Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/1/10.1063/1.4915002
1.
1.Nanotechnology Standards, edited by V. Murashov and J. Howard ( Springer, New York, 2011).
2.
2. E. L. Wolf, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience ( Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).
3.
3.Nanoparticle Technology for Drug Delivery, edited by R. B. Gupta and U. B. Kompella ( Taylor & Francis Group, New York, 2006).
4.
4. E. Torres-Chavolla, R. J. Ranasinghe, and E. C. Alocilja, IEEE Trans. Nanotechnol. 9, 533538 (2010).
http://dx.doi.org/10.1109/TNANO.2010.2052926
5.
5. E. Hutter and D. Maysinger, Microsc. Res. Tech. 74, 592604 (2011).
http://dx.doi.org/10.1002/jemt.20928
6.
6. M. Xie, H. Shi, K. Ma, H. Shen, B. Li, S. Shen, X. Wang, and Y. Jin, J. Colloid Interface Sci. 395, 306314 (2013).
http://dx.doi.org/10.1016/j.jcis.2013.01.001
7.
7. S. Parveen, R. Misra, and S. K. Sahoo, Nanomed.: Nanotechnol. Biol. Med. 8, 147166 (2012).
http://dx.doi.org/10.1016/j.nano.2011.05.016
8.
8. S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, and P. Chen, J. Controlled Release 166, 182194 (2013).
http://dx.doi.org/10.1016/j.jconrel.2012.12.013
9.
9. S. Tan, X. Li, Y. Guo, and Z. Zhang, Nanoscale 5, 860872 (2013).
http://dx.doi.org/10.1039/c2nr32880a
10.
10. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, Small 7, 169183 (2011).
http://dx.doi.org/10.1002/smll.201000134
11.
11. S. Jain, D. G. Hirst, and J. M. O'Sullivan, Br. J. Radiol. 85, 101113 (2012).
http://dx.doi.org/10.1259/bjr/59448833
12.
12. M. E. Davis, Z. Chen, and D. M. Shin, Nat. Rev. Drug Discovery 7, 771782 (2008).
http://dx.doi.org/10.1038/nrd2614
13.
13. P. K. Jain, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc. 128, 24262433 (2006).
http://dx.doi.org/10.1021/ja056769z
14.
14. X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, J. Am. Chem. Soc. 130, 27802782 (2008).
http://dx.doi.org/10.1021/ja711298b
15.
15. N. Karra and S. Benita, Curr. Drug Metab. 13, 2241 (2012).
http://dx.doi.org/10.2174/138920012798356899
16.
16. W. Shia, Y. Sahoo, and M. T. Swihart, Colloids Surf., A 246, 109113 (2004).
http://dx.doi.org/10.1016/j.colsurfa.2004.07.023
17.
17. R. W. Y. Habash, R. Bansal, D. Krewski, and H. T. Alhafid, Crit. Rev. Biomed. Eng. 34, 459489 (2006).
http://dx.doi.org/10.1615/CritRevBiomedEng.v34.i6.20
18.
18. B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, Crit. Rev. Oncol./Hematol. 43, 3356 (2002).
http://dx.doi.org/10.1016/S1040-8428(01)00179-2
19.
19. M. Palazzi, S. Maluta, S. Dall'Oglio, and M. Romano, Tumori 96, 902910 (2010).
20.
20. S. Tatli, Ü. Tapan, P. R. Morrison, and S. G. Silverman, Diagn. Interventional Radiol. 18, 508516 (2012).
http://dx.doi.org/10.4261/1305-3825.DIR.5168-11.1
21.
21. D. Haemmerich and P. F. Laeseke, Int. J. Hyperthermia 21, 755760 (2005).
http://dx.doi.org/10.1080/02656730500226423
22.
22. C. J. Gannon, C. R. Ratra, R. Bhattacharya, P. Mukherjee, and S. A. Curley, J. Nanobiotechnol. 6(2), 19 (2008).
23.
23. J. Cardinal, J. R. Klune, E. Chory, G. Jeyabalan, J. S. Kanzius, M. Nalesnik, and D. A. Geller, Surgery 144, 125132 (2008).
http://dx.doi.org/10.1016/j.surg.2008.03.036
24.
