Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/2/10.1063/1.4916728
1.
1. S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
2.
2. J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998).
http://dx.doi.org/10.1038/34139
3.
3. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001).
http://dx.doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
4.
4. K. Ekinci, Small 1, 786 (2005).
http://dx.doi.org/10.1002/smll.200500077
5.
5. X. Huang, X. Feng, C. Zorman, M. Mehregany, and M. Roukes, New J. Phys. 7, 247 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/247
6.
6. K. Jensen, K. Kim, and A. Zettl, Nat. Nanotechnol. 3, 533 (2008).
http://dx.doi.org/10.1038/nnano.2008.200
7.
7. A. Naik, M. Hanay, W. Hiebert, X. Feng, and M. Roukes, Nat. Nanotechnol. 4, 445 (2009).
http://dx.doi.org/10.1038/nnano.2009.152
8.
8. Q. Wang, Nano Lett. 9, 245 (2009).
http://dx.doi.org/10.1021/nl802829z
9.
9. Q. Wang, Carbon 47, 2754 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.05.033
10.
10. N. V. Lavrik and P. G. Datskos, Appl. Phys. Lett. 82, 2697 (2003).
http://dx.doi.org/10.1063/1.1569050
11.
11. K. Ekinci, Y. Yang, and M. Roukes, J. Appl. Phys. 95, 2682 (2004).
http://dx.doi.org/10.1063/1.1642738
12.
12. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
http://dx.doi.org/10.1126/science.287.5453.622
13.
13. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, Nature 424, 171 (2003).
http://dx.doi.org/10.1038/nature01777
14.
14. B. Arash, Q. Wang, and N. Wu, J. Nanotechnol. Eng. Med. 3, 020902 (2012).
http://dx.doi.org/10.1115/1.4007388
15.
15. Q. Wang and B. Arash, Computational Mater. Sci. 82, 350 (2014).
http://dx.doi.org/10.1016/j.commatsci.2013.10.010
16.
16. B. Arash, Q. Wang, and W. H. Duan, Phys. Lett. A 375, 2411 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.05.009
17.
17. B. Arash, Q. Wang, and V. K. Varadan, J. Nanotechnol. Eng. Med. 2, 021010 (2011).
http://dx.doi.org/10.1115/1.4003967
18.
18. X. Huang, M. Manolidis, S. C. Jun, and J. Hone, Appl. Phys. Lett. 86, 143104 (2005).
http://dx.doi.org/10.1063/1.1897445
19.
19. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, Nat. Nanotechnol. 7, 301 (2012).
http://dx.doi.org/10.1038/nnano.2012.42
20.
20. Y. Yang, C. Callegari, X. Feng, K. Ekinci, and M. Roukes, Nano Lett. 6, 583 (2006).
http://dx.doi.org/10.1021/nl052134m
21.
21. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, Nat. Biotechnol. 19, 856 (2001).
http://dx.doi.org/10.1038/nbt0901-856
22.
22. B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, and H. Craighead, Nano Lett. 5, 925 (2005).
http://dx.doi.org/10.1021/nl050456k
23.
23. K. Eom, J. Yang, J. Park, G. Yoon, Y. S. Sohn, S. Park, D. S. Yoon, S. Na, and T. Kwon, Int. J. Mol. Sci. 10, 4009 (2009).
http://dx.doi.org/10.3390/ijms10094009
24.
24. B. Arash and Q. Wang, Comput. Mater. Sci. 60, 245 (2012).
http://dx.doi.org/10.1016/j.commatsci.2012.03.053
25.
25. B. Arash, Q. Wang, and K. M. Liew, Comput. Methods Appl. Mech. Eng. 223, 1 (2012).
http://dx.doi.org/10.1016/j.cma.2012.02.002
26.
26. B. Arash and Q. Wang, Sci. Rep. 3, 1782 (2013).
http://dx.doi.org/10.1038/srep01782
27.
27. W. H. Duan and Q. Wang, ACS Nano 4, 2338 (2010).
http://dx.doi.org/10.1021/nn1001694
28.
28. A. Khosrozadeh, Q. Wang, and V. Varadan, Comput. Mater. Sci. 81, 280 (2014).
http://dx.doi.org/10.1016/j.commatsci.2013.08.030
29.
