Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/1/10.1063/1.4913751
1.
1. D. Smith, J. Pendry, and M. Wiltshire, Science 305, 788 (2004).
http://dx.doi.org/10.1126/science.1096796
2.
2. H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, Nature Photon. 2, 295 (2008).
http://dx.doi.org/10.1038/nphoton.2008.52
3.
3. W. C. Chen, A. Totachawattana, K. Fan, J. L. Ponsetto, A. C. Strikwerda, X. Zhang, R. D. Averitt, and W. J. Padilla, Phys. Rev. B 85, 035112 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035112
4.
4. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, Nature 470, 369 (2011).
http://dx.doi.org/10.1038/nature09776
5.
5. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, Opt. Express 17, 18330 (2009).
http://dx.doi.org/10.1364/OE.17.018330
6.
6. E. Ekmekci, A. C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, and R. D. Averitt, Phys. Rev. B 83, 193103 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.193103
7.
7. K. B. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, Opt. Express 19, 12619 (2011).
http://dx.doi.org/10.1364/OE.19.012619
8.
8. S. Iyer, S. Popov, and A. T. Friberg, Appl. Opt. 50, 3958 (2011).
http://dx.doi.org/10.1364/AO.50.003958
9.
9. R. C. McPhedran, I. V. Shadrivov, B. T. Kuhlmey, and Y. S. Kivshar, NPG Asia Mater. 3, 100 (2011).
http://dx.doi.org/10.1038/asiamat.2011.146
10.
10. I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hubner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, Nanotechnology 22, 325301 (2011).
http://dx.doi.org/10.1088/0957-4484/22/32/325301
11.
11. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
http://dx.doi.org/10.1038/nmat2072
12.
12. H. O. Moser and C. Rockstuhl, Laser Photon. Rev. 6, 219 (2012).
http://dx.doi.org/10.1002/lpor.201000019
13.
13. C. M. Soukoulis and M. Wegener, Nature Photon. 5, 523 (2011).
http://dx.doi.org/10.1038/nphoton.2011.154
14.
14. J. B. Pendry, D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
http://dx.doi.org/10.1126/science.1133628
15.
15. J. F. O'Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Exp. 16 1786 (2008).
http://dx.doi.org/10.1364/OE.16.001786
16.
16. T. Chen, S. Li, and H. Sun, Sensors (Basel) 12, 2742 (2012).
http://dx.doi.org/10.3390/s120302742
17.
17. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, Nano Lett. 12, 5598 (2012).
http://dx.doi.org/10.1021/nl302656d
18.
18. J. Li, C. M. Shah, W. Withayachumnankul, B. S. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, Opt. Lett. 38, 2104 (2013).
http://dx.doi.org/10.1364/OL.38.002104
19.
19. R. Melik, E. Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir, Appl. Phys. Lett. 95, 181105 (2009).
http://dx.doi.org/10.1063/1.3250175
20.
20. B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, Opt. Express 19, 14653 (2011).
http://dx.doi.org/10.1364/OE.19.014653
21.
21. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. K. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. C. Omenetto, Adv. Mater. 23, 3197 (2011).
http://dx.doi.org/10.1002/adma.201100163
22.
22. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, Nano Lett. 11, 3232 (2011).
http://dx.doi.org/10.1021/nl2014982
23.
23. J. B. Pendry, Contemp. Phys. 45, 191 (2004).
http://dx.doi.org/10.1080/00107510410001667434
24.
24. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
http://dx.doi.org/10.1126/science.1108759
25.
25. Z. Jacob, L. V. Alekseyev, and E. Narimanov, Opt. Express 14, 8247 (2006).
http://dx.doi.org/10.1364/OE.14.008247
26.
26. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
http://dx.doi.org/10.1126/science.1137368
27.
27. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 68, 045115 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.045115
28.
28. V. M. Shalaev, Nature Photon. 1, 41 (2007).
http://dx.doi.org/10.1038/nphoton.2006.49
29.
