Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/1/10.1063/1.4905505
1.
1. Z. L. Wang and Z. C. Kang, Functional and Smart Materials ( Plenum Publishing Corp., Spring Street, New York, 1998), p. 233.
2.
2. R. Bogue, “ Smart materials: A review of recent developments,” Assem. Autom. 32(1), 37 (2012).
http://dx.doi.org/10.1108/01445151211198674
3.
3. M. Shahinpoor and H.-J. Schneider, Intelligent Materials ( The Royal Society of Chemistry, 2008).
4.
4. I. Tatsuzaki, K. Itoh, S. Ueda, and I. Ishindo, Phys. Rev. Lett. 17, 198 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.198
5.
5. V. M. Fridkin, I. I. Groshik, V. A. Lakhovizkaya, M. P. Mikhailov, and V. N. Nosov, Appl. Phys. Lett. 10, 354 (1967).
http://dx.doi.org/10.1063/1.1728210
6.
6. A. A. Grekov, P. E. Pasynkov, and E. D. Rogach, Fiz. Tverd. Tela 12, 2216 (1972) (in Russian).
7.
7. A. A. Grekov, E. D. Rogach, and L. N. Syrkin, Fiz. Tverd. Tela 14, 2768 (1972) (in Russian).
8.
8. P. S. Brody, Ferroelectrics 50(1), 27 (1983).
http://dx.doi.org/10.1080/00150198308014428
9.
9. P. S. Brody, U.S. patent 4,524,294 (18 June 1985).
10.
10. V. M. Fridkin, Photoferroelectrics ( Springer, New York, 1979).
11.
11. R. Nitsche and W. J. Merz, J. Phys. Chem. Solids 13, 154 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90136-0
12.
12. E. Fatuzzo, G. Harbeke, W. J. Merz, R. Nitsche, H. Roetschi, and W. Ruppel, Phys. Rev. 127, 2036 (1962).
http://dx.doi.org/10.1103/PhysRev.127.2036
13.
13. A. A. Grekov, E. D. Rogach, and A. G. Sukniazov, Fiz. Tverd. Tela 14, 3559 (1970) (in Russian).
14.
14. R. E. Pasynkov, Ferroelectrics 6, 19 (1973).
http://dx.doi.org/10.1080/00150197308237690
15.
15. J. Grigas, A. Kajokas, A. Audzijonis, and L. Zigas, J. Eur. Ceram. Soc. 21, 1337 (2001).
http://dx.doi.org/10.1016/S0955-2219(01)00013-9
16.
16. A. Audzijonis, L. Zigas, R. Sereika, and A. Kvedaravicius, Ferroelectrics 425, 45 (2011).
http://dx.doi.org/10.1080/00150193.2011.634743
17.
17. B. Garbarz-Glos, Ferroelectrics 292, 137 (2003).
http://dx.doi.org/10.1080/00150190390222925
18.
18. B. Garbarz-Glos and J. Grigas, Ferroelectrics 393, 38 (2009).
http://dx.doi.org/10.1080/00150190903412804
19.
19. K. Uchino and M. Aizawa, Jpn. J. Appl. Phys., Part 1 24, 139 (1985).
http://dx.doi.org/10.7567/JJAPS.24S3.139
20.
20. K. Uchino, M. Aizawa, and S. Nomura, Ferroelectrics 64, 199 (1985).
http://dx.doi.org/10.1080/00150198508018721
21.
21. T. Sada, M. Inoue, and K. Uchino, J. Ceram. Soc. Jpn., Int. Ed. 95, 499 (1987) (in Japanesse).
22.
22. S.-Y. Chu and K. Uchino, Ferroelectrics 174, 185 (1995).
http://dx.doi.org/10.1080/00150199508216945
23.
23. A. Dogan, P. Poosanaas, I. R. Abothu, S. Komarneni, and K. Uchino, J. Ceram. Soc. Jpn. 109, 493 (2001).
http://dx.doi.org/10.2109/jcersj.109.1270_493
24.
24. K. Takagi et al., J. Am. Ceram. Soc. 87(8), 1477 (2004).
http://dx.doi.org/10.1111/j.1551-2916.2004.01477.x
25.
25. P. Poosanaas, A. Dogan, S. Thakoor, and K. Uchino, J. Appl. Phys. 84, 1508 (1998).
http://dx.doi.org/10.1063/1.368216
26.
