Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/2/10.1063/1.4922748
1.
1. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology ( John Wiley & Sons, Singapore Pte. Ltd., 2014), pp. 301352.
2.
2. W. L. Pribble, J. W. Palmour, S. T. Sheppard, R. P. Smith, S. T. Allen, T. J. Smith, Z. Ring, J. J. Sumakeris, A. W. Saxler, and J. W. Milligan, in IEEE MTT-S International Microwave Symposium Digest (2002), Vol. 1813, pp. 18191822.
3.
3. L. Sang, M. Liao, and M. Sumiya, Sensors 13(8), 1048210518 (2013).
http://dx.doi.org/10.3390/s130810482
4.
4. C.-M. Zetterling, L. Lanni, R. Ghandi, B. G. Malm, and M. Östling, Phys. Status Solidi C 9(7), 16471650 (2012).
http://dx.doi.org/10.1002/pssc.201100689
5.
5. R. Ghandi, C. P. Chen, L. Yin, X. G. Zhu, L. C. Yu, S. Arthur, F. Ahmad, and P. Sandvik, IEEE Electron Device Lett. 35(12), 12061208 (2014).
http://dx.doi.org/10.1109/LED.2014.2362815
6.
6. D. K. Gaskill, in Handbook of Crystal Growth: Thin Films and Epitaxy, edited by T. Kuech ( Elsevier Science, 2014), p. 755.
7.
7. F. Wang, G. Liu, S. Rothwell, M. Nevius, A. Tejeda, A. Taleb-Ibrahimi, L. C. Feldman, P. I. Cohen, and E. H. Conrad, Nano Lett. 13(10), 48274832 (2013).
http://dx.doi.org/10.1021/nl402544n
8.
8. C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, IEEE Trans. Electron Devices 43(10), 17321741 (1996).
http://dx.doi.org/10.1109/16.536819
9.
9. B. J. Baliga, Fundamentals of Power Semiconductor Devices ( Springer Publishing Company, Incorporated, 2008).
10.
10. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi A 211(1), 2126 (2014).
http://dx.doi.org/10.1002/pssa.201330197
11.
11. M. Su ( Rutgers University, 2010).
12.
12. X. Zhu ( Auburn University, 2008).
13.
13. T. S. Sudarshan and S. I. Maximenko, Microelectron. Eng. 83(1), 155159 (2006).
http://dx.doi.org/10.1016/j.mee.2005.10.042
14.
14. P. Friedrichs, T. Kimoto, L. Ley, and G. Pensl, Silicon Carbide: Volume 1: Growth, Defects, and Novel Applications ( Wiley, 2011).
15.
15. C. M. Zetterling and I. o. E. Engineers, Process Technology for Silicon Carbide Devices ( INSPEC, 2002).
16.
16. A. Los and M. Mazzola, J. Electron. Mater. 30(3), 235241 (2001).
http://dx.doi.org/10.1007/s11664-001-0022-2
17.
17. E. Arnold, IEEE Trans. Electron Devices 46(3), 497503 (1999).
http://dx.doi.org/10.1109/16.748868
18.
18. M. Holz, G. Hultsch, T. Scherg, and R. Rupp, Microelectron. Reliab. 47(9–11), 17411745 (2007).
http://dx.doi.org/10.1016/j.microrel.2007.07.031
19.
19. H. KATO, A–Tip News Article ( The Asian Technology Information Program (ATIP), 2008).
20.
20.Rohm, Semiconportal, 2010.
21.
21.Cree, DURHAM, N.C., 2011.
22.
22.The world market for silicon carbide and gallium nitride power semiconductors, IMS research, 2013.
23.
23. Y. Kondo, T. Takahashi, K. Ishii, Y. Hayashi, E. Sakuma, S. Misawa, H. Daimon, M. Yamanaka, and S. Yoshida, IEEE Electron Device Lett. 7(7), 404406 (1986).
http://dx.doi.org/10.1109/EDL.1986.26417
24.
