Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/2/10.1063/1.4916561
1.
1. M. Wolf, Proc. IRE 48, 1246 (1960).
http://dx.doi.org/10.1109/JRPROC.1960.287647
2.
2. S. Kettemann and J. F. Guillemoles, in Proceedings of the 13th European Photovoltaic Solar Energy Conference (1995), pp. 119121.
3.
3. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.5014
4.
4. M. J. Keevers and M. A. Green, J. Appl. Phys. 75, 4022 (1994).
http://dx.doi.org/10.1063/1.356025
5.
5. M. A. Green, Third Generation Photovoltaics: Advanced Solar Electricity Generation ( Springer Berlin Heidelberg, 2003).
6.
6. A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006).
http://dx.doi.org/10.1016/j.physb.2006.03.006
7.
7. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
8.
8. B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) ( IEEE, 2011), pp. 000004000008.
http://dx.doi.org/10.1109/PVSC.2011.6185831
9.
9. L. C. Hirst and N. J. Ekins-Daukes, Prog. Photovoltaics: Res. Appl. 19, 286 (2011).
http://dx.doi.org/10.1002/pip.1024
10.
10. P. Würfel, Sol. Energy Mater. Sol. Cells 38, 23 (1995).
http://dx.doi.org/10.1016/0927-0248(94)00211-8
11.
11. S. P. Bremner, M. Y. Levy, and C. B. Honsberg, Appl. Phys. Lett. 92, 171110 (2008).
http://dx.doi.org/10.1063/1.2907493
12.
12. M. Yoshida, N. J. Ekins-Daukes, D. J. Farrell, and C. C. Phillips, Appl. Phys. Lett. 100, 263902 (2012).
http://dx.doi.org/10.1063/1.4731277
13.
13. T. Markvart, J. Opt. A: Pure Appl. Opt. 10, 015008 (2008).
http://dx.doi.org/10.1088/1464-4258/10/01/015008
14.
14. T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 4117 (2002).
http://dx.doi.org/10.1063/1.1505677
15.
15. N. J. Ekins-Daukes and T. W. Schmidt, Appl. Phys. Lett. 93, 063507 (2008).
http://dx.doi.org/10.1063/1.2970157
16.
16. P. Olsson, C. Domain, and J.-F. Guillemoles, Phys. Rev. Lett. 102, 227204 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.227204
17.
17. P. Würfel, J. Phys. C: Solid State Phys. 15, 3967 (1982).
http://dx.doi.org/10.1088/0022-3719/15/18/012
18.
18. A. V. Semichaevsky and H. T. Johnson, Sol. Energy Mater. Sol. Cells 108, 189 (2013).
http://dx.doi.org/10.1016/j.solmat.2012.09.030
19.
19. A. Martí, L. Cuadra, and A. Luque, IEEE Trans. Electron Devices 49, 1632 (2002).
http://dx.doi.org/10.1109/TED.2002.802642
20.
20. A. S. Lin and J. D. Phillips, IEEE Trans. Electron Devices 56, 3168 (2009).
http://dx.doi.org/10.1109/TED.2009.2032741
21.
21. K. Yoshida, Y. Okada, and N. Sano, Appl. Phys. Lett. 97, 133503 (2010).
http://dx.doi.org/10.1063/1.3488815
22.
22. K. Yoshida, Y. Okada, and N. Sano, J. Appl. Phys. 112, 084510 (2012).
http://dx.doi.org/10.1063/1.4759134
23.
23. R. Strandberg and T. W. Reenaas, Prog. Photovoltaics: Res. Appl. 19, 21 (2011).
http://dx.doi.org/10.1002/pip.983
24.
24. I. Tobías, A. Luque, and A. Martí, Semicond. Sci. Technol. 26, 014031 (2011).
http://dx.doi.org/10.1088/0268-1242/26/1/014031
25.
25. A. S. Brown, M. A. Green, and R. P. Corkish, Physica E 14, 121 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00375-2
26.
26. T. Nozawa and Y. Arakawa, J. Appl. Phys. 113, 243102 (2013).
http://dx.doi.org/10.1063/1.4811681
27.
27. R. Strandberg and T. W. Reenaas, J. Appl. Phys. 105, 124512 (2009).
http://dx.doi.org/10.1063/1.3153141
28.
28. J. Nelson, The Physics of Solar Cells ( Imperial College Press, 2003).
29.
29. A. Martí, J. L. Balenzategui, and R. F. Reyna, J. Appl. Phys. 82, 4067 (1997).
http://dx.doi.org/10.1063/1.365717
30.
30. E. F. Schubert, Light-Emitting Diodes, 2nd ed. ( Cambridge University Press, 2006).
31.
31. T. Inoue, S. Kido, K. Sasayama, T. Kita, and O. Wada, J. Appl. Phys. 108, 063524 (2010).
http://dx.doi.org/10.1063/1.3483252
32.
32. A. S. Lin, W. Wang, and J. D. Phillips, J. Appl. Phys. 105, 064512 (2009).
http://dx.doi.org/10.1063/1.3093962
33.
33. D. Sato, J. Ota, K. Nishikawa, Y. Takeda, N. Miyashita, and Y. Okada, J. Appl. Phys. 112, 094305 (2012).
http://dx.doi.org/10.1063/1.4764030
34.
34. S. A. Blokhin, A. V. Sakharov, A. M. Nadtochy, A. S. Pauysov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, N. A. Kaluzhniy, and M. Z. Shvarts, Semiconductors 43, 514 (2009).
http://dx.doi.org/10.1134/S1063782609040204
35.
35. D. G. Sellers, S. Polly, S. M. Hubbard, and M. F. Doty, Appl. Phys. Lett. 104, 223903 (2014).
http://dx.doi.org/10.1063/1.4881181
36.