29. B. Arash and Q. Wang, Comput. Mater. Sci. 90, 50 (2014).
http://dx.doi.org/10.1016/j.commatsci.2014.04.012
30.
30. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48, 4638 (2009).
http://dx.doi.org/10.1021/ie8019032
31.
31. M. Ulbricht, Polymer 47, 2217 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.01.084
32.
32. J. Zheng, E. M. Lennon, H.-K. Tsao, Y.-J. Sheng, and S. Jiang, J. Chem. Phys. 122, 214702 (2005).
http://dx.doi.org/10.1063/1.1908619
33.
33. J. Shiomi and S. Maruyama, Nanotechnology 20, 055708 (2009).
http://dx.doi.org/10.1088/0957-4484/20/5/055708
34.
34. J. Zhao, J.-Q. Huang, F. Wei, and J. Zhu, Nano Lett. 10, 4309 (2010).
http://dx.doi.org/10.1021/nl1008713
35.
35. Z. Insepov, D. Wolf, and A. Hassanein, Nano Lett. 6, 1893 (2006).
http://dx.doi.org/10.1021/nl060932m
36.
36. N. Wu, Q. Wang, and B. Arash, Carbon 50, 4945 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.06.026
37.
37. T. Braun, V. Barwich, M. K. Ghatkesar, A. H. Bredekamp, C. Gerber, M. Hegner, and H. P. Lang, Phys. Rev. E 72, 031907 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.031907
38.
38. K. Ekinci, X. Huang, and M. Roukes, Appl. Phys. Lett. 84, 4469 (2004).
http://dx.doi.org/10.1063/1.1755417
39.
39. B. Ilic, H. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, J. Appl. Phys. 95, 3694 (2004).
http://dx.doi.org/10.1063/1.1650542
40.
40. C. Seoanez, F. Guinea, and A. C. Neto, Phys. Rev. B 76, 125427 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125427
41.
41. S. Y. Kim and H. S. Park, Appl. Phys. Lett. 94, 101918 (2009).
http://dx.doi.org/10.1063/1.3099932
42.
42. J. Atalaya, A. Isacsson, and J. M. Kinaret, Nano Lett. 8, 4196 (2008).
http://dx.doi.org/10.1021/nl801733d
43.
43. J.-W. Jiang, H. S. Park, and T. Rabczuk, Nanotechnology 23, 475501 (2012).
http://dx.doi.org/10.1088/0957-4484/23/47/475501
44.
44. S. Y. Kim and H. S. Park, Nano Lett. 9, 969 (2009).
http://dx.doi.org/10.1021/nl802853e
45.
45. J.-W. Jiang and J.-S. Wang, J. Appl. Phys. 111, 054314 (2012).
http://dx.doi.org/10.1063/1.3691958
46.
46. Z. Qi and H. S. Park, Nanoscale 4, 3460 (2012).
http://dx.doi.org/10.1039/c2nr30493g
47.
47. J.-W. Jiang, B.-S. Wang, H. S. Park, and T. Rabczuk, Nanotechnology 25, 025501 (2014).
http://dx.doi.org/10.1088/0957-4484/25/2/025501
48.
48. R. C. Cammarata, Prog. Surf. Sci. 46, 1 (1994).
http://dx.doi.org/10.1016/0079-6816(94)90005-1
49.
49. J. Diao, K. Gall, and M. L. Dunn, Nat. Mater. 2, 656 (2003).
http://dx.doi.org/10.1038/nmat977
50.
50. W. Liang, M. Zhou, and F. Ke, Nano Lett. 5, 2039 (2005).
http://dx.doi.org/10.1021/nl0515910
51.
51. H. S. Park, K. Gall, and J. A. Zimmerman, Phys. Rev. Lett. 95, 255504 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.255504
52.
52. M. Falvo, G. Clary, R. Taylor, V. Chi, F. Brooks, S. Washburn, and R. Superfine, Nature 389, 582 (1997).
http://dx.doi.org/10.1038/39282
53.
53. H.-Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, Nano Lett. 8, 4342 (2008).
http://dx.doi.org/10.1021/nl802181c
54.
54. A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, and M. Treacy, Phys. Rev. B 58, 14013 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14013
55.
55. R. Parnes and A. Chiskis, J. Mech. Phys. Solids 50, 855 (2002).
http://dx.doi.org/10.1016/S0022-5096(01)00101-6
56.
