Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/1/10.1063/1.4907345
1.
1. A. E. Siegman, “ Defining, measuring, and optimizing laser beam quality,” Proc. SPIE 1868, 2 (1993).
http://dx.doi.org/10.1117/12.150601
2.
2. P. Hariharan, Optical Holography ( Cambridge University Press, Cambridge, 1996), pp. 7475.
3.
3. L. Dettwiller and P. Chavel, “ Optical spatial frequency filtering using interferences,” JOSA A 1, 18 (1984).
http://dx.doi.org/10.1364/JOSAA.1.000018
4.
4. I. Moreno, J. J. Araiza, and M. Avendano-Alejo, “ Thin-film spatial filters,” Opt. Lett. 30, 914 (2005).
http://dx.doi.org/10.1364/OL.30.000914
5.
5. D. Schurig and D. R. Smith, “ Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215 (2003).
http://dx.doi.org/10.1063/1.1562344
6.
6. J. Kato, I. Yamaguchi, and H. Tanaka, “ Nonlinear spatial filtering with a dye-doped liquid-crystal cell,” Opt. Lett. 21, 767 (1996).
http://dx.doi.org/10.1364/OL.21.000767
7.
7. O. F. Siddiqui and G. Eleftheriades, “ Resonant modes in continuous metallic grids over ground and related spatial-filtering applications,” J. Appl. Phys. 99, 083102 (2006).
http://dx.doi.org/10.1063/1.2189929
8.
8. R. Rabady and I. Avrutsky, “ Experimental characterization of simultaneous spatial and spectral filtering by an optical resonant filter,” Opt. Lett. 29, 605 (2004).
http://dx.doi.org/10.1364/OL.29.000605
9.
9. A. Sentenac and A. L. Fehrembach, “ Angular tolerant resonant grating filters under oblique incidence,” JOSA A 22, 475 (2005).
http://dx.doi.org/10.1364/JOSAA.22.000475
10.
10. Z. Zhang and S. Satpathy, “ Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations,” Phys. Rev. Lett. 65, 2650 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2650
11.
11. K. M. Leung and Y. F. Liu, “ Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media,” Phys. Rev. Lett. 65, 2646 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2646
12.
12. R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, “ Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.13772
13.
13. M. Plihal and A. A. Maradudin, “ Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.8565
14.
14. A. Z. Genack and N. Garcia, “ Observation of photon localization in a three-dimensional disordered system,” Phys. Rev. Lett. 66, 2064 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2064
15.
15. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “ Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654 (2003).
http://dx.doi.org/10.1063/1.1587880
16.
16. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “ A dielectric omnidirectional reflector,” Science 282, 1679 (1998).
http://dx.doi.org/10.1126/science.282.5394.1679
17.
17. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “ External reflection from omnidirectional dielectric mirror fibers,” Science 296, 510 (2002).
http://dx.doi.org/10.1126/science.1070050
18.
18. P. Lodahl, A. F. Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “ Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654 (2004).
http://dx.doi.org/10.1038/nature02772
19.
19. A. Sharkawy, S. Shi, and D. W. Prather, “ Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247 (2001).
http://dx.doi.org/10.1364/AO.40.002247
20.
20. T. Asano, W. Kunishi, M. Nakamura, B. S. Song, and S. Noda, “Dynamic wavelength tuning of channel-drop device in tow-dimensional photonic crystal slab,” Electron. Lett. 41, 37 (2005).
http://dx.doi.org/10.1049/el:20057116
21.
21. E. H. Cho, H. S. Kim, B. H. Cheong, P. Oleg, W. Xianyua, J. S. Sohn, D. J. Ma, H. Y. Choi, N. C. Park, and Y. P. Park, “ Two-dimensional photonic crystal color filter development,” Opt. Exp. 17, 8621 (2009).
http://dx.doi.org/10.1364/OE.17.008621
22.
22. E. Yablonovitch, “ Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
23.
23. S. John, “ Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2486
24.
24. J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light ( Princeton University Press, New Jersey, 2008).
25.
25. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “ Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.3152
26.
26. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “ Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.3380
27.
27. E. Yablonvitch, “ Photonic band-gap structures,” JOSA B 10, 283 (1993).
http://dx.doi.org/10.1364/JOSAB.10.000283
28.