29. X. Zhang and Z. Liu, Nat. Mater. 7, 435 (2008).
http://dx.doi.org/10.1038/nmat2141
30.
30. M. Choi, J.-H. Choe, B. Kang, and C.-G. Choi, Curr. Appl. Phys. 13, 1723 (2013).
http://dx.doi.org/10.1016/j.cap.2013.06.028
31.
31. S. Lee, L. Li, Z. Wang, W. Guo, Y. Yan, and T. Wang, Appl. Opt. 52, 7265 (2013).
http://dx.doi.org/10.1364/AO.52.007265
32.
32. F. Xu, G. Chen, C. Wang, B. Cao, and Y. Lou, Opt. Lett. 38, 3819 (2013).
http://dx.doi.org/10.1364/OL.38.003819
33.
33. S. Zhang, S. Liu, X. Yang, C. Wang, and X. Luo, J. Nanophotonics 7, 073080 (2013).
http://dx.doi.org/10.1117/1.JNP.7.073080
34.
34. L. Huang, X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, Nat. Commun. 4, 2808 (2013).
http://dx.doi.org/10.1038/ncomms3808
35.
35. R. Caputo, U. Cataldi, A. Cunningham, L. De Sio, T. Bürgi, and C. Umeton, in Asia Communications and Photonics Conference (2012), p. PAF4D.8.
36.
36. Y.-C. Chang, S. Yin, C. Wang, and C. Luo, Proc. SPIE 8120, 81201M (2011).
http://dx.doi.org/10.1117/12.894685
37.
37. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, Nano Lett. 11, 2142 (2011).
http://dx.doi.org/10.1021/nl200791r
38.
38. J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, Nat. Nanotechnol. 8, 252 (2013).
http://dx.doi.org/10.1038/nnano.2013.25
39.
39. T.-J. Yen, D. Wu, N. Fang, and X. Zhang, Proc. SPIE 5512, 100106 (2004).
http://dx.doi.org/10.1117/12.560553
40.
40. C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, Nano Lett. 13, 248 (2013).
http://dx.doi.org/10.1021/nl303987y
41.
41. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, ACS Nano 5, 4641 (2011).
http://dx.doi.org/10.1021/nn2004603
42.
42. D. Y. Shchegolkov, A. K. Azad, J. F. O'Hara, and E. I. Simakov, Phys. Rev. B 82, 205117 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205117
43.
43. C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).
http://dx.doi.org/10.1002/adma.201200674
44.
44. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, B.-H. Zhao, Y. Long, and Y.-L. Jing, “ Perfect Metamaterial Absorbers in Microwave and Terahertz Bands,” in Metamaterial, edited by D. X.-Y. Jiang ( InTech, 2012).
45.
45. O. M. Ramahi, T. S. Almoneef, M. AlShareef, and M. S. Boybay, Appl. Phys. Lett. 101, 173903 (2012).
http://dx.doi.org/10.1063/1.4764054
46.
46. A. M. Hawkes, A. R. Katko, and S. A. Cummer, Appl. Phys. Lett. 103, 163901 (2013).
http://dx.doi.org/10.1063/1.4824473
47.
47. H. Tao, N. Landy, K. Fan, A. Strikwerda, W. Padilla, R. Averitt, and X. Zhang, IEEE Int. Electron Devices Meet. 2008, 14.
http://dx.doi.org/10.1109/IEDM.2008.4796673
48.
48. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, Nano Lett. 10, 4222 (2010).
http://dx.doi.org/10.1021/nl102684x
49.
49. W. J. Padilla, D. N. Basov, and D. R. Smith, Mater. Today 9, 28 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71573-5
50.
50. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
http://dx.doi.org/10.1038/nature07247
51.
51. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Adv. Mater. 23, 4422 (2011).
http://dx.doi.org/10.1002/adma.201102430
52.
52. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, Nat. Nanotechnol. 6, 402 (2011).
http://dx.doi.org/10.1038/nnano.2011.82
53.
53. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, Appl. Phys. Lett. 100, 061101 (2012).
http://dx.doi.org/10.1063/1.3665180
54.