56. X. Wang, H. Yang, and K. Dong, Mater. Sci. Eng., A 404, 314 (2005).
http://dx.doi.org/10.1016/j.msea.2005.05.071
57.
57. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4502
58.
58. D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejón, Phys. Rev. B 59, 12678 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12678
59.
59. B. Yakobson, M. Campbell, C. Brabec, and J. Bernholc, Comput. Mater. Sci. 8, 341 (1997).
http://dx.doi.org/10.1016/S0927-0256(97)00047-5
60.
60. K. Liew, C. Wong, X. He, M. Tan, and S. Meguid, Phys. Rev. B 69, 115429 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115429
61.
61. C. Li and T.-W. Chou, Int. J. Solids Struct. 40, 2487 (2003).
http://dx.doi.org/10.1016/S0020-7683(03)00056-8
62.
62. C. Li and T.-W. Chou, Phys. Rev. B 68, 073405 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.073405
63.
63. B. I. Yakobson, C. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2511
64.
64. R. Ansari, R. Rajabiehfard, and B. Arash, J. Therm. Stresses 34, 817 (2011).
http://dx.doi.org/10.1080/01495739.2011.586268
65.
65. C. Wang, Y. Zhang, S. S. Ramesh, and S. Kitipornchai, J. Phys. D: Appl. Phys. 39, 3904 (2006).
http://dx.doi.org/10.1088/0022-3727/39/17/029
66.
66. K. M. Liew and Q. Wang, Int. J. Eng. Sci. 45, 227 (2007).
http://dx.doi.org/10.1016/j.ijengsci.2007.04.001
67.
67. Q. Wang, J. Appl. Phys. 98, 124301 (2005).
http://dx.doi.org/10.1063/1.2141648
68.
68. S. Kitipornchai, X. He, and K. Liew, Phys. Rev. B 72, 075443 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075443
69.
69. K. M. Liew, X. He, and S. Kitipornchai, Acta Mater. 54, 4229 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.05.016
70.
70. X. He, S. Kitipornchai, and K. Liew, Nanotechnology 16, 2086 (2005).
http://dx.doi.org/10.1088/0957-4484/16/10/018
71.
71. K. Behfar and R. Naghdabadi, Composites Sci. Technol. 65, 1159 (2005).
http://dx.doi.org/10.1016/j.compscitech.2004.11.011
72.
72. Y. Zhang, G. Liu, and J. Wang, Phys. Rev. B 70, 205430 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.205430
73.
73. Q. Wang and V. Varadan, Smart Mater. Struct. 15, 659 (2006).
http://dx.doi.org/10.1088/0964-1726/15/2/050
74.
74. R. F. Gibson, E. O. Ayorinde, and Y.-F. Wen, Composites Sci. Technol. 67, 1 (2007).
http://dx.doi.org/10.1016/j.compscitech.2006.03.031
75.
75. L. Sudak, J. Appl. Phys. 94, 7281 (2003).
http://dx.doi.org/10.1063/1.1625437
76.
76. A. C. Eringen, J. Appl. Phys. 54, 4703 (1983).
http://dx.doi.org/10.1063/1.332803
77.
77. A. Eringen, Continuum Physics ( Academic, New York, 1976).
78.
78. E. Aifantis, Int. J. Fract. 95, 299 (1999).
http://dx.doi.org/10.1023/A:1018625006804
79.
79. E. C. Aifantis, J. Mech. Behav. Mater. 5, 355 (1994).
http://dx.doi.org/10.1515/JMBM.1994.5.3.355
80.
80. H. Askes and E. C. Aifantis, Int. J. Solids Struct. 48, 1962 (2011).
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.006
81.
81. J. Peddieson, G. R. Buchanan, and R. P. McNitt, Int. J. Eng. Sci. 41, 305 (2003).
http://dx.doi.org/10.1016/S0020-7225(02)00210-0
82.
82. C. Wang, Y. Zhang, and X. He, Nanotechnology 18, 105401 (2007).
http://dx.doi.org/10.1088/0957-4484/18/10/105401
83.