26. P. Poosanaas, K. Tonooka, and K. Uchino, Mechatronics 10, 467487 (2000).
http://dx.doi.org/10.1016/S0957-4158(99)00073-2
27.
27. A. Dogan, A. V. Prasadarao, K. Uchino, P. Poosanaas, and S. Komarneni, J. Electroceram. 1, 105 (1997).
http://dx.doi.org/10.1023/A:1009906600737
28.
28. P. Poosanaas and K. Uchino, Mater. Chem. Phys. 61, 36 (1999).
http://dx.doi.org/10.1016/S0254-0584(99)00110-8
29.
29. K. Nonaka, M. Akiyama, A. Takase, T. Baba, K. Yamamoto, and H. Ito, Jpn. J. Appl. Phys., Part 1 34, 5380 (1995).
http://dx.doi.org/10.1143/JJAP.34.5380
30.
30. A. A. Molnar, Yu. M. Vysochanskii, A. A. Horvat, and Yu. S. Nakonechnii, Ferroelectrics 192, 137 (1997).
http://dx.doi.org/10.1080/00150199708216182
31.
31. R. Nitsche and P. Wild, Mater. Res. Bull. 5, 419 (1970).
http://dx.doi.org/10.1016/0025-5408(70)90080-2
32.
32. C. D. Carpentier and R. Nitsche, Mater. Res. Bull. 9, 1097 (1974).
http://dx.doi.org/10.1016/0025-5408(74)90023-3
33.
33. S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, and G. Brost, Jpn. J. Appl. Phys., Part 1 35, 5154 (1996).
http://dx.doi.org/10.1143/JJAP.35.5154
34.
34. J. Kroupa, Y. Tyagur, A. A. Grabar, and Y. M. Vysochanskii, Ferroelectrics 223, 421 (1999).
http://dx.doi.org/10.1080/00150199908260598
35.
35. Y. W. Cho, S. K. Choi, and Y. M. Vysochanskii, J. Mater. Res. 16(11), 3317 (2001).
http://dx.doi.org/10.1557/JMR.2001.0456
36.
36. D. Lebeugle, D. Colson, A. Forget, M. Viret, A. M. Bataille, and A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.227602
37.
37. J. Kreisel, M. Alexe, and P. A. Thomas, Nat. Mater. 11, 260 (2012).
http://dx.doi.org/10.1038/nmat3282
38.
38. B. Kundys, M. Viret, D. Colson, and D. O. Kundys, Nat. Mater. 9, 803 (2010).
http://dx.doi.org/10.1038/nmat2807
39.
39. Z. Jin et al., Appl. Phys. Lett. 101, 242902 (2012).
http://dx.doi.org/10.1063/1.4770309
40.
40. H. Wen et al., Phys. Rev. Lett. 110, 037601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.037601
41.
41.Editorial, “ A historical bond,” Nat. Photonics 4, 663 (2010).
http://dx.doi.org/10.1038/nphoton.2010.234
42.
42. L. Y. Chen et al., Appl. Phys. Lett. 101, 041902 (2012).
http://dx.doi.org/10.1063/1.4734512
43.
43. P. Ruello, T. Pezeril, S. Avanesyan, G. Vaudel, V. Gusev, I. C. Infante, and B. Dkhil, Appl. Phys. Lett. 100, 212906 (2012).
http://dx.doi.org/10.1063/1.4719069
44.
44. X. Chen, G. Hu, W. Wu, C. Yang, and X. Wang, J. Am. Ceram. Soc. 93, 948 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03511.x
45.
45. S. Fujino, M. Murakami, V. Anbusathaiah, S.-H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Appl. Phys. Lett. 92, 202904 (2008).
http://dx.doi.org/10.1063/1.2931706
46.
46. I. O. Troyanchuk, D. V. Karpinsky, M. V. Bushinsky, V. A. Khomchenko, G. N. Kakazei, J. P. Araujo, M. Tovar, V. Sikolenko, V. Efimov, and A. L. Kholkin, Phys. Rev. B 83, 054109 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.054109
47.
47. D. Schick et al., Phys. Rev. Lett. 112, 097602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.097602
48.
48. B. Kundys, M. Viret, C. Meny, V. Da Costa, D. Colson, and B. Doudin, Phys. Rev. B. 85, 092301 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.092301
49.