24. C. H. Moran, S. M. Wainerdi, T. K. Cherukuri, C. Kittrell, B. J. Wiley, N. W. Nicholas, S. A. Curley, J. S. Kanzius, and P. Cherukuri, Nano Res. 2, 400405 (2009).
http://dx.doi.org/10.1007/s12274-009-9048-1
25.
25. C. J. Gannon, P. Cherukuri, B. I. Yakobson, L. Cognet, J. S. Kanzius, C. Kittrell, R. B. Weisman, M. Pasquali, H. K. Schmidt, R. E. Smalley, and S. A. Curley, Cancer 110, 26542665 (2007).
http://dx.doi.org/10.1002/cncr.23155
26.
26. D. E. Kruse, D. N. Stephens, H. A. Lindfors, E. S. Ingham, E. E. Paoli, and K. W. Ferrara, IEEE Trans. Biomed. Eng. 58, 20022011 (2011).
http://dx.doi.org/10.1109/TBME.2011.2124460
27.
27. D. Li, Y. S. Jung, S. Tan, H. K. Kim, E. Chory, and D. A. Geller, J. Colloid Interface Sci. 358, 4753 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.01.059
28.
28. X. Liu, H.-J. Chen, C. Chen, C. Parini, and D. Wen, Nanoscale 4, 39453953 (2012).
http://dx.doi.org/10.1039/c2nr30166k
29.
29. H.-J. Chen and D. Wen, Nanomedicine 8, 215222 (2013).
http://dx.doi.org/10.2217/nnm.12.96
30.
30. F. H. Ghahremani, A. Sazgarnia, M. H. Bahreyni-Toosi, O. Rajabi, and A. Aledavood, Int. J. Hyperthermia 27, 625636 (2011).
http://dx.doi.org/10.3109/02656736.2011.587363
31.
31. K. Mollazadeh-Moghaddam, B. V. Moradi, R. Dolatabadi-Bazaz, M. Shakibae, and A. R. Shahverdi, Avicenna J. Med. Biotechnol. 3, 195200 (2011).
32.
32. A. M. Gobin, M. H. Lee, and N. J. Halas, Nano Lett. 7, 19291934 (2007).
http://dx.doi.org/10.1021/nl070610y
33.
33. M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating Sensing and Plasma Generation ( Elsevier, Oxford, 2010).
34.
34. J. N. Burghartz and B. Rejaei, IEEE Trans. Electron Devices 50, 718729 (2003).
http://dx.doi.org/10.1109/TED.2003.810474
35.
35. J. B. Goodenough, IEEE Trans. Magn. 38, 33983408 (2002).
http://dx.doi.org/10.1109/TMAG.2002.802741
36.
36. J. Lee, Y.-K. Hong, W. Lee, G. S. Abo, J. Park, W.-M. Seong, and W.-K. Ahn, J. Appl. Phys. 113, 073909 (2013).
http://dx.doi.org/10.1063/1.4793089
37.
37. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, Chem. Soc. Rev. 41, 27402779 (2012).
http://dx.doi.org/10.1039/C1CS15237H
38.
38. N. Khlebtsov and L. Dykman, Chem. Soc. Rev. 40, 16471671 (2011).
http://dx.doi.org/10.1039/C0CS00018C
39.
39. P. M. Tiwari, K. Vig, V. A. Dennis, and S. R. Singh, Nanomaterials 1, 3163 (2011).
http://dx.doi.org/10.3390/nano1010031
40.
40. S. A. Curley, P. Cherukuri, K. Briggs, C. R. Patra, M. Upton, E. Dolson, and P. Mukherjee, J. Exp. Ther. Oncol. 7, 313326 (2008).
41.
41. E. Araya, I. Olmedo, N. G. Bastus, S. Guerrero, V. F. Puntes, E. Giralt, and M. J. Kogan, Nanoscale Res. Lett. 3, 435443 (2008).
http://dx.doi.org/10.1007/s11671-008-9178-5
42.