83. M. Malagù, E. Benvenuti, C. A. Duarte, and A. Simone, “ One-dimensional nonlocal and gradient elasticity: Assessment of high order approximation schemes,” Comput. Methods Appl. Mech. Engr. 275, 138 (2014).
http://dx.doi.org/10.1016/j.cma.2014.02.015
84.
84. B. Arash and R. Ansari, Physica E 42, 2058 (2010).
http://dx.doi.org/10.1016/j.physe.2010.03.028
85.
85. Q. Wang and V. Varadan, Smart Mater. Struct. 16, 178 (2007).
http://dx.doi.org/10.1088/0964-1726/16/1/022
86.
86. S. Narendar and S. Gopalakrishnan, Comput. Mater. Sci. 47, 526 (2009).
http://dx.doi.org/10.1016/j.commatsci.2009.09.021
87.
87. R. Ansari, R. Rajabiehfard, and B. Arash, Comput. Mater. Sci. 49, 831 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.06.032
88.
88. J. Song, J. Shen, and X. Li, Comput. Mater. Sci. 49, 518 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.05.043
89.
89. R. Ansari, B. Arash, and H. Rouhi, Compos. Struct. 93, 2419 (2011).
http://dx.doi.org/10.1016/j.compstruct.2011.04.006
90.
90. L. Shen, H.-S. Shen, and C.-L. Zhang, Comput. Mater. Sci. 48, 680 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.03.006
91.
91. R. Ansari, S. Sahmani, and B. Arash, Phys. Lett. A 375, 53 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.10.028
92.
92. B. Arash and Q. Wang, J. Nanotechnol. Eng. Med. 2, 011012 (2011).
http://dx.doi.org/10.1115/1.4003353
93.
93. R. Ansari and B. Arash, J. Appl. Mech. 80, 021006 (2013).
http://dx.doi.org/10.1115/1.4007432
94.
94. B. Arash and Q. Wang, Modeling of Carbon Nanotubes, Graphene and Their Composites ( Springer, 2014), p. 57.
95.
95. J. Reddy, Int. J. Eng. Sci. 45, 288 (2007).
http://dx.doi.org/10.1016/j.ijengsci.2007.04.004
96.
96. J. Yang, L. Ke, and S. Kitipornchai, Physica E 42, 1727 (2010).
http://dx.doi.org/10.1016/j.physe.2010.01.035
97.
97. L. Ke, Y. Xiang, J. Yang, and S. Kitipornchai, Comput. Mater. Sci. 47, 409 (2009).
http://dx.doi.org/10.1016/j.commatsci.2009.09.002
98.
98. L.-L. Ke, Y.-S. Wang, and Z.-D. Wang, Compos. Struct. 94, 2038 (2012).
http://dx.doi.org/10.1016/j.compstruct.2012.01.023
99.
99. S. Pradhan and A. Kumar, Compos. Struct. 93, 774 (2011).
http://dx.doi.org/10.1016/j.compstruct.2010.08.004
100.
100. S. Pradhan and A. Kumar, Comput. Mater. Sci. 50, 239 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.08.009
101.
101. H. Nguyen-Xuan, G. Liu, S. Bordas, S. Natarajan, and T. Rabczuk, Comput. Methods Appl. Mech. Eng. 253, 252 (2013).
http://dx.doi.org/10.1016/j.cma.2012.07.017
102.
102. S. Pradhan and J. Phadikar, Phys. Lett. A 373, 1062 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.01.030
103.
103. L. Zhou and H. Huang, Appl. Phys. Lett. 84, 1940 (2004).
http://dx.doi.org/10.1063/1.1682698
104.
104. H. W. Shim, L. Zhou, H. Huang, and T. S. Cale, Appl. Phys. Lett. 86, 151912 (2005).
http://dx.doi.org/10.1063/1.1897825
105.
105. C. Sun and H. Zhang, J. Appl. Phys. 93, 1212 (2003).
http://dx.doi.org/10.1063/1.1530365
106.
106. H. Zhang and C. Sun, AIAA J. 42, 2002 (2004).
http://dx.doi.org/10.2514/1.5282
107.
107. J.-G. Guo and Y.-P. Zhao, J. Appl. Phys. 98, 074306 (2005).
http://dx.doi.org/10.1063/1.2071453
108.
108. H. S. Park, Int. J. Numer. Methods Eng. 83, 1237 (2010).
http://dx.doi.org/10.1002/nme.2856
109.