28. H. S. Sozuer, J. W. Haus, and R. Inguva, “ Photonic bands: Convergence problems with the plane-wave method,” Phys. Rev. B 45, 13962 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13962
29.
29. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation ( Wiley, New York, 2002).
30.
30. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics ( Wiley, New York, 2007).
31.
31. G. D. Marshall, M. Ams, and M. J. Withford, “ Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690 (2006).
http://dx.doi.org/10.1364/OL.31.002690
32.
32. J. Liu, P. Han, G. Qiao, and J. Yang, “ Properties of PC filters in one-dimensional photonic crystals containing defects,” J. Intense Pulsed Lasers Appl. Adv. Phys. 1, 69 (2011), http://www.chalcogen.ro/69_Liu5.pdf.
33.
33. H. Sang, Z. Y. Li, and B. Y. Gu, “ Stack-sequence dependent defect modes in one-dimensional photonic crystals,” Phys. Lett. A 331, 414 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.09.016
34.
34. Q. Zhu and Y. Zhang, “ Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik 120, 195 (2009).
http://dx.doi.org/10.1016/j.ijleo.2007.06.024
35.
35. R. Wang, J. Dong, and D. Y. Xing, “ Defect studies in a one-dimensional photonic band gap structure,” Phys. Status Solidi B 200, 529 (1997).
http://dx.doi.org/10.1002/1521-3951(199704)200:2<529::AID-PSSB529>3.0.CO;2-I
36.
36. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “ Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10, 314 (1993).
http://dx.doi.org/10.1364/JOSAB.10.000314
37.
37. W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. W. Berg, P.-C. Yu, and S. W. Pang, “ Characteristics of a photonic bandgap single defect microcavity electroluminescent device,” IEEE J. Quantum Electron. 37, 1153 (2001).
http://dx.doi.org/10.1109/3.945320
38.
38. M. W. Feise, I. V. Shardrivov, and Y. Kivshar, “ Bistable diode action in left-handed periodic structures,” Phys. Rev. E 71, 037602 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.037602
39.
39. B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “ Multichannel add-drop filter based on in-plane hetero photonic crystals,” J. Lightwave Technol. 23, 1449 (2005).
http://dx.doi.org/10.1109/JLT.2004.841458
40.
40. F. Ouellette, “ Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847 (1987).
http://dx.doi.org/10.1364/OL.12.000847
41.
41. C.-J. Wu, Y.-N. Rau, and W.-H. Han, “ Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal,” Prog. Electromagn. Res. 100, 27 (2010).
http://dx.doi.org/10.2528/PIER09111610
42.
42. K. O. Hill, K. Takiguchi, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, and J. Albert, “ Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314 (1994).
http://dx.doi.org/10.1364/OL.19.001314
43.
43. M. E. Fermann, K. Sugden, and I. Bennion, “ High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings,” Opt. Lett. 20, 172 (1995).
http://dx.doi.org/10.1364/OL.20.000172
44.
44. V. Lousse and S. Fan, “ Tunable terahertz Bloch oscillations in chirped photonic crystals,” Phys. Rev. B 72, 075119 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075119
45.
45. D. K. W. Lam, B. K. Garside, and K. O. Hill, “ Dispersion cancellation using optical-fiber filters,” Opt. Lett. 7, 291 (1982).
http://dx.doi.org/10.1364/OL.7.000291
46.
46. H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories and Applications ( World Scientific, New Jersey, 2012).
47.
47. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “ Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201 (1994).
http://dx.doi.org/10.1364/OL.19.000201
48.
48. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “ Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
http://dx.doi.org/10.1007/s003400000426
49.
49. Y. C. Cheng, M. Peckus, S. Kicas, J. Trull, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “ Beam focusing in reflection from flat chirped mirrors,” Phys. Rev. A 87, 045802 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.045802
50.
50. Y. C. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, “ Flat focusing mirror,” Sci. Rep. 4, 6326 (2014).
http://dx.doi.org/10.1038/srep06326
51.
51. S. Jiang, J. Li, J. Tang, and H. Wang, “ Multi-channel and sharp angular spatial filters based on one-dimensional photonic crystals,” Chin. Opt. Lett. 4, 605 (2006), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-4-10-605.
