Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. E. Siegman, “ Defining, measuring, and optimizing laser beam quality,” Proc. SPIE 1868, 2 (1993).
2. P. Hariharan, Optical Holography ( Cambridge University Press, Cambridge, 1996), pp. 7475.
3. L. Dettwiller and P. Chavel, “ Optical spatial frequency filtering using interferences,” JOSA A 1, 18 (1984).
4. I. Moreno, J. J. Araiza, and M. Avendano-Alejo, “ Thin-film spatial filters,” Opt. Lett. 30, 914 (2005).
5. D. Schurig and D. R. Smith, “ Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215 (2003).
6. J. Kato, I. Yamaguchi, and H. Tanaka, “ Nonlinear spatial filtering with a dye-doped liquid-crystal cell,” Opt. Lett. 21, 767 (1996).
7. O. F. Siddiqui and G. Eleftheriades, “ Resonant modes in continuous metallic grids over ground and related spatial-filtering applications,” J. Appl. Phys. 99, 083102 (2006).
8. R. Rabady and I. Avrutsky, “ Experimental characterization of simultaneous spatial and spectral filtering by an optical resonant filter,” Opt. Lett. 29, 605 (2004).
9. A. Sentenac and A. L. Fehrembach, “ Angular tolerant resonant grating filters under oblique incidence,” JOSA A 22, 475 (2005).
10. Z. Zhang and S. Satpathy, “ Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations,” Phys. Rev. Lett. 65, 2650 (1990).
11. K. M. Leung and Y. F. Liu, “ Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646 (1990).
12. R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, “ Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772 (1991).
13. M. Plihal and A. A. Maradudin, “ Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565 (1991).
14. A. Z. Genack and N. Garcia, “ Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064 (1991).
15. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “ Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654 (2003).
16. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “ A dielectric omnidirectional reflector,” Science 282, 1679 (1998).
17. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “ External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510 (2002).
18. P. Lodahl, A. F. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “ Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654 (2004).
19. A. Sharkawy, S. Shi, and D. W. Prather, “ Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247 (2001).
20. T. Asano, W. Kunishi, M. Nakamura, B. S. Song, and S. Noda, “Dynamic wavelength tuning of channel-drop device in tow-dimensional photonic crystal slab,” Electron. Lett. 41, 37 (2005).
21. E. H. Cho, H. S. Kim, B. H. Cheong, P. Oleg, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “ Two-dimensional photonic crystal color filter development,” Opt. Exp. 17, 8621 (2009).
22. E. Yablonovitch, “ Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
23. S. John, “ Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
24. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light ( Princeton University Press, New Jersey, 2008).
25. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “ Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990).
26. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “ Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).
27. E. Yablonvitch, “ Photonic band-gap structures,” JOSA B 10, 283 (1993).
28. H. S. Sozuer, J. W. Haus, and R. Inguva, “ Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962 (1992).
29. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation ( Wiley, New York, 2002).
30. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics ( Wiley, New York, 2007).
31. G. D. Marshall, M. Ams, and M. J. Withford, “ Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690 (2006).
32. J. Liu, P. Han, G. Qiao, and J. Yang, “ Properties of PC filters in one-dimensional photonic crystals containing defects,” J. Intense Pulsed Lasers Appl. Adv. Phys. 1, 69 (2011),
33. H. Sang, Z. Y. Li, and B. Y. Gu, “ Stack-sequence dependent defect modes in one-dimensional photonic crystals,” Phys. Lett. A 331, 414 (2004).
34. Q. Zhu and Y. Zhang, “ Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik 120, 195 (2009).
35. R. Wang, J. Dong, and D. Y. Xing, “ Defect studies in a one-dimensional photonic band gap structure,” Phys. Status Solidi B 200, 529 (1997).<529::AID-PSSB529>3.0.CO;2-I
36. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “ Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10, 314 (1993).
37. W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. W. Berg, P.-C. Yu, and S. W. Pang, “ Characteristics of a photonic bandgap single defect microcavity electroluminescent device,” IEEE J. Quantum Electron. 37, 1153 (2001).
38. M. W. Feise, I. V. Shardrivov, and Y. Kivshar, “ Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71, 037602 (2005).
39. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “ Multichannel add-drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449 (2005).
40. F. Ouellette, “ Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847 (1987).
41. C.-J. Wu, Y.-N. Rau, and W.-H. Han, “ Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal,” Prog. Electromagn. Res. 100, 27 (2010).
42. K. O. Hill, K. Takiguchi, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, and J. Albert, “ Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314 (1994).
43. M. E. Fermann, K. Sugden, and I. Bennion, “ High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett. 20, 172 (1995).
44. V. Lousse and S. Fan, “ Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B 72, 075119 (2005).
45. D. K. W. Lam, B. K. Garside, and K. O. Hill, “ Dispersion cancellation using optical-fiber filters,” Opt. Lett. 7, 291 (1982).