109. H. S. Park and P. A. Klein, J. Mech. Phys. Solids 56, 3144 (2008).
http://dx.doi.org/10.1016/j.jmps.2008.08.003
110.
110. H. S. Park, Nanotechnology 20, 115701 (2009).
http://dx.doi.org/10.1088/0957-4484/20/11/115701
111.
111. G. Yun and H. S. Park, Phys. Rev. B 79, 195421 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195421
112.
112. F. Song, G. Huang, H. Park, and X. Liu, Int. J. Solids Struct. 48, 2154 (2011).
http://dx.doi.org/10.1016/j.ijsolstr.2011.03.021
113.
113. M. Farsad, F. J. Vernerey, and H. S. Park, Int. J. Numer. Methods Eng. 84, 1466 (2010).
http://dx.doi.org/10.1002/nme.2946
114.
114. P. A. Olsson and H. S. Park, J. Mech. Phys. Solids 60, 2064 (2012).
http://dx.doi.org/10.1016/j.jmps.2012.07.009
115.
115. X.-w. Lei, T. Natsuki, J.-x. Shi, and Q.-q. Ni, Composites Part B 43, 64 (2012).
http://dx.doi.org/10.1016/j.compositesb.2011.04.032
116.
116. M. E. Gurtin and A. I. Murdoch, Arch. Ration. Mech. Anal. 57, 291 (1975).
http://dx.doi.org/10.1007/BF00261375
117.
117. M. E. Gurtin and A. Ian Murdoch, Int. J. Solids Struct. 14, 431 (1978).
http://dx.doi.org/10.1016/0020-7683(78)90008-2
118.
118. G.-F. Wang and X.-Q. Feng, Appl. Phys. Lett. 90, 231904 (2007).
http://dx.doi.org/10.1063/1.2746950
119.
119. J. He and C. M. Lilley, Nano Lett. 8, 1798 (2008).
http://dx.doi.org/10.1021/nl0733233
120.
120. B. Bar On, E. Altus, and E. Tadmor, Int. J. Solids Struct. 47, 1243 (2010).
http://dx.doi.org/10.1016/j.ijsolstr.2010.01.010
121.
121. R. Ansari and S. Sahmani, Int. J. Eng. Sci. 49, 1244 (2011).
http://dx.doi.org/10.1016/j.ijengsci.2011.01.007
122.
122. Z.-Q. Wang, Y.-P. Zhao, and Z.-P. Huang, Int. J. Eng. Sci. 48, 140 (2010).
http://dx.doi.org/10.1016/j.ijengsci.2009.07.007
123.
123. R. Ansari and S. Sahmani, Int. J. Eng. Sci. 49, 1204 (2011).
http://dx.doi.org/10.1016/j.ijengsci.2011.06.005
124.
124. H.-L. Lee and W.-J. Chang, J. Appl. Phys. 108, 093503 (2010).
http://dx.doi.org/10.1063/1.3503853
125.
125. P. Lu, L. He, H. Lee, and C. Lu, Int. J. Solids Struct. 43, 4631 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.036
126.
126. D. Huang, Int. J. Solids Struct. 45, 568 (2008).
http://dx.doi.org/10.1016/j.ijsolstr.2007.08.006
127.
127. M. Allen and D. Tildesley, Computer Simulation of Liquids ( Oxford University Press, New York, 1989), Vol. 385.
128.
128. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications ( Academic Press, 2001), Vol. 1.
129.
129. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
130.
130. R. Buckingham, Proc. R. Soc. London, Ser. A 168, 264 (1938).
http://dx.doi.org/10.1098/rspa.1938.0173
131.
131. C. Catlow, Proc. R. Soc. London, Ser. A 353, 533 (1977).
http://dx.doi.org/10.1098/rspa.1977.0049
132.
132. G. Lewis and C. Catlow, J. Phys. C: Solid State Phys. 18, 1149 (1985).
http://dx.doi.org/10.1088/0022-3719/18/6/010
133.
133. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
134.
134. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
135.
135. H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
http://dx.doi.org/10.1063/1.439486
136.
136. H. J. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
137.
137. R. Ansari, S. Ajori, and B. Arash, Curr. Appl. Phys. 12, 707 (2012).
http://dx.doi.org/10.1016/j.cap.2011.10.007
138.