52.
52. Z. Luo, Z. Tang, Y. Xiang, H. Luo, and S. Wen, “ Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. B 94, 641 (2009).
http://dx.doi.org/10.1007/s00340-009-3376-4
53.
53. S. Jiang, Y. Liu, G. Liang, and H. Wang, “ Design and fabrication of narrow-frequency sharp angular filters,” Appl. Opt. 44, 6353 (2005).
http://dx.doi.org/10.1364/AO.44.006353
54.
54. D. Son, Z. Tang, L. Zhao, Z. Sui, S. Wen, and D. Fan, “ Experimental demonstration of a low-pass spatial filter based on a one-dimensional photonic crystal with a defect layer,” Chin. Phys. Lett. 30, 044206 (2013).
http://dx.doi.org/10.1088/0256-307X/30/4/044206
55.
55. E. Colak, A. O. Cakmak, A. E. Serebryannikov, and E. Ozbay, “ Spatial filtering using dielectric photonic crystals at beam-type excitation,” J. Appl. Phys. 108, 113106 (2010).
http://dx.doi.org/10.1063/1.3498810
56.
56. Z. Tang, D. Fan, S. Wen, Y. Ye, and C. Zhao, “ Low-pass spatial filtering using a two-dimensional self-collimating photonic crystal,” Chin. Opt. Lett. 5, S211 (2007), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-5-S1-S211.
57.
57. A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, “ Toward photonic crystal based spatial filters with wide angle ranges of total transmission,” Appl. Phys. Lett. 94, 181101 (2009).
http://dx.doi.org/10.1063/1.3127443
58.
58. Z. Tang, H. Zhang, Y. Ye, C. Zhao, S. Wen, and D. Fan, “ Low-pass spatial filtering using optically thinner left-handed photonic crystals,” in International Symposium on Biophotonics, Nanophotonics and Metamaterials (2006), p. 488.
59.
59. A. E. Serebryannikov, P. Lalanne, A. Yu. Petrov, and E. Ozbay, “ Wide-angle reflection mode spatial filtering and splitting with photonic crystal gratings and single-layer rod gratings,” Opt. Lett. 39, 6193 (2014).
http://dx.doi.org/10.1364/OL.39.006193
60.
60. R. Picó, V. J. Sánchez-Morcillo, I. Pérez-Arjona, and K. Staliunas, “ Spatial filtering of sound beams by sonic crystals,” Appl. Acoust. 73, 302 (2012).
http://dx.doi.org/10.1016/j.apacoust.2011.09.011
61.
61. R. Picó, I. Pérez-Arjona, V. J. Sánchez-Morcillo, and K. Staliunas, “ Evidences of spatial (angular) filtering of sound beams by sonic crystals,” Appl. Acoust. 74, 945 (2013).
http://dx.doi.org/10.1016/j.apacoust.2013.01.003
62.
62. V. Romero-García, R. Picó, A. Cebrecos, K. Staliunas, and V. J. Sánchez-Morcillo, “ Angular band gaps in sonic crystals: Evanescent waves and spatial complex dispersion relation,” J. Vib. Acoust. 135, 041012 (2013).
http://dx.doi.org/10.1115/1.4023832
63.
63. K. Staliunas and V. Sanchez-Morcillo, “ Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 79, 053807 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.053807
64.
64. L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V. Sirutkaitis, and K. Staliunas, “ Signatures of light-beam spatial filtering in a three-dimensional photonic crystal,” Phys. Rev. A 82, 043819 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.043819
65.
65. V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M. Malinauskas, and K. Staliunas, “ Spatial filtering of light by chirped photonic crystals,” Phys. Rev. A 87, 033805 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.033805
66.
66. K. Staliunas, “ Removal of excitations of bose-einstein condensates by space- and time-modulated potentials,” Phys. Rev. A 84, 013626 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.013626
67.
67. V. Purlys, L. Maigyte, D. Gailevičius, M. Peckus, M. Malinauskas, R. Gadonas, and K. Staliunas, “ Spatial filtering by axisymmetric photonic structure in gapless configuration,” Opt. Lett. 39, 929 (2014).
http://dx.doi.org/10.1364/OL.39.000929
68.