36. S. Asahi, H. Teranishi, N. Kasamatsu, T. Kada, T. Kaizu, and T. Kita, J. Appl. Phys. 116, 063510 (2014).
http://dx.doi.org/10.1063/1.4892826
37.
37. A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, Thin Solid Films 516, 6716 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.064
38.
38. Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, J. Phys. Chem. Lett. 1, 1795 (2010).
http://dx.doi.org/10.1021/jz100566u
39.
39. R. B. Piper, M. Yoshida, D. J. Farrell, T. Khoury, M. J. Crossley, T. W. Schmidt, S. A. Haque, and N. J. Ekins-Daukes, RSC Adv. 4, 8059 (2014).
http://dx.doi.org/10.1039/c3ra46953k
40.
40.Dilute III-V Nitride Semiconductors and Materials Systems, edited by A. Erol ( Springer, Berlin, Heidelberg, 2008).
41.
41. S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, Appl. Phys. Lett. 74, 729 (1999).
http://dx.doi.org/10.1063/1.123105
42.
42. M. Wiemer, V. Sabnis, and H. Yuen, Proc. SPIE 8108, 810804 (2011).
http://dx.doi.org/10.1117/12.897769
43.
43. M. Cardona, Phys. Rev. 129, 69 (1963).
http://dx.doi.org/10.1103/PhysRev.129.69
44.
44. M. Kondow, K. Uomi, K. Hosomi, and T. Mozume, Jpn. J. Appl. Phys., Part 2 33, L1056 (1994).
http://dx.doi.org/10.1143/JJAP.33.L1056
45.
45. H. J. Lee, L. Y. Juravel, J. C. Woolley, and A. J. S. Thorpe, Phys. Rev. B 21, 659 (1980).
http://dx.doi.org/10.1103/PhysRevB.21.659
46.
46. J. Neugebauer and C. G. V. de Walle, Phys. Rev. B 51, 10568 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.10568
47.
47. L. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 54, 17568 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17568
48.
48. L. Bellaiche, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 70, 3558 (1997).
http://dx.doi.org/10.1063/1.119232
49.
49. W. G. Bi and C. W. Tu, Appl. Phys. Lett. 70, 1608 (1997).
http://dx.doi.org/10.1063/1.118630
50.
50. J. D. Perkins, A. Mascarenhas, Y. Zhang, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 3312 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3312
51.
51. W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, J. Appl. Phys. 86, 2349 (1999).
http://dx.doi.org/10.1063/1.371148
52.
52. K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, Appl. Phys. Lett. 88, 092110 (2006).
http://dx.doi.org/10.1063/1.2181627
53.
53. K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Phys. Rev. B 75, 045203 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045203
54.
54. K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Phys. Rev. Lett. 91, 246403 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.246403
55.
55. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, A. K. Ramdas, C. H. Su, I. K. Sou, R. C. C. Perera, and J. D. Denlinger, Phys. Rev. B 67, 035207 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.035207
56.
56. K. Alberi, J. Blacksberg, L. D. Bell, S. Nikzad, K. M. Yu, O. D. Dubon, and W. Walukiewicz, Phys. Rev. B 77, 073202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.073202
57.
57. W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, M. J. Seong, H. Alawadhi, and A. K. Ramdas, Phys. Rev. Lett. 85, 1552 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1552
58.
58. W. Shan, K. M. Yu, W. Walukiewicz, J. W. Ager, E. E. Haller, and M. C. Ridgway, Appl. Phys. Lett. 75, 1410 (1999).
http://dx.doi.org/10.1063/1.124951
59.
59. K. Alberi, K. M. Yu, P. R. Stone, O. D. Dubon, W. Walukiewicz, T. Wojtowicz, X. Liu, and J. K. Furdyna, Phys. Rev. B 78, 075201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.075201
60.
60. J. Wu, W. Walukiewicz, and E. E. Haller, Phys. Rev. B 65, 233210 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.233210
61.
61. P. W. Anderson, Phys. Rev. 124, 41 (1961).
http://dx.doi.org/10.1103/PhysRev.124.41
62.
62. W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, and S. R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1221
63.
63. W. Shan, K. M. Yu, W. Walukiewicz, J. Wu, J. W. Ager, and E. E. Haller, J. Phys.: Condens. Matter 16, S3355 (2004).
http://dx.doi.org/10.1088/0953-8984/16/31/024
64.
64. T. Tanaka, K. M. Yu, A. X. Levander, O. D. Dubon, L. A. Reichertz, N. Lopez, M. Nishio, and W. Walukiewicz, Jpn. J. Appl. Phys., Part 1 50, 082304 (2011).
http://dx.doi.org/10.1143/JJAP.50.082304
65.
65. T. Tanaka, S. Kusaba, T. Mochinaga, K. Saito, Q. Guo, M. Nishio, K. M. Yu, and W. Walukiewicz, Appl. Phys. Lett. 100, 011905 (2012).
http://dx.doi.org/10.1063/1.3674310
66.
66. W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, J. Wu, E. E. Haller, Y. Nabetani, T. Mukawa, Y. Ito, and T. Matsumoto, Appl. Phys. Lett. 83, 299 (2003).
http://dx.doi.org/10.1063/1.1592885
67.
67. T. Mattila, S.-H. Wei, and A. Zunger, Phys. Rev. B 60, R11245 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R11245
68.
68. Y. Zhang, A. Mascarenhas, H. P. Xin, and C. W. Tu, Phys. Rev. B 63, 161303 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.161303
69.
69. P. R. C. Kent, L. Bellaiche, and A. Zunger, Semicond. Sci. Technol. 17, 851 (2002).
http://dx.doi.org/10.1088/0268-1242/17/8/314
70.