138. J.-W. Jiang, H. S. Park, and T. Rabczuk, Nanotechnology 24, 405705 (2013).
http://dx.doi.org/10.1088/0957-4484/24/40/405705
139.
139. J.-W. Jiang, H. S. Park, and T. Rabczuk, Nanoscale 6, 3618 (2014).
http://dx.doi.org/10.1039/c3nr05991j
140.
140. J.-W. Jiang and T. Rabczuk, Appl. Phys. Lett. 102, 123104 (2013).
http://dx.doi.org/10.1063/1.4799029
141.
141. J.-W. Jiang, B.-S. Wang, and T. Rabczuk, Appl. Phys. Lett. 101, 023113 (2012).
http://dx.doi.org/10.1063/1.4735246
142.
142. J.-W. Jiang and J.-S. Wang, Europhys. Lett. 96, 66007 (2011).
http://dx.doi.org/10.1209/0295-5075/96/66007
143.
143. W. Duan, C. Wang, and Y. Zhang, J. Appl. Phys. 101, 024305 (2007).
http://dx.doi.org/10.1063/1.2423140
144.
144. K. Kunal and N. Aluru, J. Appl. Phys. 116, 094304 (2014).
http://dx.doi.org/10.1063/1.4894282
145.
145. H. Sun, J. Phys. Chem. B 102, 7338 (1998).
http://dx.doi.org/10.1021/jp980939v
146.
146. H. Sun, P. Ren, and J. Fried, Comput. Theor. Polym. Sci. 8, 229 (1998).
http://dx.doi.org/10.1016/S1089-3156(98)00042-7
147.
147. S. W. Bunte and H. Sun, J. Phys. Chem. B 104, 2477 (2000).
http://dx.doi.org/10.1021/jp991786u
148.
148. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).
http://dx.doi.org/10.1063/1.481208
149.
149. H. Jiang, M.-F. Yu, B. Liu, and Y. Huang, Phys. Rev. Lett. 93, 185501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.185501
150.
150. S. Y. Kim and H. S. Park, Phys. Rev. Lett. 101, 215502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.215502
151.
151. K. Ekinci and M. Roukes, Rev. Sci. Instrum. 76, 061101 (2005).
http://dx.doi.org/10.1063/1.1927327
152.
152. L. Beex, P. Kerfriden, T. Rabczuk, and S. Bordas, Comput. Methods Appl. Mech. Eng. 279, 348 (2014).
http://dx.doi.org/10.1016/j.cma.2014.06.018
153.
153. M. Silani, S. Ziaei-Rad, H. Talebi, and T. Rabczuk, Theor. Appl. Fract. Mech. 74, 30 (2014).
http://dx.doi.org/10.1016/j.tafmec.2014.06.009
154.
154. H. Talebi, M. Silani, S. P. Bordas, P. Kerfriden, and T. Rabczuk, Comput. Mech. 53, 1047 (2014).
http://dx.doi.org/10.1007/s00466-013-0948-2
155.
155. P. R. Budarapu, R. Gracie, S.-W. Yang, X. Zhuang, and T. Rabczuk, Theor. Appl. Fract. Mech. 69, 126 (2014).
http://dx.doi.org/10.1016/j.tafmec.2013.12.004
156.
156. M. Shi, Q. Li, B. Liu, X. Feng, and Y. Huang, Int. J. Solids Struct. 46, 4342 (2009).
http://dx.doi.org/10.1016/j.ijsolstr.2009.08.024
157.
157. B. Liu, Y. Huang, H. Jiang, S. Qu, and K. Hwang, Comput. Methods Appl. Mech. Eng. 193, 1849 (2004).
http://dx.doi.org/10.1016/j.cma.2003.12.037
158.
158. B. Liu, H. Jiang, Y. Huang, S. Qu, M.-F. Yu, and K. Hwang, Phys. Rev. B 72, 035435 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035435
159.
159. C. Li and T.-W. Chou, Appl. Phys. Lett. 84, 121 (2004).
http://dx.doi.org/10.1063/1.1638623
160.
160. C. Li and T.-W. Chou, Appl. Phys. Lett. 84, 5246 (2004).
http://dx.doi.org/10.1063/1.1764933
161.