24. J. N. Shenoy, J. A. Cooper, and M. R. Melloch, IEEE Electron Device Lett. 18(3), 9395 (1997).
http://dx.doi.org/10.1109/55.556091
25.
25. J. W. Palmour, L. Cheng, V. Pala, E. V. Brunt, D. J. Lichtenwalner, G. Y. Wang, J. Richmond, M. O'Loughlin, S. Ryu, S. T. Allen, A. A. Burk, and C. Scozzie, “ Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV,” in IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD) (2014), pp. 7982.
26.
26. H. F. Li, S. Dimitrijev, H. B. Harrison, and D. Sweatman, Appl. Phys. Lett. 70(15), 20282030 (1997).
http://dx.doi.org/10.1063/1.118773
27.
27. G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electron Device Lett. 22(4), 176178 (2001).
http://dx.doi.org/10.1109/55.915604
28.
28. S. T. Pantelides, G. Duscher, M. Di Ventra, R. Buczko, K. McDonald, M. B. Huang, R. A. Weller, I. Baumvol, F. C. Stedile, C. Radtke, S. J. Pennycook, G. Chung, C. C. Tin, J. R. Williams, J. H. Won, and L. C. Feldman, in Silicon Carbide and Related Materials - 1999 Pts, 1 & 2, edited by C. H. Carter, R. P. Devaty, and G. S. Rohrer ( Trans Tech Publications, Inc., 2000), Vol. 338–343, pp. 11331136.
29.
29. X. Shen, B. R. Tuttle, and S. T. Pantelides, J. Appl. Phys. 114(3), 033522 (2013).
http://dx.doi.org/10.1063/1.4815962
30.
30. S. T. Pantelides, S. W. Wang, A. Franceschetti, R. Buczko, M. Di Ventra, S. N. Rashkeev, L. Tsetseris, M. H. Evans, I. G. Batyrev, L. C. Feldman, S. Dhar, K. McDonald, R. A. Weller, R. D. Schrimpf, D. M. Fleetwood, X. J. Zhou, J. R. Williams, C. C. Tin, G. Y. Chung, T. Isaacs-Smith, S. R. Wang, S. J. Pennycook, G. Duscher, K. van Benthem, and L. M. Porter, in Silicon Carbide and Related Materials 2005, Pts 1 and 2, edited by R. P. Devaty ( Trans Tech Publications, Inc., 2006), Vol. 527–529, pp. 935948.
31.
31. R. Buczko, S. J. Pennycook, and S. T. Pantelides, in Structure and Electronic Properties of Ultrathin Dielectric Films on Silicon and Related Structures, edited by D. A. Buchanan, A. H. Edwards, H. J. VonBardeleben, and T. Hattori ( Cambridge University Press, 2000), Vol. 592, pp. 227232.
32.
32. Y. Tu and J. Tersoff, Phys. Rev. Lett. 84(19), 43934396 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4393
33.
33. M. Di Ventra and S. T. Pantelides, Phys. Rev. Lett. 83(8), 16241627 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1624
34.
34. P. Deak, A. Gali, J. Knaup, Z. Hajnal, T. Frauenheim, P. Ordejon, and J. W. Choyke, Physica B 340, 10691073 (2003).
35.
35. J. M. Knaup, P. Deak, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke, Phys. Rev. B 71(23), 235321 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235321
36.
36. P. Deak, J. M. Knaup, T. Hornos, C. Thill, A. Gali, and T. Frauenheim, J. Phys. D: Appl. Phys. 40(20), 62426253 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S09
37.
37. J. J. Wang, L. T. Zhang, Q. F. Zeng, V. L. Gerard, and G. Alain, Chin. Sci. Bull. 54(9), 14871494 (2009).
http://dx.doi.org/10.1007/s11434-009-0133-3
38.
38. A. Gavrikov, A. Knizhnik, A. Safonov, A. Scherbinin, A. Bagatur'yants, B. Potapkin, A. Chatterjee, and K. Matocha, J. Appl. Phys. 104(9), 093508 (2008).
http://dx.doi.org/10.1063/1.3006004
39.