46. H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories and Applications ( World Scientific, New Jersey, 2012).
47. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “ Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201 (1994).
48. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “ Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
49. Y. C. Cheng, M. Peckus, S. Kicas, J. Trull, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “ Beam focusing in reflection from flat chirped mirrors,” Phys. Rev. A 87, 045802 (2013).
50. Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “ Flat focusing mirror,” Sci. Rep. 4, 6326 (2014).
51. S. Jiang, J. Li, J. Tang, and H. Wang, “ Multi-channel and sharp angular spatial filters based on one-dimensional photonic crystals,” Chin. Opt. Lett. 4, 605 (2006),
52. Z. Luo, Z. Tang, Y. Xiang, H. Luo, and S. Wen, “ Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. B 94, 641 (2009).
53. S. Jiang, Y. Liu, G. Liang, and H. Wang, “ Design and fabrication of narrow-frequency sharp angular filters,” Appl. Opt. 44, 6353 (2005).
54. D. Son, Z. Tang, L. Zhao, Z. Sui, S. Wen, and D. Fan, “ Experimental demonstration of a low-pass spatial filter based on a one-dimensional photonic crystal with a defect layer,” Chin. Phys. Lett. 30, 044206 (2013).
55. E. Colak, A. O. Cakmak, A. E. Serebryannikov, and E. Ozbay, “ Spatial filtering using dielectric photonic crystals at beam-type excitation,” J. Appl. Phys. 108, 113106 (2010).
56. Z. Tang, D. Fan, S. Wen, Y. Ye, and C. Zhao, “ Low-pass spatial filtering using a two-dimensional self-collimating photonic crystal,” Chin. Opt. Lett. 5, S211 (2007),
57. A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, “ Toward photonic crystal based spatial filters with wide angle ranges of total transmission,” Appl. Phys. Lett. 94, 181101 (2009).
58. Z. Tang, H. Zhang, Y. Ye, C. Zhao, S. Wen, and D. Fan, “ Low-pass spatial filtering using optically thinner left-handed photonic crystals,” in International Symposium on Biophotonics, Nanophotonics and Metamaterials (2006), p. 488.
59. A. E. Serebryannikov, P. Lalanne, A. Yu. Petrov, and E. Ozbay, “ Wide-angle reflection mode spatial filtering and splitting with photonic crystal gratings and single-layer rod gratings,” Opt. Lett. 39, 6193 (2014).
60. R. Picó, V. J. Sánchez-Morcillo, I. Pérez-Arjona, and K. Staliunas, “ Spatial filtering of sound beams by sonic crystals,” Appl. Acoust. 73, 302 (2012).
61. R. Picó, I. Pérez-Arjona, V. J. Sánchez-Morcillo, and K. Staliunas, “ Evidences of spatial (angular) filtering of sound beams by sonic crystals,” Appl. Acoust. 74, 945 (2013).
62. V. Romero-García, R. Picó, A. Cebrecos, K. Staliunas, and V. J. Sánchez-Morcillo, “ Angular band gaps in sonic crystals: Evanescent waves and spatial complex dispersion relation,” J. Vib. Acoust. 135, 041012 (2013).
63. K. Staliunas and V. Sanchez-Morcillo, “ Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 79, 053807 (2009).
64. L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V. Sirutkaitis, and K. Staliunas, “ Signatures of light-beam spatial filtering in a three-dimensional photonic crystal,” Phys. Rev. A 82, 043819 (2010).
65. V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M. Malinauskas, and K. Staliunas, “ Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 87, 033805 (2013).
66. K. Staliunas, “ Removal of excitations of bose-einstein condensates by space- and time-modulated potentials,” Phys. Rev. A 84, 013626 (2011).
67. V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M. Malinauskas, R. Gadonas, and K. Staliunas, “ Spatial filtering by axisymmetric photonic structure in gapless configuration,” Opt. Lett. 39, 929 (2014).
68. D. Gailevicius, V. Purlys, L. Maigyte, M. Peckus, and K. Staliunas, “ Chirped axisymmetric micro-photonic structures for spatial filtering,” J. Nanophotonics 8, 084094 (2014).
69. N. Kumar, L. Maigyte, M. Botey, R. Herrero, and K. Staliunas, “ Beam shaping in metallic photonic crystals,” JOSA B 31, 686 (2014).
70. R. Herrero, M. Botey, M. Radziunas, and K. Staliunas, “ Beam shaping in spatially modulated broad-area semiconductor amplifiers,” Opt. Lett. 37, 5253 (2012).