161. J. Zhao, J.-W. Jiang, L. Wang, W. Guo, and T. Rabczuk, J. Mech. Phys. Solids 71, 197 (2014).
http://dx.doi.org/10.1016/j.jmps.2014.06.011
162.
162. F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
163.
163. J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
http://dx.doi.org/10.1126/science.1136836
164.
164. Y. Zhang, G. Liu, and X. Xie, Phys. Rev. B 71, 195404 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195404
165.
165. H.-L. Lee and W.-J. Chang, Physica E 41, 529 (2009).
http://dx.doi.org/10.1016/j.physe.2008.10.002
166.
166. L. Wang, Physica E 41, 1835 (2009).
http://dx.doi.org/10.1016/j.physe.2009.07.011
167.
167. K. Kiani and B. Mehri, J. Sound Vib. 329, 2241 (2010).
http://dx.doi.org/10.1016/j.jsv.2009.12.017
168.
168. K. Kiani, Physica E 42, 2391 (2010).
http://dx.doi.org/10.1016/j.physe.2010.05.021
169.
169. Y. Zhen and B. Fang, Comput. Mater. Sci. 49, 276 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.05.007
170.
170. M. Mahdavi, L. Jiang, and X. Sun, J. Appl. Phys. 106, 114309 (2009).
http://dx.doi.org/10.1063/1.3266174
171.
171. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, Nat. Nanotechnol. 6, 339 (2011).
http://dx.doi.org/10.1038/nnano.2011.71
172.
172. T. Murmu and S. Pradhan, Physica E 41, 1628 (2009).
http://dx.doi.org/10.1016/j.physe.2009.05.013
173.
173. R. Ansari, B. Arash, and H. Rouhi, Comput. Mater. Sci. 50, 3091 (2011).
http://dx.doi.org/10.1016/j.commatsci.2011.05.032
174.
174. H. G. Craighead, Science 290, 1532 (2000).
http://dx.doi.org/10.1126/science.290.5496.1532
175.
175. P. A. Olsson, H. S. Park, and P. C. Lidström, J. Appl. Phys. 108, 104312 (2010).
http://dx.doi.org/10.1063/1.3510584
176.
176. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
http://dx.doi.org/10.1126/science.277.5334.1971
177.
177. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten, Phys. Rev. B 69, 165410 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165410
178.
178. B. Wu, A. Heidelberg, and J. J. Boland, Nat. Mater. 4, 525 (2005).
http://dx.doi.org/10.1038/nmat1403
179.
179. H. S. Park, J. Appl. Phys. 104, 013516 (2008).
http://dx.doi.org/10.1063/1.2953086
180.
180. G.-F. Wang and X.-Q. Feng, J. Phys. D: Appl. Phys. 42, 155411 (2009).
http://dx.doi.org/10.1088/0022-3727/42/15/155411
181.
181. L. Wang and H. Hu, Phys. Rev. B 71, 195412 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195412
182.
182. Q. Wang, G. Zhou, and K. Lin, Int. J. Solids Struct. 43, 6071 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2005.11.005
183.
183. Y.-G. Hu, K. M. Liew, Q. Wang, X. He, and B. Yakobson, J. Mech. Phys. Solids 56, 3475 (2008).
http://dx.doi.org/10.1016/j.jmps.2008.08.010
184.
184. H. Heireche, A. Tounsi, A. Benzair, M. Maachou, and E. Adda Bedia, Physica E 40, 2791 (2008).
http://dx.doi.org/10.1016/j.physe.2007.12.021
185.
185. Y.-Z. Wang, F.-M. Li, and K. Kishimoto, Comput. Mater. Sci. 48, 413 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.01.034
186.
186. F. Song, G. Huang, and V. Varadan, Acta Mech. 209, 129 (2010).
http://dx.doi.org/10.1007/s00707-009-0156-5
187.
187. S. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev. Lett. 89, 276103 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.276103
188.
188. S. S. Verbridge, R. Ilic, H. Craighead, and J. M. Parpia, Appl. Phys. Lett. 93, 013101 (2008).
http://dx.doi.org/10.1063/1.2952762
189.
189. D. W. Carr, S. Evoy, L. Sekaric, H. Craighead, and J. Parpia, Appl. Phys. Lett. 75, 920 (1999).
http://dx.doi.org/10.1063/1.124554
190.