39. W. B. Li, J. J. Zhao, Q. Z. Zhu, and D. J. Wang, Phys. Rev. B 87(8), 085320 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085320
40.
40. Y. Xu, X. Zhu, H. D. Lee, C. Xu, S. M. Shubeita, A. C. Ahyi, Y. Sharma, J. R. Williams, W. Lu, S. Ceesay, B. R. Tuttle, A. Wan, S. T. Pantelides, T. Gustafsson, E. L. Garfunkel, and L. C. Feldman, J. Appl. Phys. 115(3), 033502 (2014).
http://dx.doi.org/10.1063/1.4861626
41.
41. F. Devynck, A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. B 84(23), 235320 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235320
42.
42. X. Shen and S. T. Pantelides, in Silicon Carbide and Related Materials 2011, Pts 1 and 2, edited by R. P. Devaty, M. Dudley, T. P. Chow, and P. G. Neudeck ( Trans Tech Publications, Inc., 2012), Vol. 717–720, pp. 445448.
43.
43. X. G. Zhu, H. D. Lee, T. A. Feng, A. C. Ahyi, D. Mastrogiovanni, A. Wan, E. Garfunkel, J. R. Williams, T. Gustafsson, and L. C. Feldman, Appl. Phys. Lett. 97(7), 071908 (2010).
http://dx.doi.org/10.1063/1.3481672
44.
44. A. Modic, Y. K. Sharma, Y. Xu, G. Liu, A. C. Ahyi, J. R. Williams, L. C. Feldman, and S. Dhar, J. Electron. Mater. 43(4), 857862 (2014).
http://dx.doi.org/10.1007/s11664-014-3022-8
45.
45. C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, J. Appl. Phys. 109(1), 014506 (2011).
http://dx.doi.org/10.1063/1.3530600
46.
46. J. Rozen, S. Dhar, M. E. Zvanut, J. R. Williams, and L. C. Feldman, J. Appl. Phys. 105(12), 124506 (2009).
http://dx.doi.org/10.1063/1.3131845
47.
47. V. V. Afanas'ev and A. Stesmans, Phys. Rev. Lett. 78(12), 24372440 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2437
48.
48. B. R. Tuttle, X. Shen, and S. T. Pantelides, Appl. Phys. Lett. 102(12), 123505 (2013).
http://dx.doi.org/10.1063/1.4798536
49.
49. E. Pippel, J. Woltersdorf, H. O. Olafsson, and E. O. Sveinbjornsson, J. Appl. Phys. 97(3), 034302 (2005).
http://dx.doi.org/10.1063/1.1836004
50.
50. V. V. Afanas'ev, A. Stesmans, F. Ciobanu, G. Pensl, K. Y. Cheong, and S. Dimitrijev, Appl. Phys. Lett. 82(4), 568570 (2003).
http://dx.doi.org/10.1063/1.1532103
51.
51. J. M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W. J. Choyke, Phys. Rev. B 72(11), 115323 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.115323
52.
52. A.-M. El-Sayed, M. B. Watkins, A. L. Shluger, and V. V. Afanas'ev, Microelectron. Eng. 109, 6871 (2013).
http://dx.doi.org/10.1016/j.mee.2013.03.027
53.
53. B. R. Tuttle and S. T. Pantelides, Phys. Rev. B 79(11), 115206 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115206
54.
54. P. E. Blöchl, Phys. Rev. B 62(10), 61586179 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.6158
55.
55. E. Rosenbaum and L. F. Register, IEEE Trans. Electron Devices 44(2), 317323 (1997).
http://dx.doi.org/10.1109/16.557724
56.
56. M. Städele, B. R. Tuttle, and K. Hess, J. Appl. Phys. 89(1), 348363 (2001).
http://dx.doi.org/10.1063/1.1330764
57.
57. J. Rozen, A. C. Ahyi, Z. Xingguang, J. R. Williams, and L. C. Feldman, IEEE Trans. Electron Devices 58(11), 38083811 (2011).
http://dx.doi.org/10.1109/TED.2011.2164800
58.