49. H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, and S.-W. Cheong, Adv. Mater. 23, 3403 (2011).
http://dx.doi.org/10.1002/adma.201100805
50.
50. G. W. Pabst, L. W. Martin, Y.-H. Chu, and R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007).
http://dx.doi.org/10.1063/1.2535663
51.
51. C.-F. Chung and J.-M. Wuz, Electrochem. Solid-State Lett. 8, F63F66 (2005).
http://dx.doi.org/10.1149/1.2103607
52.
52. D. Daranciang et al., Phys. Rev. Lett. 108, 087601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.087601
53.
53. B. Kundys, V. Iurchuk, C. Meny, H. Majjad, and B. Doudin, Appl. Phys. Lett. 104, 232905 (2014).
http://dx.doi.org/10.1063/1.4883375
54.
54. V. Iurchuk, B. Doudin, and B. Kundys, J. Phys.: Condens. Matter 26, 292202 (2014).
55.
55. J. Lagowski and H. C. Gatos, Appl. Phys. Lett. 20(1), 15 (1972).
http://dx.doi.org/10.1063/1.1653958
56.
56. J. Lagowski and H. C. Gatos, Surf. Sci. 45, 353 (1974).
http://dx.doi.org/10.1016/0039-6028(74)90175-7
57.
57. H. Jaffe, D. Berlincourt, H. Krueger, and L. Shiozawa, in Proceedings of the 14th Annual Symposium On Frequency Control, U.S. Army Research and Development Lab., Fort Monmouth, New Jersey, 31 May 1960;
57. M. Aven and J. S. Prener, Physics and Chemistry of II–VI Compounds ( North-Holland, Amsterdam, 1967), p. 603.
58.
58.Handbook of Electronic Materials, III–V Semiconducting Compounds, edited by M. Neuberger ( IFI/Plenum Press, New York, 1972), Vol. 2.
59.
59. T. Figielski, Phys. Status Solidi 1, 306 (1961).
http://dx.doi.org/10.1002/pssb.19610010403
60.
60. R. W. Keyes, IBM J. Res. Dev. 5, 266 (1961).
http://dx.doi.org/10.1147/rd.54.0266
61.
61. J. C. North and R. C. Buschert, Phys. Rev. Lett. 13, 609 (1964).
http://dx.doi.org/10.1103/PhysRevLett.13.609
62.
62. J. C. North and R. C. Buschert, Phys. Rev. 143, 609 (1966).
http://dx.doi.org/10.1103/PhysRev.143.609
63.
63. J. C. North and R. C. Buschert, J. Phys. Chem. Solids 27, 489 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90190-9
64.
64. W. B. Gauster and D. H. Habing, Phys. Rev. Lett. 18, 1058 (1967).
http://dx.doi.org/10.1103/PhysRevLett.18.1058
65.
65. P. G. Datskos, S. Rajic, and I. Datskou, Appl. Phys. Lett. 73, 2319 (1998).
http://dx.doi.org/10.1063/1.121809
66.
66. J. R. Buschert and R. Colella, Solid State Commun. 80(6), 419 (1991).
http://dx.doi.org/10.1016/0038-1098(91)90718-B
67.
67. I. A. Levitsky, B. J. Landi, R. P. Raffaelle, S. L. Castro, and S. G. Bailey, Prog. Photovoltaics 13(2), 165 (2005).
http://dx.doi.org/10.1002/pip.604
68.
68. J. Yeonwoong, X. Li, N. K. Rajan, A. D. Taylor, and M. A. Reed, Nano Lett. 13(1), 95 (2013).
http://dx.doi.org/10.1021/nl3035652
69.
69. Y. Zhang and S. Iijima, Phys. Rev. Lett. 82, 3472 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3472
70.
70. S. B. Cronin et al., Phys. Rev. Lett. 96, 127403 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.127403
71.
71. S. V. Ahir, E. M. Terentjev, S. X. Lu, and B. Panchapakesan, Phys. Rev. B 76, 165437 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165437
72.
72. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287(5453), 637 (2000).
http://dx.doi.org/10.1126/science.287.5453.637
73.
73. I. A. Levitsky, W. B. Euler, and V. A. Karachevtsev, Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials ( Springer-Verlag, London, 2012).
74.
74. T. Igo, Y. Noguchi, and H. Naga, Appl. Phys. Lett. 25, 193 (1974).
http://dx.doi.org/10.1063/1.1655435
75.