70. P. J. Klar, H. Grüning, W. Heimbrodt, G. Weiser, J. Koch, K. Volz, W. Stolz, S. W. Koch, S. Tomić, S. A. Choulis, T. J. C. Hosea, E. P. O'Reilly, M. Hofmann, J. Hader, and J. V. Moloney, Semicond. Sci. Technol. 17, 830 (2002).
http://dx.doi.org/10.1088/0268-1242/17/8/312
71.
71. M. F. Pereira, Jr. and S. Tomić, Appl. Phys. Lett. 98, 061101 (2011).
http://dx.doi.org/10.1063/1.3552204
72.
72. B. Gu, N. H. Kwong, and R. Binder, Phys. Rev. B 87, 125301 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.125301
73.
73. B. Lee and L.-W. Wang, Appl. Phys. Lett. 96, 071903 (2010).
http://dx.doi.org/10.1063/1.3298553
74.
74. C. Tablero, A. Martí, and A. Luque, Appl. Phys. Lett. 96, 121104 (2010).
http://dx.doi.org/10.1063/1.3370356
75.
75. I. H. Ho and G. B. Stringfellow, MRS Proceedings Material Research Society 449, 871 (1996).
http://dx.doi.org/10.1557/PROC-449-871
76.
76. M. Takahashi, A. Moto, S. Tanaka, T. Tanabe, S. Takagishi, K. Karatani, M. Nakayama, K. Matsuda, and T. Saiki, J. Cryst. Growth 221, 461 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00741-7
77.
77. F. Dimroth, A. Howard, J. K. Shurtleff, and G. B. Stringfellow, J. Appl. Phys. 91, 3687 (2002).
http://dx.doi.org/10.1063/1.1450053
78.
78. J. S. Harris, Jr., J. Cryst. Growth 278, 3 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.12.050
79.
79. N. Miyashita, N. Ahsan, and Y. Okada, Sol. Energy Mater. Sol. Cells 111, 127 (2013).
http://dx.doi.org/10.1016/j.solmat.2012.12.036
80.
80. Y. Jin, R. M. Jock, H. Cheng, Y. He, A. M. Mintarov, Y. Wang, C. Kurdak, J. L. Merz, and R. S. Goldman, Appl. Phys. Lett. 95, 062109 (2009).
http://dx.doi.org/10.1063/1.3187915
81.
81. P. Krispin, V. Gambin, J. S. Harris, and K. H. Ploog, J. Appl. Phys. 93, 6095 (2003).
http://dx.doi.org/10.1063/1.1568523
82.
82. S. B. Zhang and S.-H. Wei, Phys. Rev. Lett. 86, 1789 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1789
83.
83. N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, Phys. Rev. Lett. 106, 028701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.028701
84.
84. A. Luque and A. Martí, Nat. Photonics 5, 137 (2011).
http://dx.doi.org/10.1038/nphoton.2011.22
85.
85. N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, Appl. Phys. Lett. 100, 172111 (2012).
http://dx.doi.org/10.1063/1.4709405
86.
86. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00825-1
87.
87. R. Kudrawiec, G. Sȩk, J. Misiewicz, F. Ishikawa, A. Trampert, and K. H. Ploog, Appl. Phys. Lett. 94, 011907 (2009).
http://dx.doi.org/10.1063/1.3055605
88.
88. A. Luque and A. Martí, Prog. Photovoltaics: Res. Appl. 9, 73 (2001).
http://dx.doi.org/10.1002/pip.354
89.
89. L. Cuadra, A. Martí, and A. Luque, Thin Solid Films 451–452, 593 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.047
90.
90. N. Ahsan, N. Miyashita, K. M. Yu, W. Walukiewicz, and Y. Okada, “ Electron barrier engineering in a thin-film intermediate band solar cell,” IEEE J. Photovoltaics (published online).
http://dx.doi.org/10.1109/JPHOTOV.2015.2412451
91.
91. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).
http://dx.doi.org/10.1063/1.2734507
92.
92. H. Fujii, K. Watanabe, M. Sugiyama, and Y. Nakano, Jpn. J. Appl. Phys., Part 1 51, 10ND04 (2012).
http://dx.doi.org/10.7567/JJAP.51.10ND04
93.
93. N. Miyashita, N. Ahsan, and Y. Okada, “Generation and collection of photo-carriers in dilute nitride GaInNAsSb solar cells,” Prog. Photovoltaics: Res. Appl. (submitted).
94.
94. M. M. Islam, N. Miyashita, N. Ahsan, and Y. Okada, Appl. Phys. Lett. 102, 074104 (2013).
http://dx.doi.org/10.1063/1.4793430
95.
95. N. Ahsan, N. Miyashita, M. M. Islam, K. M. Yu, W. Walukiewicz, and Y. Okada, IEEE J. Photovoltaics 3, 730 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2012.2228296
96.
96. M. Sydor, N. Jahren, W. C. Mitchel, W. V. Lampert, T. W. Haas, M. Y. Yen, S. M. Mudare, and D. H. Tomich, J. Appl. Phys. 67, 7423 (1990).
http://dx.doi.org/10.1063/1.344532
97.
97. W. Wang, A. S. Lin, and J. D. Phillips, Appl. Phys. Lett. 95, 011103 (2009).
http://dx.doi.org/10.1063/1.3166863
98.
98. T. Tanaka, M. Miyabara, Y. Nagao, K. Saito, Q. Guo, M. Nishio, K. M. Yu, and W. Walukiewicz, IEEE J. Photovoltaics 4, 196 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2013.2282738
99.
99. T. Tanaka, M. Miyabara, Y. Nagao, K. Saito, Q. Guo, M. Nishio, K. M. Yu, and W. Walukiewicz, Appl. Phys. Lett. 102, 052111 (2013).
http://dx.doi.org/10.1063/1.4790643
100.