54. N. Tiercelin, P. Coquet, R. Sauleau, V. Senez, and H. Fujita, J. Micromech. Microeng. 16, 2389 (2006).
http://dx.doi.org/10.1088/0960-1317/16/11/020
55.
55. X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, Appl. Phys. Lett. 96, 011906 (2010).
http://dx.doi.org/10.1063/1.3275015
56.
56. J. A. Rogers and R. G. Nuzzo, Mater. Today 8, 50 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)00702-9
57.
57. J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).
http://dx.doi.org/10.1126/science.1182383
58.
58. K. Iwaszczuk, A. C. Strikwerda, K. B. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, Opt. Express 20, 635 (2012).
http://dx.doi.org/10.1364/OE.20.000635
59.
59. H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D. H. Kim, J. S. Ha, Y. Huang, K. C. Hwang, and J. A. Rogers, Small 5, 2703 (2009).
http://dx.doi.org/10.1002/smll.200900934
60.
60. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, ACS Nano 6, 2385 (2012).
http://dx.doi.org/10.1021/nn204647b
61.
61. J. Henzie, M. H. Lee, and T. W. Odom, Nat. Nanotechnol. 2, 549 (2007).
http://dx.doi.org/10.1038/nnano.2007.252
62.
62. V. A. Tamma, Y. Cui, J. Zhou, and W. Park, in Quantum Electronics and Laser Science Conference ( Optical Society of America, 2012), p. QW1B.6.
63.
63. L. J. Liang, J. Q. Yao, and X. Yan, Chin. Phys. Lett. 29, 094209 (2012).
http://dx.doi.org/10.1088/0256-307X/29/9/094209
64.
64. P. K. Singh, K. A. Korolev, M. N. Afsar, and S. Sonkusale, Appl. Phys. Lett. 99, 264101 (2011).
http://dx.doi.org/10.1063/1.3672100
65.
65. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Phys. Rev. B 78, 241103 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.241103
66.
66. A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, J. Opt. 14, 114009 (2012).
http://dx.doi.org/10.1088/2040-8978/14/11/114009
67.
67. N. I. Zheludev, Opt. Photonics News 22, 30 (2011).
http://dx.doi.org/10.1364/OPN.22.3.000030
68.
68. N. I. Zheludev and Y. S. Kivshar, Nat. Mater. 11, 917 (2012).
http://dx.doi.org/10.1038/nmat3431
69.
69. H. Y. Hwang, N. C. Brandt, K. Fan, X. Zhang, R. D. Averitt, and K. Nelson, in International Conference on Ultrafast Phenomena ( Optical Society of America, 2014), p. P3.43.
70.
70. R. Ortuño, C. García-Meca, and A. Martínez, Plasmonics 9, 1143 (2014).
http://dx.doi.org/10.1007/s11468-014-9724-1
71.
71. R. Singh and N. Zheludev, Nature Photon. 8, 679 (2014).
http://dx.doi.org/10.1038/nphoton.2014.206
72.
72. I. Al-Naib, G. Sharma, M. M. Dignam, H. Hafez, A. Ibrahim, D. G. Cooke, T. Ozaki, and R. Morandotti, in CLEO: Science and Innovations ( Optical Society of America, 2013), Vol. CLEO_SI.2013, pp. CM4J.7.
73.
73. G. R. Keiser, K. Fan, X. Zhang, and R. D. Averitt, J. Infrared. Millim. THz Waves 34, 709 (2013).
http://dx.doi.org/10.1007/s10762-013-9993-3
74.
74. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, Science 340, 1304 (2013).
http://dx.doi.org/10.1126/science.1235399
75.
75. J. P. Turpin, J. A. Bossard, K. L. Morgan, D. H. Werner, and P. L. Werner, Int. J. Antennas Propag. 2014, 429837.
http://dx.doi.org/10.1155/2014/429837
76.