190. S. Evoy, A. Olkhovets, L. Sekaric, J. M. Parpia, H. G. Craighead, and D. Carr, Appl. Phys. Lett. 77, 2397 (2000).
http://dx.doi.org/10.1063/1.1316071
191.
191. A. Cleland and M. Roukes, J. Appl. Phys. 92, 2758 (2002).
http://dx.doi.org/10.1063/1.1499745
192.
192. J. A. Judge, D. M. Photiadis, J. F. Vignola, B. H. Houston, and J. Jarzynski, J. Appl. Phys. 101, 013521 (2007).
http://dx.doi.org/10.1063/1.2401271
193.
193. I. Wilson-Rae, Phys. Rev. B 77, 245418 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245418
194.
194. M. Cross and R. Lifshitz, Phys. Rev. B 64, 085324 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085324
195.
195. J. E. Sader, J. Appl. Phys. 84, 64 (1998).
http://dx.doi.org/10.1063/1.368002
196.
196. B. Houston, D. Photiadis, M. Marcus, J. Bucaro, X. Liu, and J. Vignola, Appl. Phys. Lett. 80, 1300 (2002).
http://dx.doi.org/10.1063/1.1449534
197.
197. R. Lifshitz and M. L. Roukes, Phys. Rev. B 61, 5600 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5600
198.
198. P. Poncharal, Z. Wang, D. Ugarte, and W. A. De Heer, Science 283, 1513 (1999).
http://dx.doi.org/10.1126/science.283.5407.1513
199.
199. K. Jensen, C. Girit, W. Mickelson, and A. Zettl, Phys. Rev. Lett. 96, 215503 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.215503
200.
200. A. M. v. d. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 10, 4869 (2010).
http://dx.doi.org/10.1021/nl102713c
201.
201. C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nat. Nanotechnol. 4, 861 (2009).
http://dx.doi.org/10.1038/nnano.2009.267
202.
202. R. Mateiu, A. Kühle, R. Marie, and A. Boisen, Ultramicroscopy 105, 233 (2005).
http://dx.doi.org/10.1016/j.ultramic.2005.06.042
203.
203. H. Peng, C. Chang, S. Aloni, T. Yuzvinsky, and A. Zettl, Phys. Rev. Lett. 97, 087203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.087203
204.
204. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, Nano Lett. 8, 3735 (2008).
http://dx.doi.org/10.1021/nl801982v
205.
205. R. R. Johnson, A. C. Johnson, and M. L. Klein, Nano Lett. 8, 69 (2008).
http://dx.doi.org/10.1021/nl071909j
206.
206. R. R. Johnson, A. Kohlmeyer, A. C. Johnson, and M. L. Klein, Nano Lett. 9, 537 (2009).
http://dx.doi.org/10.1021/nl802645d
207.
207. C. Sirtori, Nature 417, 132 (2002).
http://dx.doi.org/10.1038/417132b
208.
208. Y. He, H. Li, P. Si, Y. Li, H. Yu, X. Zhang, F. Ding, K. Liew, and X. Liu, Appl. Phys. Lett. 98, 063101 (2011).
http://dx.doi.org/10.1063/1.3551574
209.
209. Q. Wang and K. M. Liew, J. Appl. Phys. 103, 046103 (2008).
http://dx.doi.org/10.1063/1.2838331
210.
210. A. Srivastava, O. Srivastava, S. Talapatra, R. Vajtai, and P. Ajayan, Nat. Mater. 3, 610 (2004).
http://dx.doi.org/10.1038/nmat1192
211.
211. C. Thauvin, S. Rickling, P. Schultz, H. Célia, S. Meunier, and C. Mioskowski, Nat. Nanotechnol. 3, 743 (2008).
http://dx.doi.org/10.1038/nnano.2008.318
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/2/10.1063/1.4916728
Loading
/content/aip/journal/apr2/2/2/10.1063/1.4916728
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/2/10.1063/1.4916728
2015-04-06
2016-12-06

Abstract

Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/2/1.4916728.html;jsessionid=Kxs5qCIUksQ2kjZWXvXW-EGG.x-aip-live-06?itemId=/content/aip/journal/apr2/2/2/10.1063/1.4916728&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/2/10.1063/1.4916728&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/2/10.1063/1.4916728'
Right1,Right2,Right3,