42. E. S. Glazer, C. Zhu, K. L. Massey, C. Shea Thompson, W. D. Kaluarachchi, A. N. Hamir, and S. A. Curley, Clin. Cancer Res. 16, 57125721 (2010).
http://dx.doi.org/10.1158/1078-0432.CCR-10-2055
43.
43. E. S. Glazer, K. L. Massey, C. Zhu, and S. A. Curley, Surgery 148, 319324 (2010).
http://dx.doi.org/10.1016/j.surg.2010.04.025
44.
44. E. S. Glazer and S. A. Curley, Cancer 116, 32853293 (2010).
http://dx.doi.org/10.1002/cncr.25135
45.
45. M. Raoof, C. Zhu, W. D. Kaluarachchi, and S. A. Curley, Int. J. Hyperthermia 28, 202209 (2012).
http://dx.doi.org/10.3109/02656736.2012.666318
46.
46. S. J. Corr, M. Raoof, Y. Mackeyev, S. Phounsavath, M. A. Cheney, B. T. Cisneros, M. Shur, M. Gozin, P. J. McNally, L. J. Wilson, and S. A. Curley, J. Phys. Chem. C 116, 2438024389 (2012).
http://dx.doi.org/10.1021/jp309053z
47.
47. B. H. San, S. H. Moh, and K. K. Kim, Int. J. Hyperthermia 29, 99105 (2013).
http://dx.doi.org/10.3109/02656736.2012.760137
48.
48. P. D. Vedova, M. Ilieva, V. Zhurbenko, R. Mateiu, A. Faralli, M. Dufva, and O. Hansen, “ Gold nanoparticle-based sensors activated by external radio frequency fields,” Small 11, 248 (2015).
http://dx.doi.org/10.1002/smll.201401187
49.
49. A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, J. Appl. Phys. 108, 064901 (2010).
http://dx.doi.org/10.1063/1.3485601
50.
50. T. L. Kline, Y.-H. Xu, Y. Jing, and J.-P. Wang, J. Magn. Magn. Mater. 321, 15251528 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.02.079
51.
51. I. Marcos-Campos, L. Asín, T. E. Torres, C. Marquina, A. Tres, M. R. Ibarra, and G. F. Goya, Nanotechnology 22, 205101 (2011).
http://dx.doi.org/10.1088/0957-4484/22/20/205101
52.
52. V. S. Kalambur, E. K. Longmire, and J. C. Bischof, Langmuir 23, 1232912336 (2007).
http://dx.doi.org/10.1021/la701100r
53.
53. E. Lima, Jr., E. De Biasi, M. Vasquez Mansilla, M. E. Saleta, M. Granada, H. E. Troiani, F. B. Effenberger, L. M. Rossi, H. R. Rechenberg, and R. D. Zysler, J. Phys. D: Appl. Phys. 46, 045002 (2013).
http://dx.doi.org/10.1088/0022-3727/46/4/045002
54.
54. R. S. McCoy and S. Choi, ACS Nano 7(3), 26102616 (2013).
http://dx.doi.org/10.1021/nn306015c
55.
55. A. Wijaya, K. A. Brown, J. D. Alper, and K. Hamad-Schifferli, J. Magn. Magn. Mater. 309, 1519 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.04.014
56.
56. R. Ghosh, L. Pradhan, Y. Priyabala Devi, S. S. Meena, R. Tewari, A. Kumar, S. Sharma, N. S. Gajbhiye, R. K. Vatsa, B. N. Pandey, and R. S. Ningthoujam, J. Mater. Chem. 21, 1338813398 (2011).
http://dx.doi.org/10.1039/c1jm10092k
57.
57. I. Hilger, W. Andra, R. Hergt, R. Hiergeist, H. Schubert, and W. A. Kaiser, Radiology 218, 570575 (2001).
http://dx.doi.org/10.1148/radiology.218.2.r01fe19570
58.
58. D. H. Kim, D. E. Nikles, D. T. Johnson, and C. S. Brazel, J. Magn. Magn. Mater. 320, 23902396 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.05.023
59.