100. J. Phillips, A. Teran, C. Chen, E. Antolín, I. Ramiro, E. López, E. Hernández, I. Artacho, C. Tablero, A. Martí, and A. Luque, in Proceedings of the 39th IEEE Photovoltaic Specialists Conference (PVSC) (2013), p. 1640.
http://dx.doi.org/10.1109/PVSC.2013.6744459
101.
101. Y. J. Kuang, K. M. Yu, R. Kudrawiec, A. V. Luce, M. Ting, W. Walukiewicz, and C. W. Tu, Appl. Phys. Lett. 102, 112105 (2013).
http://dx.doi.org/10.1063/1.4795782
102.
102. R. Kudrawiec, A. V. Luce, M. Gladysiewicz, M. Ting, Y. J. Kuang, C. W. Tu, O. D. Dubon, K. M. Yu, and W. Walukiewicz, Phys. Rev. Appl. 1, 034007 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.1.034007
103.
103. A. J. Nozik, Physica E 14, 115 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
104.
104. A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L. Cuadra, and A. Luque, Thin Solid Films 511–512, 638 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.122
105.
105. A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, and P. Díaz, J. Appl. Phys. 99, 094503 (2006).
http://dx.doi.org/10.1063/1.2193063
106.
106. A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, Appl. Phys. Lett. 90, 233510 (2007).
http://dx.doi.org/10.1063/1.2747195
107.
107. R. B. Laghumavarapu, M. El-Emawy, N. Nuntawong, A. Moscho, L. F. Lester, and D. L. Huffaker, Appl. Phys. Lett. 91, 243115 (2007).
http://dx.doi.org/10.1063/1.2816904
108.
108. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, Appl. Phys. Lett. 92, 123512 (2008).
http://dx.doi.org/10.1063/1.2903699
109.
109. R. Oshima, A. Takata, and Y. Okada, Appl. Phys. Lett. 93, 083111 (2008).
http://dx.doi.org/10.1063/1.2973398
110.
110. D. Alonso-Álvarez, A. G. Taboada, J. M. Ripalda, B. Alén, Y. González, L. González, J. M. García, F. Briones, A. Martí, A. Luque, A. M. Sánchez, and S. I. Molina, Appl. Phys. Lett. 93, 123114 (2008).
http://dx.doi.org/10.1063/1.2978243
111.
111. V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, Phys. Rev. B 78, 205321 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.205321
112.
112. Y. Okada, R. Oshima, and A. Takata, J. Appl. Phys. 106, 024306 (2009).
http://dx.doi.org/10.1063/1.3176903
113.
113. R. Oshima, A. Takata, Y. Shoji, K. Akahane, and Y. Okada, Physica E 42, 2757 (2010).
http://dx.doi.org/10.1016/j.physe.2009.12.036
114.
114. S. M. Hubbard, C. Plourde, Z. Bittner, C. G. Bailey, M. Harris, T. Bald, M. Bennett, D. V. Forbes, and R. Raffaelle, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), pp. 001217001222.
http://dx.doi.org/10.1109/PVSC.2010.5614053
115.
115. D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 061913 (2010).
http://dx.doi.org/10.1063/1.3313938
116.
116. D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010).
http://dx.doi.org/10.1063/1.3309411
117.
117. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 96, 203507 (2010).
http://dx.doi.org/10.1063/1.3427392
118.
118. E. Antolín, A. Martí, C. D. Farmer, P. G. Linares, E. Hernández, A. M. Sánchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, J. Appl. Phys. 108, 064513 (2010).
http://dx.doi.org/10.1063/1.3468520
119.
119. K. A. Sablon, J. W. Little, K. A. Olver, Z. M. Wang, V. G. Dorogan, Y. I. Mazur, G. J. Salamo, and F. J. Towner, J. Appl. Phys. 108, 074305 (2010).
http://dx.doi.org/10.1063/1.3486014
120.
120. G. Jolley, H. F. Lu, L. Fu, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 97, 123505 (2010).
http://dx.doi.org/10.1063/1.3492836
121.
121. V. M. Lantratov, S. A. Mintairov, S. A. Blokhin, N. A. Kalyuzhnyy, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, A. S. Pauysov, A. V. Sakharov, and M. Z. Shvarts, Adv. Sci. Technol. 74, 231 (2010).
http://dx.doi.org/10.4028/www.scientific.net/AST.74.231
122.
122. T. Sugaya, T. Amano, M. Mori, S. Niki, and M. Kondo, Jpn. J. Appl. Phys., Part 1 49, 030211 (2010).
http://dx.doi.org/10.1143/JJAP.49.030211
123.
123. T. Sugaya, T. Amano, M. Mori, and S. Niki, J. Vac. Sci. Technol., B 28, C3C4 (2010).
http://dx.doi.org/10.1116/1.3289124
124.
124. Y. Okada, T. Morioka, K. Yoshida, R. Oshima, Y. Shoji, T. Inoue, and T. Kita, J. Appl. Phys. 109, 024301 (2011).
http://dx.doi.org/10.1063/1.3533423
125.
125. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, Appl. Phys. Lett. 98, 163105 (2011).
http://dx.doi.org/10.1063/1.3580765
126.
126. K. Y. Chuang, T. E. Tzeng, Y. C. Liu, K. D. Tzeng, and T. S. Lay, J. Cryst. Growth 323, 508 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.01.038
127.
127. T. Sugaya, O. Numakami, R. Oshima, S. Furue, H. Komaki, T. Amano, K. Matsubara, Y. Okano, and S. Niki, Energy Environ. Sci. 5, 6233 (2012).
http://dx.doi.org/10.1039/c2ee01930b
128.