75. Y. Kuzukawa, A. Ganjoo, and K. Shimakawa, J. Non-Cryst. Solids 227–230, 715 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00192-6
76.
76. H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iijima, Solid State Commun. 19, 499 (1976).
http://dx.doi.org/10.1016/0038-1098(76)90051-X
77.
77. M. Frumar, A. P. Firth, and A. E. Owen, Philos. Mag. B 50, 463 (1984).
http://dx.doi.org/10.1080/13642818408238871
78.
78. F. Kyriazis and S. N. Yannopoulos, Appl. Phys. Lett. 94, 101901 (2009).
http://dx.doi.org/10.1063/1.3095849
79.
79. H. Hisakuni and K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
http://dx.doi.org/10.1063/1.112533
80.
80. A. Ganjoo, Y. Ikeda, and K. Shimakawa, Appl. Phys. Lett. 74, 2119 (1999).
http://dx.doi.org/10.1063/1.123775
81.
81. M. Stuchlik, P. Krecmer, and S. R. Elliott, J. Optoelectron. Adv. Mater. 3(2), 361 (2001).
82.
82. S. R. Elliott, J. Non-Cryst. Solids 81, 71 (1986).
http://dx.doi.org/10.1016/0022-3093(86)90260-7
83.
83. J. D. Musgraves, K. Richardson, and H. Jain, Opt. Mater. Express 1(5), 921 (2011).
http://dx.doi.org/10.1364/OME.1.000921
84.
84. K. Shimakawa, A. Kolobov, and S. R. Elliott, Adv. Phys. 44(6), 475 (1995).
http://dx.doi.org/10.1080/00018739500101576
85.
85. S. A. Keneman, Appl. Phys. Lett. 19, 205 (1971).
http://dx.doi.org/10.1063/1.1653885
86.
86. H. Hamanaka, K. Tanaka, and S. Iizima, Solid State Commun. 23, 63 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90631-7
87.
87. T. Mori, N. Hosokawa, and K. Shimakawa, J. Non-Cryst. Solids 354, 2683 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.09.089
88.
88. S. Kugler, J. Hegedus, and K. Kohary, in “ Light-induced volume changes in chalcogenide glasses,” Optical Properties of Condensed Matter, edited by J. Singh (Wiley, 2006), pp. 143158.
89.
89. M. Irie, Bull. Chem. Soc. Jpn. 81(8), 917 (2008).
http://dx.doi.org/10.1246/bcsj.81.917
90.
90. H. Yu, J. Mater. Chem. C 2, 3047 (2014).
http://dx.doi.org/10.1039/c3tc31991a
91.
91. D. Iqbal and M. H. Samiullah, Materials 6, 116 (2013).
http://dx.doi.org/10.3390/ma6010116
92.
92. L. Matejka, M. Ilavsky, K. Dusek, and O. Wichterle, Polymer 22, 1511 (1981).
http://dx.doi.org/10.1016/0032-3861(81)90321-9
93.
93. L. Matejka, K. Dusek, and M. Ilavsky, Polym. Bull. 1, 659 (1979).
http://dx.doi.org/10.1007/BF00254147
94.
94. G. Van der Veen and W. Prins, Nature 230, 70 (1971).
http://dx.doi.org/10.1038/physci230070a0
95.
95. C. D. Eisenbach, Polymer 21(10), 1175 (1980).
http://dx.doi.org/10.1016/0032-3861(80)90083-X
96.
96. H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, Phys. Rev. Lett. 87, 015501 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.015501
97.
97. Y. Yu, M. Nakano, and T. Ikeda, Nature 425(6954), 145 (2003).
http://dx.doi.org/10.1038/425145a
98.
98. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, Nat. Mater. 3, 307 (2004).
http://dx.doi.org/10.1038/nmat1118
99.
99. S. Kobatake, S. Takami, H. Muto, T. Ishikawa, and M. Irie, Nature 446, 778 (2007).
http://dx.doi.org/10.1038/nature05669
100.
100.Molecular Magnets Recent Highlights: Recent Highlights, edited by W. Linert and M. Verdaguer ( Springer, 2003).
101.
101. P. Gütlich, A. Hauser, and H. Spiering, Angew. Chem., Int. Ed. Engl. 33, 2024 (1994).
http://dx.doi.org/10.1002/anie.199420241
102.