59. G. D. Bothun and M. R. Preiss, J. Colloid Interface Sci. 357(1), 7074 (2011).
http://dx.doi.org/10.1016/j.jcis.2011.01.089
60.
60. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Proc. Natl. Acad. Sci. U. S. A. 100(23), 1354913554 (2003).
http://dx.doi.org/10.1073/pnas.2232479100
61.
61. S. Hormeño, P. Gregorio-Godoy, J. Pérez-Juste, L. M. Liz-Marzán, B. H. Juárez, and J. R. Arias-Gonzalez, Small 10, 376384 (2014).
http://dx.doi.org/10.1002/smll.201301912
62.
62. A. Siems, S. A. L. Weber, J. Boneberg, and A. Plech, New J. Phys. 13, 043018 (2011).
http://dx.doi.org/10.1088/1367-2630/13/4/043018
63.
63. N. Kojic, E. M. Pritchard, H. Tao, M. A. Brenckle, J. P. Mondia, B. Panilaitis, F. Omenetto, and D. L. Kaplan, Adv. Funct. Mater. 22(18), 37933798 (2012).
http://dx.doi.org/10.1002/adfm.201200382
64.
64. N. N. Nedyalkova, S. E. Imamovaa, P. A. Atanasova, R. A. Toshkovab, E. G. Gardevab, L. S. Yossifovab, M. T. Alexandrovb, and M. Obarac, Appl. Surf. Sci. 257, 54565459 (2011).
http://dx.doi.org/10.1016/j.apsusc.2010.11.010
65.
65. X. Liu, H.-J. Chen, X. Chen, Y. Alfadhl, C. Parini, and D. Wen, J. Appl. Phys. 113, 074902 (2013).
http://dx.doi.org/10.1063/1.4791928
66.
66. V. P. Pattani and J. W. Tunnell, Lasers Surg. Med. 44(8), 675684 (2012).
http://dx.doi.org/10.1002/lsm.22072
67.
67. A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, Nano Lett. 11, 888892 (2011).
http://dx.doi.org/10.1021/nl104280c
68.
68. D. Wen, Int. J. Hyperthermia 25, 533541 (2009).
http://dx.doi.org/10.3109/02656730903061617
69.
69. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, J. Phys. D: Appl. Phys. 41, 185501 (2008).
http://dx.doi.org/10.1088/0022-3727/41/18/185501
70.
70. V. K. Pustovalov, Chem. Phys. 308, 103108 (2005).
http://dx.doi.org/10.1016/j.chemphys.2004.08.005
71.
71. J. H. Hodak, A. Henglein, and G. V. Hartland, J. Chem. Phys. 112, 5942 (2000).
http://dx.doi.org/10.1063/1.481167
72.
72. M. R. Arnfield, J. Tulip, M. Chetner, and M. S. McPhee, Med. Phys. 16(4), 602608 (1989).
http://dx.doi.org/10.1118/1.596361
73.
73. I. Hilger, R. Hergt, and W. A. Kaiser, IEE Proc. - Nanobiotechnol. 152, 3339 (2005).
http://dx.doi.org/10.1049/ip-nbt:20055018
74.
74. Q. A. Pankhurst1, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36, R167R181 (2003).
http://dx.doi.org/10.1088/0022-3727/36/13/201
75.
75. C. B. Collins, R. S. McCoy, B. J. Ackerson, G. J. Collins, and C. J. Ackerson, Nanoscale 6, 84598472 (2014).
http://dx.doi.org/10.1039/C4NR00464G
76.
76. G. W. Hanson and S. K. Patch, J. Appl. Phys. 106, 054309 (2009).
http://dx.doi.org/10.1063/1.3204653
77.
77. G. W. Hanson, R. C. Monreal, and S. P. Apell, J. Appl. Phys. 109, 124306 (2011).
http://dx.doi.org/10.1063/1.3600222
78.
78. E. Sassaroli, K. C. P. Li, and B. E. O'Neill, J. Phys. D: Appl. Phys. 45, 075303 (2012).
http://dx.doi.org/10.1088/0022-3727/45/7/075303
79.
79. J. A. Pearce and J. E. Cook, “ Heating mechanisms in gold nanoparticles at radio frequencies,” in 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts, USA, 30 August–3 September 2011.
80.
80. A. Mashal, B. Sitharaman, X. Li, and P. K. Avti, IEEE Trans. Biomed. Eng. 57(8), 18311834 (2010).
http://dx.doi.org/10.1109/TBME.2010.2042597
81.
81. D. Li, Y. S. Jung, H. K. Kim, J. Chen, D. A. Geller, M. V. Shuba, S. A. Maksimenko, S. Patch, E. Forati, and G. W. Hanson, IEEE Trans. Biomed. Eng. 59, 34683474 (2012).
http://dx.doi.org/10.1109/TBME.2012.2219049
82.
82. S. Ganguly, S. Sikdar, and S. Basu, Powder Technol. 196(3), 326330 (2009).
http://dx.doi.org/10.1016/j.powtec.2009.08.010
83.
83. W. A. Curtin, R. C. Spitzer, N. W. Aschcroft, and A. J. Sievers, Phys. Rev. Lett. 54, 1071 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1071
84.
84. B. P. Devaty and A. J. Sievers, Phys. Rev. B 41, 7421 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7421
85.
85. S. Campione, S. M. Adams, R. Ragan, and F. Capolino, Opt. Express 21(7), 79577973 (2013).
http://dx.doi.org/10.1364/OE.21.007957
86.
86. X. Liu, H.-J. Chen, X. Chen, Y. Alfadhl, J. Yu, and D. Wen, J. Appl. Phys. 115, 094903 (2014).
http://dx.doi.org/10.1063/1.4867615
87.
87. X. Liu, “ Exploration of electromagnetic waves with nanoscale materials,” Ph.D. thesis ( Queen Mary University of London, 2012).
88.
88. H. K. Kim, G. W. Hanson, and D. A. Geller, Science 340, 441442 (2013).
http://dx.doi.org/10.1126/science.1237303
89.
89. M. V. Shuba, G. Ya. Slepyan, S. A. Maksimenko, and G. W. Hanson, J. Appl. Phys. 108, 114302 (2010).
http://dx.doi.org/10.1063/1.3516480
90.
90. Z. Surowiak, J. Brodacki, and H. Zajosz, Rev. Sci. Instrum. 49, 13511354 (1978).
http://dx.doi.org/10.1063/1.1135583
91.
91. M. Wegener, Rev. Sci. Instrum. 79, 106103 (2008).
http://dx.doi.org/10.1063/1.2972169
92.
92. J. Wang, T. Yang, K. Wei, and Y. Yao, Appl. Phys. Lett. 102, 152907 (2013).
http://dx.doi.org/10.1063/1.4801997
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/1/10.1063/1.4915002
Loading
/content/aip/journal/apr2/2/1/10.1063/1.4915002
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/1/10.1063/1.4915002
2015-03-20
2016-12-09

Abstract

In recent years, the application of nanomaterials to biological and biomedicine areas has attracted intensive interest. One of the hot topics is the nanomaterial mediated radiofrequency (RF) hyperthermia or ablation, i.e., using RF fields/waves to heat tumor tissues treated with nanomaterials to destroy cancerous cells while minimizing the side-heating effect. However, there are currently many contradictive results reported concerning the heating effect of nanomaterials under a RF field. This paper provided a comprehensive review to nanomaterial mediated RF ablation from both experimental and theoretical aspects. Three heating mechanisms were discussed, i.e., laser heating, magnetic field heating, and electric field heating in RF spectrum, with the focus on the last one. The results showed that while diluted pure metallic nanoparticles could be heated significantly by a laser through the surface plasmon resonance, they cannot be easily heated by a RF electric field. Further studies are proposed focusing on nanoparticle structure and morphology, electromagnetic frequency and localized heating effect to pave the way for future development.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/1/1.4915002.html;jsessionid=1Bjoeg2VFC4YlMS8tfqQxxIg.x-aip-live-02?itemId=/content/aip/journal/apr2/2/1/10.1063/1.4915002&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/1/10.1063/1.4915002&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/1/10.1063/1.4915002'
Right1,Right2,Right3,