128. Y. Shoji, K. Akimoto, and Y. Okada, in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC) ( IEEE, 2012), Vol. 2, pp. 14.
http://dx.doi.org/10.1109/PVSC-Vol2.2012.6656699
129.
129. C. G. Bailey, D. V. Forbes, S. J. Polly, Z. S. Bittner, Y. Dai, C. Mackos, R. P. Raffaelle, and S. M. Hubbard, IEEE J. Photovoltaics 2, 269 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2012.2189047
130.
130. K. Tanabe, K. Watanabe, and Y. Arakawa, Appl. Phys. Lett. 100, 192102 (2012).
http://dx.doi.org/10.1063/1.4712597
131.
131. K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, Appl. Phys. Lett. 100, 193905 (2012).
http://dx.doi.org/10.1063/1.4714767
132.
132. W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, Sol. Energy Mater. Sol. Cells 105, 237 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.06.023
133.
133. P. J. Carrington, M. C. Wagener, J. R. Botha, A. M. Sanchez, and A. Krier, Appl. Phys. Lett. 101, 231101 (2012).
http://dx.doi.org/10.1063/1.4768942
134.
134. P. J. Carrington, A. S. Mahajumi, M. C. Wagener, J. R. Botha, Q. Zhuang, and A. Krier, Physica B 407, 1493 (2012).
http://dx.doi.org/10.1016/j.physb.2011.09.069
135.
135. Y. Eguchi, M. Shiokawa, K. Sakamoto, and K. Yamaguchi, in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC) ( IEEE, 2012), pp. 000045000047.
http://dx.doi.org/10.1109/PVSC.2012.6317565
136.
136. M. Shiokawa, E. Saputra, K. Sakamoto, and K. Yamaguchi, in Proceedings of the 39th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 03110313.
http://dx.doi.org/10.1109/PVSC.2013.6744155
137.
137. Y. Shoji, K. Akimoto, and Y. Okada, J. Phys. D: Appl. Phys. 46, 024002 (2013).
http://dx.doi.org/10.1088/0022-3727/46/2/024002
138.
138. F. K. Tutu, J. Wu, P. Lam, M. Tang, N. Miyashita, Y. Okada, J. Wilson, R. Allison, and H. Liu, Appl. Phys. Lett. 103, 043901 (2013).
http://dx.doi.org/10.1063/1.4816503
139.
139. S. Hatch, J. Wu, K. Sablon, P. Lam, M. Tang, Q. Jiang, and H. Liu, Opt. Express 22, A679 (2014).
http://dx.doi.org/10.1364/OE.22.00A679
140.
140. J. Hwang, K. Lee, A. Teran, S. Forrest, J. D. Phillips, A. J. Martin, and J. Millunchick, Phys. Rev. Appl. 1, 051003 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.1.051003
141.
141. Y. Okada, K. Yoshida, Y. Shoji, and T. Sogabe, IEICE Electron. Express 10, 20132007 (2013).
http://dx.doi.org/10.1587/elex.10.20132007
142.
142. S. Tomić, T. S. Jones, and N. M. Harrison, Appl. Phys. Lett. 93, 263105 (2008).
http://dx.doi.org/10.1063/1.3058716
143.
143. R. Heitz, T. R. Ramachandran, A. Kalburge, Q. Xie, I. Mukhametzhanov, P. Chen, and A. Madhukar, Phys. Rev. Lett. 78, 4071 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4071
144.
144. K. Akahane, T. Kawamura, K. Okino, H. Koyama, S. Lan, Y. Okada, M. Kawabe, and M. Tosa, Appl. Phys. Lett. 73, 3411 (1998).
http://dx.doi.org/10.1063/1.122781
145.
145. S.-K. Park, J. Tatebayashi, and Y. Arakawa, Appl. Phys. Lett. 84, 1877 (2004).
http://dx.doi.org/10.1063/1.1687465
146.
146. K. Yamaguchi and T. Kanto, J. Cryst. Growth 275, e2269 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.11.363
147.
147. N. Kakuda, T. Yoshida, and K. Yamaguchi, Appl. Surf. Sci. 254, 8050 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.03.017
148.
148. E. Saputra, J. Ohta, N. Kakuda, and K. Yamaguchi, Appl. Phys. Express 5, 125502 (2012).
http://dx.doi.org/10.1143/APEX.5.125502
149.
149. Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Cryst. Growth 201–202, 1131 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01539-5
150.
150. T. K. Woodward, T. Sizer, D. L. Sivco, and A. Y. Cho, Appl. Phys. Lett. 57, 548 (1990).
http://dx.doi.org/10.1063/1.103643
151.
151. N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, Appl. Phys. Lett. 75, 4195 (1999).
http://dx.doi.org/10.1063/1.125580
152.
152. K. Akahane, N. Yamamoto, and T. Kawanishi, Phys. Status Solidi A 208, 425 (2011).
http://dx.doi.org/10.1002/pssa.201000432
153.
153. C. G. Bailey, S. M. Hubbard, D. V. Forbes, and R. P. Raffaelle, Appl. Phys. Lett. 95, 203110 (2009).
http://dx.doi.org/10.1063/1.3264967
154.
154. C. G. Bailey, S. J. Polly, J. Okvath, D. V. Forbes, C. D. Cress, S. M. Hubbard, and R. P. Raffaelle, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), pp. 000364000369.
http://dx.doi.org/10.1109/PVSC.2010.5616875
155.
155. M. Y. Levy and C. Honsberg, IEEE Trans. Electron Devices 55, 706 (2008).
http://dx.doi.org/10.1109/TED.2007.914829
156.
156. S. Tomić, Appl. Phys. Lett. 103, 072112 (2013).
http://dx.doi.org/10.1063/1.4818762
157.
157. R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kop'ev, and Z. I. Alferov, Phys. Rev. B 56, 10435 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.10435
158.