68. D. Gailevicius, V. Purlys, L. Maigyte, M. Peckus, and K. Staliunas, “ Chirped axisymmetric micro-photonic structures for spatial filtering,” J. Nanophotonics 8, 084094 (2014).
http://dx.doi.org/10.1117/1.JNP.8.084094
69.
69. N. Kumar, L. Maigyte, M. Botey, R. Herrero, and K. Staliunas, “ Beam shaping in metallic photonic crystals,” JOSA B 31, 686 (2014).
http://dx.doi.org/10.1364/JOSAB.31.000686
70.
70. R. Herrero, M. Botey, M. Radziunas, and K. Staliunas, “ Beam shaping in spatially modulated broad-area semiconductor amplifiers,” Opt. Lett. 37, 5253 (2012).
http://dx.doi.org/10.1364/OL.37.005253
71.
71. M. Radziunas, M. Botey, R. Herrero, and K. Staliunas, “ Intrinsic beam shaping mechanism in spatially modulated broad area semiconductor amplifiers,” Appl. Phys. Lett. 103, 132101 (2013).
http://dx.doi.org/10.1063/1.4821251
72.
72. K. Staliunas, R. Herrero, and R. Vilaseca, “ Subdiffraction and spatial filtering due to periodic spatial modulation of the gain/loss profile,” Phys. Rev. A 80, 013821 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.013821
73.
73. K. Staliunas, M. Peckus, and V. Sirutkaitis, “ Sub- and super-diffractive resonators with intracavity photonic crystals,” Phys. Rev. A 76, 051803(R) (2007).
http://dx.doi.org/10.1103/PhysRevA.76.051803
74.
74. M. Peckus, R. Rogalskis, M. Andrulevicius, T. Tamulevicius, A. Guobiene, V. Jarutis, V. Sirutkaitis, and K. Staliunas, “ Resonators with manipulated diffraction due to two- and three-dimensional intracavity photonic crystals,” Phys. Rev. A 79, 033806 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.033806
75.
75. A. Taflove, “ Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Electromagn. Compat. 22(3), 191 (1980).
http://dx.doi.org/10.1109/TEMC.1980.303879
76.
76. C. Lopez, “ Materials aspects of photonic crystals,” Adv. Mater. 15, 1679 (2003).
http://dx.doi.org/10.1002/adma.200300386
77.
77. M. J. Escuti and G. P. Crawford, “ Holographic photonic crystals,” Opt. Eng. 43, 1973 (2004).
http://dx.doi.org/10.1117/1.1773773
78.
78. T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, “ Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8,” Opt. Express 14, 7943 (2006).
http://dx.doi.org/10.1364/OE.14.007943
79.
79. G. Rosolen and A. Cola, “ Fabrication of photonic crystal structures by electron beam lithography,” in Conference on Optoelectronic and Microelectronic Materials and Devices (2006), p. 66.
80.
80. P. V. Braun, S. A. Rinne, and F. G. Santamar′ıa, “ Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665 (2006).
http://dx.doi.org/10.1002/adma.200600769
81.
81. A. Popescu, S. Miclos, D. Savastru, R. Savastru, M. Ciobanu, M. Popescu, A. Lorinczi, F. Sava, A. Velea, F. Jipa, and M. Zamfirescu, “ Direct laser writing of two-dimensional photonic structures in amorphous As2S3 thin films,” J. Optoelectron. Adv. Mater. 11, 1874 (2009), http://www.academia.edu/723590/Direct_laser_writing_of_two-dimensional_photonic_structures_in_amorphous_As2S3_thin_films.
82.
82. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “ Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
http://dx.doi.org/10.1038/35003523
83.
83. Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “ Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
http://dx.doi.org/10.1063/1.1557328
84.
84. J. H. Moon, J. Ford, and S. Yang, “ Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography,” Polym. Adv. Technol. 17, 83 (2006).
http://dx.doi.org/10.1002/pat.663
85.
85. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “ A thee-dimensional optical photonic crystal with designed point defects,” Nature 429, 538 (2004).
http://dx.doi.org/10.1038/nature02575
86.