76. N. K. Grady, B. G. Perkins, Jr., H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, and Q. Jia, New J. Phys. 15, 105016 (2013).
http://dx.doi.org/10.1088/1367-2630/15/10/105016
77.
77. A. K. Azad, H. T. Chen, X. Lu, J. Gu, N. R. Weisse-Bernstein, E. Akhadov, A. J. Taylor, W. Zhang, and J. F. O'Hara, IEEE Trans. THz Sci. Technol. 2, 15 (2009).
http://dx.doi.org/10.11906/TST.015-022.2009.03.02
78.
78. Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, Opt. Mater. Express 1, 151 (2011).
http://dx.doi.org/10.1364/OME.1.000151
79.
79. A. Di Falco, M. Ploschner, and T. F. Krauss, New J. Phys. 12, 113006 (2010).
http://dx.doi.org/10.1088/1367-2630/12/11/113006
80.
80. N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, Opt. Express 19, 6990 (2011).
http://dx.doi.org/10.1364/OE.19.006990
81.
81. Y. L. Hor, Z. Szabo, H. C. Lim, J. F. Federici, and E. P. Li, Appl. Opt. 49, 1179 (2010).
http://dx.doi.org/10.1364/AO.49.001179
82.
82. G. Kenanakis, R. Zhao, A. Stavrinidis, G. Konstantinidis, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, Opt. Mater. Express 2, 1702 (2012).
http://dx.doi.org/10.1364/OME.2.001702
83.
83. Y. Li, L. W. Tan, X. T. Hao, K. S. Ong, F. Zhu, and L. S. Hung, Appl. Phys. Lett. 86, 153508 (2005).
http://dx.doi.org/10.1063/1.1900940
84.
84. F. Miyamaru, M. W. Takeda, and K. Taima, Appl. Phys. Express 2, 042001 (2009).
http://dx.doi.org/10.1143/APEX.2.042001
85.
85. H. Tao, A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, J. Phys. D: Appl. Phys. 41, 232004 (2008).
http://dx.doi.org/10.1088/0022-3727/41/23/232004
86.
86. L. Liu, W.-c. Chen, D. A. Powell, W. J. Padilla, F. Karouta, H. T. Hattori, D. N. Neshev, and I. V. Shadrivov, Appl. Phys. Lett. 105, 151102 (2014).
http://dx.doi.org/10.1063/1.4897949
87.
87. W. Park and J.-B. Lee, Appl. Phys. Lett. 85, 4845 (2004).
http://dx.doi.org/10.1063/1.1823019
88.
88. J. Li, C. M. Shah, W. Withayachumnankul, B. S. Y. Ung, A. Mitchell, S. Sriram, M. Bhaskaran, S. Chang, and D. Abbott, Appl. Phys. Lett. 102, 121101 (2013).
http://dx.doi.org/10.1063/1.4773238
89.
89. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, Phys. Rev. Lett. 103, 147401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.147401
90.
90. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, Appl. Phys. Lett. 99, 151115 (2011).
http://dx.doi.org/10.1063/1.3631723
91.
91. N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, Adv. Mater. 21, 3933 (2009).
http://dx.doi.org/10.1002/adma.200900461
92.
92. R. R. A. Syms, L. Solymar, I. R. Young, and T. Floume, J. Phys. D: Appl. Phys. 43, 055102 (2010).
http://dx.doi.org/10.1088/0022-3727/43/5/055102
93.
93. I. W. Moran, A. L. Briseno, S. Loser, and K. R. Carter, Chem. Mater. 20, 4595 (2008).
http://dx.doi.org/10.1021/cm800480z
94.
94. J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
http://dx.doi.org/10.1088/0960-1317/7/3/017
95.
95. W. A. MacDonald, J. Mater. Chem. 14, 4 (2004).
http://dx.doi.org/10.1039/b310846p
96.
96. M.-C. Choi, Y. Kim, and C.-S. Ha, Prog. Polym. Sci. 33, 581 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2007.11.004
97.
97. A. Thompson and D. Woods, Trans. Faraday Soc. 52, 1383 (1956).
http://dx.doi.org/10.1039/tf9565201383
98.
98. S. Costanzo, A. Borgia, I. Venneri, and G. D. Massa, Radio Eng. 20, 785 (2011).
99.
99. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, J. Korean Phys. Soc. 49, 513 (2006).
100.
100. F. Vila, P. Dhima, and F. Mandija, SpringerPlus 2, 472 (2013).
http://dx.doi.org/10.1186/2193-1801-2-472
101.
101. J. Birch, Infrared Phys. 33, 33 (1992).
http://dx.doi.org/10.1016/0020-0891(92)90052-U
102.
102. M. Rabuffi and G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002).
http://dx.doi.org/10.1109/TPS.2002.805318
103.
103. L.-Q. Wu, Electro-mech. Eng. 20, 51 (2004).
104.
104. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, J. Micromech. Microeng. 7, 121 (1997).
http://dx.doi.org/10.1088/0960-1317/7/3/010
105.
105. S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, Electron. Lett. 35, 243 (1999).
http://dx.doi.org/10.1049/el:19990146
106.
106. J. Sauer and D. Kline, J. Polym. Sci. 18, 491 (1955).
http://dx.doi.org/10.1002/pol.1955.120189005
107.
107. W. C. V. Wang, E. J. Kramer, and W. H. Sachse, J. Polym. Sci. Polym. Phys. Ed. 20, 1371 (1982).
http://dx.doi.org/10.1002/pol.1982.180200804
108.
108. P. Gutruf, C. M. Shah, S. Walia, H. Nili, A. S. Zoolfakar, C. Karnutsch, K. Kalantar-zadeh, S. Sriram, and M. Bhaskaran, NPG Asia Mater. 5, e62 (2013).
http://dx.doi.org/10.1038/am.2013.41
109.
109. T. Buma, M. Spisar, and M. O'Donnell, Appl. Phys. Lett. 79, 548 (2001).
http://dx.doi.org/10.1063/1.1388027
110.
110. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature 393, 146 (1998).
http://dx.doi.org/10.1038/30193
111.
111. J. L. Fritz and M. J. Owen, J. Adhes. 54, 33 (1995).
http://dx.doi.org/10.1080/00218469508014379
112.
112. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, Appl. Phys. Lett. 82, 2404 (2003).
http://dx.doi.org/10.1063/1.1565683
113.
113. R. C. Pangule, I. Banerjee, and A. Sharma, J. Chem. Phys. 128, 234708 (2008).
http://dx.doi.org/10.1063/1.2940330
114.
114. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 1636 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.04.020
115.
115. T. Li, Z. Huang, Z. Xi, S. P. Lacour, S. Wagner, and Z. Suo, Mech. Mater. 37, 261 (2005).
http://dx.doi.org/10.1016/j.mechmat.2004.02.002
116.
116. N. Lu, X. Wang, Z. Suo, and J. Vlassak, Appl. Phys. Lett. 91, 221909 (2007).
http://dx.doi.org/10.1063/1.2817234
117.
117. K. C. Cheung, P. Renaud, H. Tanila, and K. Djupsund, Biosens. Bioelectron. 22, 1783 (2007).
http://dx.doi.org/10.1016/j.bios.2006.08.035
118.
118. M. Zirkl, A. Haase, A. Fian, H. Schön, C. Sommer, G. Jakopic, G. Leising, B. Stadlober, I. Graz, N. Gaar, R. Schwödiauer, S. Bauer-Gogonea, and S. Bauer, Adv. Mater. 19, 2241 (2007).
http://dx.doi.org/10.1002/adma.200700831
119.
119. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
120.
120. C. Yan, J. H. Cho, and J.-H. Ahn, Nanoscale 4, 4870 (2012).
http://dx.doi.org/10.1039/c2nr30994g
121.
121. W. Reddish, Trans. Faraday Soc. 46, 459 (1950).
http://dx.doi.org/10.1039/tf9504600459
122.
122. P. Zoller and P. Bolli, J. Macromol. Sci. B 18, 555 (1980).
http://dx.doi.org/10.1080/00222348008243730
123.