158. Y. D. Jang, H. Lee, D. Lee, J. S. Kim, J. Y. Leem, and S. K. Noh, J. Appl. Phys. 99, 096101 (2006).
http://dx.doi.org/10.1063/1.2192146
159.
159. R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. L. Roux, and L. Largeau, J. Appl. Phys. 89, 5473 (2001).
http://dx.doi.org/10.1063/1.1365061
160.
160. J.-B. Wang, S. R. Johnson, S. A. Chaparro, D. Ding, Y. Cao, Y. G. Sadofyev, Y.-H. Zhang, J. A. Gupta, and C. Z. Guo, Phys. Rev. B 70, 195339 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195339
161.
161. W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, Appl. Phys. Lett. 93, 033107 (2008).
http://dx.doi.org/10.1063/1.2964191
162.
162. Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J. Appl. Phys. 92, 5810 (2002).
http://dx.doi.org/10.1063/1.1513200
163.
163. K. Nishikawa, Y. Takeda, K. Yamanaka, T. Motohiro, D. Sato, J. Ota, N. Miyashita, and Y. Okada, J. Appl. Phys. 111, 044325 (2012).
http://dx.doi.org/10.1063/1.3688864
164.
164. K. Nishikawa, Y. Takeda, T. Motohiro, D. Sato, J. Ota, N. Miyashita, and Y. Okada, Appl. Phys. Lett. 100, 113105 (2012).
http://dx.doi.org/10.1063/1.3694284
165.
165. O. B. Shchekin and D. G. Deppe, Appl. Phys. Lett. 80, 2758 (2002).
http://dx.doi.org/10.1063/1.1469212
166.
166. O. Wada, A. Suzuki, Y. Ogawa, and K. Tajima, in Femtosecond Technology, edited by T. Kamiya, F. Saito, O. Wada, and H. Yajima ( Springer, Berlin, Heidelberg, 1999), p. 59.
167.
167. R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
http://dx.doi.org/10.1063/1.90457
168.
168. J. Phillips, K. Kamath, X. Zhou, N. Chervela, and P. Bhattacharya, Appl. Phys. Lett. 71, 2079 (1997).
http://dx.doi.org/10.1063/1.119347
169.
169. J. S. Kim, P. W. Yu, J.-Y. Leem, J. I. Lee, S. K. Noh, J. S. Kim, G. H. Kim, S.-K. Kang, S. I. Ban, S. G. Kim, Y. D. Jang, U. H. Lee, J. S. Yim, and D. Lee, J. Cryst. Growth 234, 105 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)01665-7
170.
170. T. Kita, R. Hasagawa, and T. Inoue, J. Appl. Phys. 110, 103511 (2011).
http://dx.doi.org/10.1063/1.3660794
171.
171. A. Martí, L. Cuadra, and A. Luque, IEEE Trans. Electron Devices 48, 2394 (2001).
http://dx.doi.org/10.1109/16.954482
172.
172. A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, Phys. Rev. Lett. 97, 247701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.247701
173.
173. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Nano Lett. 11, 2311 (2011).
http://dx.doi.org/10.1021/nl200543v
174.
174. X. Yang, K. Wang, Y. Gu, H. Ni, X. Wang, T. Yang, and Z. Wang, Sol. Energy Mater. Sol. Cells 113, 144 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.02.005
175.
175. P. Lam, S. Hatch, J. Wu, M. Tang, V. G. Dorogan, Y. I. Mazur, G. J. Salamob, I. Ramiro, A. Seeds, and H. Liu, Nano Energy 6, 159 (2014).
http://dx.doi.org/10.1016/j.nanoen.2014.03.016
176.
176. A. Luque, A. Martí, and C. Stanley, Nat. Photonics 6, 146 (2012).
http://dx.doi.org/10.1038/nphoton.2012.1
177.
177. K. Sakamoto, Y. Kondo, K. Uchida, and K. Yamaguchi, J. Appl. Phys. 112, 124515 (2012).
http://dx.doi.org/10.1063/1.4771925
178.
178. I. Tobías, A. Luque, E. Antolín, P. García-Linares, I. Ramiro, E. Hernández, and A. Martí, J. Appl. Phys. 112, 124518 (2012).
http://dx.doi.org/10.1063/1.4770464
179.
179. S. M. Hubbard, C. G. Bailey, R. Aguinaldo, S. Polly, D. V. Forbes, and R. P. Raffaelle, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2009), pp. 000090000095.
http://dx.doi.org/10.1109/PVSC.2009.5411726
180.
180. M. Yang and M. Yamaguchi, Sol. Energy Mater. Sol. Cells 60, 19 (2000).
http://dx.doi.org/10.1016/S0927-0248(99)00055-0
181.
181. A. Takata, R. Oshima, Y. Shoji, K. Akahane, and Y. Okada, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010), pp. 001877001880.
http://dx.doi.org/10.1109/PVSC.2010.5616186
182.
182. P. G. Linares, A. Martí, E. Antolín, C. D. Farmer, I. Ramiro, C. R. Stanley, and A. Luque, Sol. Energy Mater. Sol. Cells 98, 240 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.11.015
183.
183. T. Sogabe, Y. Shoji, M. Ohba, K. Yoshida, R. Tamaki, H.-F. Hong, C.-H. Wu, C.-T. Kuo, S. Tomić, and Y. Okada, Sci. Rep. 4, 4792 (2014).
http://dx.doi.org/10.1038/srep04792
184.
184. Y. Harada, T. Maeda, and T. Kita, J. Appl. Phys. 113, 223511 (2013).
http://dx.doi.org/10.1063/1.4810859
185.
185. D. Birkedal, J. Bloch, J. Shah, L. N. Pfeiffer, and K. West, Appl. Phys. Lett. 77, 2201 (2000).
http://dx.doi.org/10.1063/1.1315347
186.
186. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
187.
187. J.-M. Raulot, C. Domain, and J.-F. Guillemoles, Phys. Rev. B 71, 035203 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035203
188.
188. K. Emery, Handbook of Photovoltaic Science and Engineering, 2nd ed., edited by A. H. Luque and S. Hegedus ( John Wiley & Sons, New York, 2010).
189.
189. E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115 (2009).
http://dx.doi.org/10.1063/1.3077202
190.
190. K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, Phys. Rev. B 82, 165201 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165201
191.
191. J. J. Krich, B. I. Halperin, and A. Aspuru-Guzik, J. Appl. Phys. 112, 013707 (2012).
http://dx.doi.org/10.1063/1.4732085
192.
192. L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
193.
193. M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys. Rev. Lett. 79, 2089 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2089
194.
194. T. C. Schulthess, W. M. Temmerman, Z. Szotek, W. H. Butler, and G. M. Stocks, Nat. Mater. 4, 838 (2005).
http://dx.doi.org/10.1038/nmat1509
195.
195. T. Dietl, F. Matsukura, and H. Ohno, Phys. Rev. B 66, 033203 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.033203
196.
196. P. Mahadevan and A. Zunger, Phys. Rev. B 69, 115211 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115211
197.
197. P. Wahnón and C. Tablero, Phys. Rev. B 65, 165115 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165115
198.
198. C. Tablero, Sol. Energy Mater. Sol. Cells 90, 588 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.04.036
199.
199. Y. Seminóvski, P. Palacios, and P. Wahnón, Thin Solid Films 519, 7517 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.136
200.
200. C. Tablero, A. J. García, J. J. Fernández, P. Palacios, and P. Wahnón, Comput. Mater. Sci. 27, 58 (2003).
http://dx.doi.org/10.1016/S0927-0256(02)00425-1
201.
201. I. Aguilera, P. Palacios, and P. Wahnón, Thin Solid Films 516, 7055 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.085
202.
202. I. Aguilera, P. Palacios, K. Sánchez, and P. Wahnón, Phys. Rev. B 81, 075206 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075206
203.
203. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).
http://dx.doi.org/10.1038/45502
204.
204. A. Janotti and S.-H. Wei, Appl. Phys. Lett. 81, 3957 (2002).
http://dx.doi.org/10.1063/1.1521510
205.
205. J.-F. Guillemoles, J. M. Raulot, and C. Domain, in 17th Workshop on Quantum Solar Energy Conversion, European Society for Quantum Solar Energy Conversion, 2005.
206.
206. J.-F. Guillemoles, P. Olsson, and C. Domain, in 19th Workshop on Quantum Solar Energy Conversion, European Society for Quantum Solar Energy Conversion, 2007.
207.
207. B. Sanyal, O. Bengone, and S. Mirbt, Phys. Rev. B 68, 205210 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.205210
208.
208. M. E. Overberg, G. T. Thaler, R. M. Frazier, C. R. Abernathy, S. J. Pearton, R. Rairigh, J. Kelly, N. A. Theodoropoulou, A. F. Hebard, R. G. Wilson, and J. M. Zavada, Electrochem. Solid-State Lett. 7, G44 (2004).
http://dx.doi.org/10.1149/1.1640491
209.
209. M. E. Overberg, G. T. Thaler, R. M. Frazier, R. Rairigh, J. Kelly, C. R. Abernathy, S. J. Pearton, A. F. Hebard, R. G. Wilson, and J. M. Zavada, Solid-State Electron. 47, 1549 (2003).
http://dx.doi.org/10.1016/S0038-1101(03)00098-4
210.
210. N. J. Ekins-Daukes, C. B. Honsberg, and M. Yamaguchi, in Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference (IEEE, 2005), pp. 4954.
http://dx.doi.org/10.1109/PVSC.2005.1488066
211.
211. Y. Shoji, K. Akimoto, and Y. Okada, J. Appl. Phys. 112, 064314 (2012).
http://dx.doi.org/10.1063/1.4752733
212.
212. Y. Shoji, K. Narahara, H. Tanaka, T. Kita, K. Akimoto, and Y. Okada, J. Appl. Phys. 111, 074305 (2012).
http://dx.doi.org/10.1063/1.3699215
213.
213. G. Jolley, L. Fu, H. F. Lu, H. H. Tan, and C. Jagadish, Prog. Photovoltaics: Res. Appl. 21, 736 (2013).
http://dx.doi.org/10.1002/pip.2161
214.
214. R. Tamaki, Y. Shoji, Y. Okada, and K. Miyano, Appl. Phys. Lett. 105, 073118 (2014).
http://dx.doi.org/10.1063/1.4893879
215.
215. R. Tamaki, Y. Shoji, Y. Okada, and K. Miyano, IEEE J. Photovoltaics 5, 229 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2014.2368712
216.
216. E. Antolín, A. Martí, C. R. Stanley, C. D. Farmer, E. Cánovas, N. López, P. G. Linares, and A. Luque, Thin Solid Films 516, 6919 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.061
217.
217. A. Scaccabarozzi, S. Adorno, S. Bietti, M. Acciarri, and S. Sanguinetti, Phys. Status Solidi RRL 7, 173 (2013).
http://dx.doi.org/10.1002/pssr.201206518
218.
218. Z. S. Bittner, S. Hellstroem, S. J. Polly, R. B. Laghumavarapu, B. Liang, D. L. Huffaker, and S. M. Hubbard, Appl. Phys. Lett. 105, 253903 (2014).
http://dx.doi.org/10.1063/1.4904076
219.
219. M. Sugiyama, Y. Wang, K. Watanabe, T. Morioka, Y. Okada, and Y. Nakano, IEEE J. Photovoltaics 2, 298 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2012.2196258
220.
220. M. Sugiyama, Y. Wang, H. Fujii, H. Sodabanlu, K. Watanabe, and Y. Nakano, J. Phys. D: Appl. Phys. 46, 024001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/2/024001
221.
221. M. Yoshida, H. Amrania, D. J. Farrell, B. Browne, E. Yoxall, N. J. Ekins-Daukes, and C. C. Phillips, IEEE J. Photovoltaics 4, 634 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2014.2301891
222.
222. M. Elborg, M. Jo, Y. Ding, T. Noda, T. Mano, and K. Sakoda, Jpn. J. Appl. Phys., Part 1 51, 06FF15 (2012).
http://dx.doi.org/10.7567/JJAP.51.06FF15
223.
223. D. M. Tex, I. Kamiya, and Y. Kanemitsu, Phys. Rev. B 87, 245305 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.245305
224.
224. D. M. Tex, I. Kamiya, and Y. Kanemitsu, Sci. Rep. 4, 4125 (2014).
http://dx.doi.org/10.1038/srep04125
225.
225. D. M. Tex, T. Ihara, I. Kamiya, and Y. Kanemitsu, Phys. Rev. B 89, 125301 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.125301
226.
226. J. Wu, D. Shao, Z. Li, M. O. Manasreh, V. P. Kunets, Z. M. Wang, and G. J. Salamo, Appl. Phys. Lett. 95, 071908 (2009).
http://dx.doi.org/10.1063/1.3211971
227.
227. T. Kita, T. Maeda, and Y. Harada, Phys. Rev. B 86, 035301 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035301
228.
228. B. N. Murdin, A. R. Hollingworth, J. A. Barker, D. G. Clarke, P. C. Findlay, C. R. Pidgeon, J.-P. R. Wells, I. V. Bradley, S. Malik, and R. Murray, Phys. Rev. B 62, R7755 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R7755
229.
229. P. Rale, A. Delamarre, G. El-Hajje, R. Tamaki, K. Watanabe, Y. Shoji, Y. Okada, M. Sugiyama, L. Lombez, and J.-F. Guillemoles, “Quantitative optical measurement of chemical potentials in intermediate band solar cells,” J. Photon. Energy (to be published).
230.
230. G. W. p't Hooft, W. A. J. A. van der Poel, L. W. Molenkamp, and C. T. Foxon, Phys. Rev. B 35, 8281 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.8281
231.
231. A. Luque, A. Martí, A. Mellor, D. F. Marrón, I. Tobías, and E. Antolín, Prog. Photovoltaics: Res. Appl. 21, 658 (2013).
http://dx.doi.org/10.1002/pip.1250
232.
232. W. G. Hu, T. Inoue, O. Kojima, and T. Kita, Appl. Phys. Lett. 97, 193106 (2010).
http://dx.doi.org/10.1063/1.3516468
233.
233. S. Tomić, T. Sogabe, and Y. Okada, “ In-plane coupling effect on absorption coefficients of InAs/GaAs quantum dots arrays for intermediate band solar cell,” Prog. Photovoltaics: Res. Appl. (published online 2014).
http://dx.doi.org/10.1002/pip.2455
234.
234. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
235.
235. A. Polman and H. A. Atwater, Nat. Mater. 11, 174 (2012).
http://dx.doi.org/10.1038/nmat3263
236.
236. N. Kasamatsu, T. Kada, A. Hasegawa, Y. Harada, and T. Kita, J. Appl. Phys. 115, 083510 (2014).
http://dx.doi.org/10.1063/1.4867042
237.
237. Y. Ikeuchi, T. Inoue, M. Asada, Y. Harada, T. Kita, E. Taguchi, and H. Yasuda, Appl. Phys. Express 4, 062001 (2011).
http://dx.doi.org/10.1143/APEX.4.062001
238.
238. A. Takahashi, T. Ueda, Y. Bessho, Y. Harada, T. Kita, E. Taguchi, and H. Yasuda, Phys. Rev. B 87, 235323 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.235323
239.
239. M. Usman, T. Inoue, Y. Harada, G. Klimeck, and T. Kita, Phys. Rev. B 84, 115321 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115321
240.
240. V. Popescu, G. Bester, and A. Zunger, Appl. Phys. Lett. 95, 023108 (2009).
http://dx.doi.org/10.1063/1.3159875
241.
241. M. Murayama, K. Shiraishi, and T. Nakayama, Jpn. J. Appl. Phys., Part 1 37, 4109 (1998).
http://dx.doi.org/10.1143/JJAP.37.4109
242.
242. T. Kita, O. Wada, T. Nakayama, and M. Murayama, Phys. Rev. B 66, 195312 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.195312
243.
243. P. Olsson, C. Domain, and J.-F. Guillemoles, paper present at the 19th Quantsol Conference (2007).
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/2/10.1063/1.4916561
Loading
/content/aip/journal/apr2/2/2/10.1063/1.4916561
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/2/10.1063/1.4916561
2015-04-08
2016-12-06

Abstract

Extensive literature and publications on intermediate band solar cells (IBSCs) are reviewed. A detailed discussion is given on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC. The experimental solar cell performance is further discussed, which has been recently demonstrated by using highly mismatched alloys and high-density quantum dot arrays and superlattice. IBSCs having widely different structures, materials, and spectral responses are also covered, as is the optimization of device parameters to achieve maximum performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/2/1.4916561.html;jsessionid=gYkk0B1p4uqWA2bZ-2quh4pD.x-aip-live-06?itemId=/content/aip/journal/apr2/2/2/10.1063/1.4916561&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/2/10.1063/1.4916561&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/2/10.1063/1.4916561'
Right1,Right2,Right3,