71. M. Radziunas, M. Botey, R. Herrero, and K. Staliunas, “ Intrinsic beam shaping mechanism in spatially modulated broad area semiconductor amplifiers,” Appl. Phys. Lett. 103, 132101 (2013).
72. K. Staliunas, R. Herrero, and R. Vilaseca, “ Subdiffraction and spatial filtering due to periodic spatial modulation of the gain/loss profile,” Phys. Rev. A 80, 013821 (2009).
73. K. Staliunas, M. Peckus, and V. Sirutkaitis, “ Sub- and super-diffractive resonators with intracavity photonic crystals,” Phys. Rev. A 76, 051803(R) (2007).
74. M. Peckus, R. Rogalskis, M. Andrulevicius, T. Tamulevicius, A. Guobiene, V. Jarutis, V. Sirutkaitis, and K. Staliunas, “ Resonators with manipulated diffraction due to two- and three-dimensional intracavity photonic crystals,” Phys. Rev. A 79, 033806 (2009).
75. A. Taflove, “ Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Electromagn. Compat. 22(3), 191 (1980).
76. C. Lopez, “ Materials aspects of photonic crystals,” Adv. Mater. 15, 1679 (2003).
77. M. J. Escuti and G. P. Crawford, “ Holographic photonic crystals,” Opt. Eng. 43, 1973 (2004).
78. T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, “ Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943 (2006).
79. G. Rosolen and A. Cola, “ Fabrication of photonic crystal structures by electron beam lithography,” in Conference on Optoelectronic and Microelectronic Materials and Devices (2006), p. 66.
80. P. V. Braun, S. A. Rinne, and F. G. Santamar′ıa, “ Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665 (2006).
81. A. Popescu, S. Miclos, D. Savastru, R. Savastru, M. Ciobanu, M. Popescu, A. Lorinczi, F. Sava, A. Velea, F. Jipa, and M. Zamfirescu, “ Direct laser writing of two-dimensional photonic structures in amorphous As2S3 thin films,” J. Optoelectron. Adv. Mater. 11, 1874 (2009),
82. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “ Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
83. Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “ Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
84. J. H. Moon, J. Ford, and S. Yang, “ Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Technol. 17, 83 (2006).
85. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “ A thee-dimensional optical photonic crystal with designed point defects,” Nature 429, 538 (2004).
86. K. Busch, S. Lolkes, R. B. Wehrspohn, and H. Foll, Photonic Crystals: Advances in Design, Fabrication, and Characterization ( Wiley, New York, 2006).
87. Y. Yin, Y. Lu, and Y. Xia, “ Assembly of monodispersed spherical colloids into one-dimensional aggregates characterized by well-controlled structures and lengths,” J. Mater. Chem. 11, 987 (2001).
88. Y.-H. Ye, T. S. Mayer, I.-C. Khoo, I. B. Divliansky, N. Abrams, and T. E. Mallouk, “ Self-assembly of three-dimensional photonic-crystals with air-core line defects,” J. Mater. Chem. 12, 3637 (2002).
89. Y. Xia and G. M. Whitesides, “ Soft lithography,” Angew. Chem. Int. Ed. 37, 550 (1998).<550::AID-ANIE550>3.0.CO;2-G
90. J. H. Moon, A. Small, G. R. Yi, S. K. Lee, W. S. Chang, D. J. Pine, and S. M. Yang, “ Patterned polymer photonic crystals using soft lithography and holographic lithography,” Synth. Met. 148, 99 (2005).
91. E. Kuramochi, M. Notomi, T. Kawashima, J. Takashi, T. Tamamura, and S. Kawakami, “ A new fabrication technique for photonic crystals: Nanolithography combined with alternating-layer deposition,” Opt. Quantum Electron. 34, 53 (2002).
92. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “ Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63 (2002).
93. M. Skorbogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding ( Cambridge University Press, Cambridge, 2009).
94. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, and Y. Aoyagi, “ Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation,” Appl. Phys. Lett. 81, 3122 (2002).
95. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “ Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59 (2002).
96. S. Maruo, O. Nakamura, and S. Kawata, “ Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132 (1997).
97. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. K. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “ Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51 (1999).
98. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “ Finer features for functional microdevices,” Nature 412, 697 (2001).
99. M. Deubel, G. Freymann, M. Wegner, S. Pereira, K. Busch, and C. M. Soukoulis, “ Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature 3, 444 (2004).
100. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “ Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
101. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “ Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109 (2003).
102. H. Zhang, S. M. Eaton, and P. R. Herman, “ Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559 (2007).
103. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “ Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
104. M. Kamata and M. Obara, “ Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A 78, 85 (2004).
105. R. R. Gattass and E. Mazur, “ Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
106. A. M. Streltsov and N. F. Borrelli, “ Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496 (2002).

Data & Media loading...


Article metrics loading...



Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd