kowalewski
,
W.
Gawron
,
E.
Plis
,
S.
Krishna
, and
A.
Rogalski
, “
MWIR type-II InAs/GaSb superllatice interband cascade photodetectors
,”
Proc. SPIE
8868
,
88680M
(
2013
).
118.
J.
Piotrowski
,
P.
Brzozowski
, and
K.
Jóźwikowski
, “
Stacked multijunction photodetectors of long-wavelength radiation
,”
J. Electron. Mater.
32
,
672
676
(
2003
).
119.
H.
Lotfi
,
R. T.
Hinkey
,
Lu
Li
,
R. Q.
Yang
,
J. F.
Klem
, and
M. B.
Johnson
, “
Narrow-bandgap photovoltaic devices operating at room temperature and above with high open-circuit voltage
,”
Appl. Phys. Lett.
102
,
211103
(
2013
).
120.
Z.-B.
Tian
,
T.
Schuler-Sandy
,
S. E.
Godoy
,
H. S.
Kim
,
J.
Montoya
, and
S.
Krishna
, “
Mid-wave infrared interband cascade photodetectors and focal plane arrays based on InAs/GaSb superlattices
,”
Photonics Conference (IPC)
(
IEEE
,
2013
), pp.
598
599
.
You do not currently have access to this content.