123. G. X. Li, S. M. Chen, W. H. Wong, E. Y. B. Pun, and K. W. Cheah, Opt. Express 20, 397 (2012).
http://dx.doi.org/10.1364/OE.20.000397
124.
124. L. Sun, G. Qin, J. H. Seo, G. K. Celler, W. Zhou, and Z. Ma, Small 6, 2553 (2010).
http://dx.doi.org/10.1002/smll.201000522
125.
125. W. Zhou, Z. Ma, S. Chuwongin, Y.-C. Shuai, J.-H. Seo, D. Zhao, H. Yang, and W. Yang, Opt. Quantum Electron. 44, 605 (2012).
http://dx.doi.org/10.1007/s11082-012-9586-8
126.
126. C. M. Shah, S. Sriram, M. Bhaskaran, M. Nasabi, T. G. Nguyen, W. S. T. Rowe, and A. Mitchell, J. Microelectromech. Syst. 21, 1410 (2012).
http://dx.doi.org/10.1109/JMEMS.2012.2208220
127.
127. G. M. Kim, M. A. F. van den Boogaart, and J. Brugger, Microelectron. Eng. 67–68, 609 (2003).
http://dx.doi.org/10.1016/S0167-9317(03)00121-7
128.
128. A. S. Quick, J. Fischer, B. Richter, T. Pauloehrl, V. Trouillet, M. Wegener, and C. Barner-Kowollik, Macromol. Rapid Commun. 34, 335 (2013).
http://dx.doi.org/10.1002/marc.201200796
129.
129. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, Nat. Mater. 7, 543 (2008).
http://dx.doi.org/10.1038/nmat2197
130.
130. K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, Phys. Rev. B. 87, 161104(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.87.161104
131.
131. T. Buckmann, N. Stenger, M. Kadic, J. Kaschke, A. Frolich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, Adv. Mater. 24, 2710 (2012).
http://dx.doi.org/10.1002/adma.201200584
132.
132. D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, Adv. Mater. 22, 5053 (2010).
http://dx.doi.org/10.1002/adma.201002429
133.
133. S. Salvatore, A. Demetriadou, S. Vignolini, S. S. Oh, S. Wuestner, N. A. Yufa, M. Stefik, U. Wiesner, J. J. Baumberg, and O. Hess, Adv. Mater. 25, 2713 (2013).
http://dx.doi.org/10.1002/adma.201300193
134.
134. D. B. Shao and S. C. Chen, Nano Lett. 6, 2279 (2006).
http://dx.doi.org/10.1021/nl061712b
135.
135. B. M. Durnin, C. M. Shah, S. Sriram, and M. Bhaskaran, Proc. SPIE 8204, 820437 (2011).
http://dx.doi.org/10.1117/12.903187
136.
136. M. Apanius, P. B. Kaul, and A. R. Abramson, Sens. Actuators, A 140, 168 (2007).
http://dx.doi.org/10.1016/j.sna.2007.06.028
137.
137. S. C. Nemat-Nasser, A. V. Amirkhizi, W. J. Padilla, D. N. Basov, S. Nemat-Nasser, D. Bruzewicz, and G. Whitesides, Phys. Rev. E 75, 036614 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.036614
138.
138. H. Tao, J. J. Amsden, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, Adv. Mater. 22, 3527 (2010).
http://dx.doi.org/10.1002/adma.201000412
139.
139. Y. Qin, A. Pan, L. Liu, O. Moutanabbir, R. B. Yang, and M. Knez, ACS Nano 5, 788 (2011).
http://dx.doi.org/10.1021/nn102879s
140.
140. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
141.
141. D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protocol 5, 491 (2010).
http://dx.doi.org/10.1038/nprot.2009.234
142.
142. Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
http://dx.doi.org/10.1126/science.273.5273.347
143.
143. M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2006).
http://dx.doi.org/10.1038/nmat1532
144.