86. K. Busch, S. Lolkes, R. B. Wehrspohn, and H. Foll, Photonic Crystals: Advances in Design, Fabrication, and Characterization ( Wiley, New York, 2006).
87.
87. Y. Yin, Y. Lu, and Y. Xia, “ Assembly of monodispersed spherical colloids into one-dimensional aggregates characterized by well-controlled structures and lengths,” J. Mater. Chem. 11, 987 (2001).
http://dx.doi.org/10.1039/b009606g
88.
88. Y.-H. Ye, T. S. Mayer, I.-C. Khoo, I. B. Divliansky, N. Abrams, and T. E. Mallouk, “ Self-assembly of three-dimensional photonic-crystals with air-core line defects,” J. Mater. Chem. 12, 3637 (2002).
http://dx.doi.org/10.1039/b207441a
89.
89. Y. Xia and G. M. Whitesides, “ Soft lithography,” Angew. Chem. Int. Ed. 37, 550 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
90.
90. J. H. Moon, A. Small, G. R. Yi, S. K. Lee, W. S. Chang, D. J. Pine, and S. M. Yang, “ Patterned polymer photonic crystals using soft lithography and holographic lithography,” Synth. Met. 148, 99 (2005).
http://dx.doi.org/10.1016/j.synthmet.2004.09.019
91.
91. E. Kuramochi, M. Notomi, T. Kawashima, J. Takashi, T. Tamamura, and S. Kawakami, “ A new fabrication technique for photonic crystals: Nanolithography combined with alternating-layer deposition,” Opt. Quantum Electron. 34, 53 (2002).
http://dx.doi.org/10.1023/A:1013326610166
92.
92. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “ Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63 (2002).
http://dx.doi.org/10.1023/A:1013382711983
93.
93. M. Skorbogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding ( Cambridge University Press, Cambridge, 2009).
94.
94. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, and Y. Aoyagi, “ Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation,” Appl. Phys. Lett. 81, 3122 (2002).
http://dx.doi.org/10.1063/1.1515117
95.
95. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “ Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59 (2002).
http://dx.doi.org/10.1021/nl015635q
96.
96. S. Maruo, O. Nakamura, and S. Kawata, “ Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132 (1997).
http://dx.doi.org/10.1364/OL.22.000132
97.
97. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. K. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “ Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51 (1999).
http://dx.doi.org/10.1038/17989
98.
98. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “ Finer features for functional microdevices,” Nature 412, 697 (2001).
http://dx.doi.org/10.1038/35089130
99.
99. M. Deubel, G. Freymann, M. Wegner, S. Pereira, K. Busch, and C. M. Soukoulis, “ Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature 3, 444 (2004).
http://dx.doi.org/10.1038/nmat1155
100.
100. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “ Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729 (1996).
http://dx.doi.org/10.1364/OL.21.001729
101.
101. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “ Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109 (2003).
http://dx.doi.org/10.1007/s00339-003-2088-6
102.
102. H. Zhang, S. M. Eaton, and P. R. Herman, “ Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559 (2007).
http://dx.doi.org/10.1364/OL.32.002559
103.
103. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “ Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
http://dx.doi.org/10.1063/1.3590716
104.
104. M. Kamata and M. Obara, “ Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A 78, 85 (2004).
http://dx.doi.org/10.1007/s00339-003-2158-9
105.
105. R. R. Gattass and E. Mazur, “ Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
http://dx.doi.org/10.1038/nphoton.2008.47
106.
106. A. M. Streltsov and N. F. Borrelli, “ Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496 (2002).
http://dx.doi.org/10.1364/JOSAB.19.002496
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/1/10.1063/1.4907345
Loading
/content/aip/journal/apr2/2/1/10.1063/1.4907345
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/1/10.1063/1.4907345
2015-02-11
2016-12-05

Abstract

Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/1/1.4907345.html;jsessionid=GVF5VVFZ_HFBXsQgD1GIHxI3.x-aip-live-03?itemId=/content/aip/journal/apr2/2/1/10.1063/1.4907345&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/1/10.1063/1.4907345&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/1/10.1063/1.4907345'
Right1,Right2,Right3,