102. K. Lüghausen, H. Siegert, Th. Woike, and S. Haussühl, J. Phys. Chem. Solids 56, 1291 (1995).
http://dx.doi.org/10.1016/0022-3697(95)00048-8
103.
103. P. Gütlich, Y. Garcia, and T. Woike, Coord. Chem. Rev. 219, 839 (2001).
http://dx.doi.org/10.1016/S0010-8545(01)00381-2
104.
104. M. Marchivie, Ph. Guionneau, J. A. K. Howard, G. Chastanet, J.-F. Letard, A. E. Goeta, and D. Chasseau, J. Am. Chem. Soc. 124, 194 (2002).
http://dx.doi.org/10.1021/ja016980k
105.
105. S. Decurtins, P. Gutlich, C. Kolher, and H. Spiering, Chem. Phys. Lett. 105, 1 (1984).
http://dx.doi.org/10.1016/0009-2614(84)80403-0
106.
106. S. Decurtins, P. Gutlich, K. M. Hasselbach, A. Hauser, and H. Spiering, Inorg. Chem. 24(14), 2174 (1985).
http://dx.doi.org/10.1021/ic00208a013
107.
107. M. Lorenc, J. Hébert, N. Moisan, E. Trzop, M. Servol, M. Buron-Le Cointe, H. Cailleau, M. L. Boillot, E. Pontecorvo, M. Wulff, S. Koshihara, and E. Collet, Phys. Rev. Lett. 103, 028301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.028301
108.
108. K. Uchino, J. Rob. Mechatronics 1(12), 24 (1989); http://www.fujipress.jp/finder/xslt.php?mode=present&inputfile=ROBOT000100020007.xml.
109.
109. S.-Y. Chu and K. Uchino, in Proceedings of the 9th IEEE International Symposium on Applications of Ferroelectrics, ISAF '94 (1994).
110.
110. K. Uchino, Mater. Res. Innovations 1, 163 (1997).
http://dx.doi.org/10.1007/s100190050036
111.
111. M. Yamada, M. Kondo, R. Miyasato, Y. Nake, J. Mamiya, M. Kinoshita, A. Shishido, Y. Yu, J. Barrett, and T. Ikeda, J. Mater. Chem. 19, 6062 (2009).
http://dx.doi.org/10.1039/b815289f
112.
112. D. Sun and L. Tong, Int. J. Solids Struct. 44, 672 (2007).
http://dx.doi.org/10.1016/j.ijsolstr.2006.05.013
113.
113. D. Sun and L. Tong, J. Sound Vib. 312, 182 (2008).
http://dx.doi.org/10.1016/j.jsv.2007.10.049
114.
114. D. Habault, H. Zhang, and Y. Zhao, Chem. Soc. Rev. 42, 7244 (2013).
http://dx.doi.org/10.1039/c3cs35489j
115.
115. P. G. Datskos, S. Rajic, M. J. Sepaniak, N. Lavrik, C. A. Tipple, L. R. Senesac, and I. Datskou, J. Vac. Sci. Technol., B 19, 1173 (2001).
http://dx.doi.org/10.1116/1.1387082
116.
116. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).
http://dx.doi.org/10.1063/1.1763252
117.
117. A. Toprak and O. Tigli, Appl. Phys. Rev. 1, 031104 (2014).
http://dx.doi.org/10.1063/1.4896166
118.
118. T. Lafont, L. Gimeno, J. Delamare, G. A. Lebedev, D. I. Zakharov, B. Viala, O. Cugat, N. Galopin, L. Garbuio, and O. Geoffroy, J. Micromech. Microeng. 22, 094009 (2012).
http://dx.doi.org/10.1088/0960-1317/22/9/094009
119.
119.See http://www.nlosource.com/PhotoMechHistory.html for more on photostriction and all-optical technologies.
120.
120. S. Egusa et al., Nat. Mater. 9, 643 (2010).
http://dx.doi.org/10.1038/nmat2792
121.
121. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications ( CRC Press, Taylor and Francis, Boca Raton, 2007).
122.
122. L. Calvez, Z. Yang, and P. Lucas, J. Phys. D: Appl. Phys. 43, 445401 (2010).
http://dx.doi.org/10.1088/0022-3727/43/44/445401
123.
123. K. K. Shvarts, J. A. Teteris, I. P. Manika, M. J. Reinfelde, and V. I. Gerbreder, J. Non-Cryst. Solids 90, 509 (1987).
http://dx.doi.org/10.1016/S0022-3093(87)80474-X
124.
124. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. , and R. Vallée, Opt. Lett. 29, 748 (2004).
http://dx.doi.org/10.1364/OL.29.000748
125.
125. P. J. Sturman, Photovoltaic and Photo-refractive Effects in Noncentrosymmetric Materials ( Gordon and Breach Scince Publishers, OPA, Amsterdam, 1992).
126.
126. M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, Phys. Rev. Lett. 82, 2860 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.2860
127.
127. H.-J. Liu, L.-Y. Chen, Q. He, C.-W. Liang, Y.-Z. Chen, Y.-S. Chien, Y.-H. Hsieh, S.-J. Lin, E. Arenholz, C.-W. Luo, Y.-L. Chueh, Y.-C. Chen, and Y.-H. Chu, ACS Nano 6(8), 6952 (2012).
http://dx.doi.org/10.1021/nn301976p
128.
128. B. Kundys, C. Meny, M. R. J. Gibbs, V. Da Costa, M. Viret, M. Acosta, D. Colson, and B. Doudin, Appl. Phys. Lett. 100, 262411 (2012).
http://dx.doi.org/10.1063/1.4731201
129.
129. E. du Tremolet de Lacheisserie, Magnetostriction: Theory and Application of Magnetoelasticity ( CRC Press, BocaRaton, FL, 1993).
130.
130. M. D. Mermelstein and A. Dandridge, Appl. Phys. Lett. 51, 545 (1987).
http://dx.doi.org/10.1063/1.98394
131.
131. M. Lejman, G. Vaudel, I. C. Infante, P. Gemeiner, V. E. Gusev, B. Dkhil, and P. Ruello, Nat. Commun. 5, 4301 (2014).
http://dx.doi.org/10.1038/ncomms5301
132.
132. A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, and R. Griessen, Phys. Rev. Lett. 102, 226102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226102
133.
133. P. Poosanaas and K. Uchino, Nonlinear Optics: Materials, Fundamentals and Applications ( Optical Society of America, Conference paper, Kaua'i-Lihue, Hawaii, 2000).
134.
134. The 50 fs illumination time was assumed to evaluate the irradiance.
135.
135. Using data from Ref. 55, an approximate estimate was made (see Fig. 6 and text).
136.
136. The 15 ns illumination time was assumed to evaluate the irradiance.
137.
137. This value indicates the volumetric photostrictive change.
138.
138. N. Inui, Jpn. J. Appl. Phys., Part 1 45, 1675 (2006).
http://dx.doi.org/10.1143/JJAP.45.1675
139.
139. X. Zhang et al., Nat. Commun. 5, 2983 (2014).
http://dx.doi.org/10.1038/ncomms3983
140.
140. B. Kundys et al., Phys. Rev. B 81, 224434 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.224434
141.
141. N. Leblanc, N. Mercier, L. Zorina, S. Simonov, P. Auban-Senzier, and C. Pasquier, J. Am. Chem. Soc. 133, 14924 (2011).
http://dx.doi.org/10.1021/ja206171s
142.
142. Ch. Bosshard, R. Spreiter, and P. Günter, Ferroelectrics 258(1), 89 (2001).
http://dx.doi.org/10.1080/00150190108008661
143.
143. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, and H. Tokoro, Nat. Chem. 3, 564 (2011).
http://dx.doi.org/10.1038/nchem.1067
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/1/10.1063/1.4905505
Loading
/content/aip/journal/apr2/2/1/10.1063/1.4905505
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/1/10.1063/1.4905505
2015-01-16
2016-12-03

Abstract

Light-matter interactions that lead to nonthermal changes in size of the sample constitute a photostrictive effect in many compounds. The photostriction phenomenon was observed in four main groups of materials, ferroelectrics, polar, and non-polar semiconductors, as well as in organic-based materials that are reviewed here. The key mechanisms of photostriction and its dependence on several parameters and perturbations are assessed. The major literature of the photostriction is surveyed, and the review ends with a summary of the proposed technical applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/1/1.4905505.html;jsessionid=sAvpmzelFSZuGYxoOSIGmFHc.x-aip-live-03?itemId=/content/aip/journal/apr2/2/1/10.1063/1.4905505&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/1/10.1063/1.4905505&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/1/10.1063/1.4905505'
Right1,Right2,Right3,