144. M. H. Lee, M. D. Huntington, W. Zhou, J.-C. Yang, and T. W. Odom, Nano Lett. 11, 311 (2011).
http://dx.doi.org/10.1021/nl102206x
145.
145. X. G. Peralta, M. C. Wanke, C. L. Arrington, J. D. Williams, I. Brener, A. Strikwerda, R. D. Averitt, W. J. Padilla, E. Smirnova, A. J. Taylor, and J. F. O'Hara, Appl. Phys. Lett. 94, 161113 (2009).
http://dx.doi.org/10.1063/1.3114416
146.
146. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, Appl. Phys. Lett. 83, 201 (2003).
http://dx.doi.org/10.1063/1.1591083
147.
147. J. M. Lee, J. W. Choung, J. Yi, D. H. Lee, M. Samal, D. K. Yi, C. H. Lee, G. C. Yi, U. Paik, J. A. Rogers, and W. I. Park, Nano Lett. 10, 2783 (2010).
http://dx.doi.org/10.1021/nl100648y
148.
148. S. Zhang, W. Fan, B. Minhas, A. Frauenglass, K. Malloy, and S. Brueck, Phys. Rev. Lett. 94, 037402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.037402
149.
149. J. Fischer and M. Wegener, Opt. Mater. Express 1, 614 (2011).
http://dx.doi.org/10.1364/OME.1.000614
150.
150. J. Wu, B. Ng, H. Liang, M. B. Breese, M. Hong, S. A. Maier, H. O. Moser, and O. Hess, Phys. Rev. Appl. 2, 014005 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.014005
151.
151. A. M. Bowen and R. G. Nuzzo, Adv. Funct. Mater. 19, 3243 (2009).
http://dx.doi.org/10.1002/adfm.200900978
152.
152. S. Lee, S. Kim, T. T. Kim, Y. Kim, M. Choi, S. H. Lee, J. Y. Kim, and B. Min, Adv. Mater. 24, 3491 (2012).
http://dx.doi.org/10.1002/adma.201200419
153.
153. H. Tao, A. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, in Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) ( IEEE, 2010), pp. 12.
154.
154. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, J. Infrared. Millim. THz Waves 32, 580 (2011).
http://dx.doi.org/10.1007/s10762-010-9646-8
155.
155. Y.-S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, Appl. Phys. Lett. 102, 111908 (2013).
http://dx.doi.org/10.1063/1.4798244
156.
156. M. Lapine, D. Powell, M. Gorkunov, I. Shadrivov, R. Marques, and Y. Kivshar, Appl. Phys. Lett. 95, 084105 (2009).
http://dx.doi.org/10.1063/1.3211920
157.
157. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, Phys. Rev. Lett. 107, 043901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.043901
158.
158. H. Němec, P. Kužel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, Phys. Rev. B 79, 241108 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.241108
159.
159. D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, Nature 451, 549 (2008).
http://dx.doi.org/10.1038/nature06560
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/1/10.1063/1.4913751
Loading
/content/aip/journal/apr2/2/1/10.1063/1.4913751
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/1/10.1063/1.4913751
2015-03-05
2016-09-28

Abstract

The ability to bend, stretch, and roll metamaterial devices on flexible substrates adds a new dimension to aspects of manipulating electromagnetic waves and promises a new wave of device designs and functionalities. This work reviews terahertz and optical metamaterials realized on flexible and elastomeric substrates, along with techniques and approaches to lend tunability to the devices. Substrate electromagnetic and mechanical characteristics suitable for flexible metamaterials are summarized for readers, followed by fabrication and processing techniques, and finally novel approaches used to-date to attain tunability. Future directions and emerging areas of interests are identified with these promising to transform metamaterial design and translate metamaterials into practical devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/1/1.4913751.html;jsessionid=PiOLTlx3I2spClphEXHU27be.x-aip-live-06?itemId=/content/aip/journal/apr2/2/1/10.1063/1.4913751&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/1/10.1063/1.4913751&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/1/10.1063/1.4913751'
Right1,Right2,Right3,