58. Z. Chen, Y. Xu, E. Garfunkel, L. C. Feldman, T. Buyuklimanli, W. Ou, J. Serfass, A. Wan, and S. Dhar, Appl. Surf. Sci. 317, 593597 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.08.181
59.
59. H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 111(1), 014502 (2012).
http://dx.doi.org/10.1063/1.3673572
60.
60. P. M. Mooney and A. F. Basile, in Micro and Nanoelectronics: Emerging Device Challenges and Solution, edited by E. K. Iniewshi and T. Brozek ( CRC Press, Taylor and Francis Group, 2014), pp. 5168.
61.
61. R. Kosugi, T. Umeda, and Y. Sakuma, Appl. Phys. Lett. 99(18), 182111 (2011).
http://dx.doi.org/10.1063/1.3659689
62.
62. T. Umeda, K. Esaki, R. Kosugi, K. Fukuda, T. Ohshima, N. Morishita, and J. Isoya, Appl. Phys. Lett. 99(14), 142105 (2011).
http://dx.doi.org/10.1063/1.3644156
63.
63. C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, Appl. Phys. Lett. 102(19), 193507 (2013).
http://dx.doi.org/10.1063/1.4805355
64.
64. S. Wang, S. Dhar, S.-r. Wang, A. C. Ahyi, A. Franceschetti, J. R. Williams, L. C. Feldman, and S. T. Pantelides, Phys. Rev. Lett. 98(2), 026101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.026101
65.
65. S. Dhar, S. Wang, A. C. Ahyi, T. Isaacs-Smith, S. T. Pantelides, J. R. Williams, and L. C. Feldman, Silicon Carbide and Related Materials 2005, Pts 1 and 2 ( Trans Tech Publications, Inc., 2006), Vol. 527–529, pp. 949954.
66.
66. M. Noborio, Y. Kanzaki, J. Suda, and T. Kimoto, IEEE Trans. Electron Devices 52(9), 19541962 (2005).
http://dx.doi.org/10.1109/TED.2005.854269
67.
67. E. V. Brunt, L. Cheng, M. O'Loughlin, C. Capell, C. Jonas, K. Lam, J. Richmond, V. Pala, S. Ryu, S. T. Allen, A. A. Burk, J. W. Palmour, and C. Scozzie, “ 22 kV, 1 cm2, 4 H-SiC n-IGBTs with improved conductivity modulation,” in IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD) (2014), pp. 358361.
68.
68.ROHM, semiconductor today, 2013.
69.
69. T. Eberlein, R. Jones, and P. Briddon, Phys. Rev. Lett. 90(22), 225502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.225502
70.
70. T. Hiyoshi and T. Kimoto, Appl. Phys. Express 2(9), 091101 (2009).
http://dx.doi.org/10.1143/APEX.2.091101
71.
71. K. Kawahara, J. Suda, and T. Kimoto, Appl. Phys. Express 6(5), 051301 (2013).
http://dx.doi.org/10.7567/APEX.6.051301
72.
72. A. J. Lelis, R. Green, D. B. Habersat, and M. El, IEEE Trans. Electron Devices 62(2), 316323 (2015).
http://dx.doi.org/10.1109/TED.2014.2356172
73.
73. A. Lelis, D. Habersat, R. Green, and E. Mooro, ECS Trans. 58(4), 8793 (2013).
http://dx.doi.org/10.1149/05804.0087ecst
74.
74. A. J. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman, IEEE Trans. Electron Devices 55(8), 18351840 (2008).
http://dx.doi.org/10.1109/TED.2008.926672
75.
75. J. Rozen, S. Dhar, S. K. Dixit, V. V. Afanas'ev, F. O. Roberts, H. L. Dang, S. Wang, S. T. Pantelides, J. R. Williams, and L. C. Feldman, J. Appl. Phys. 103(12), 124513 (2008).
http://dx.doi.org/10.1063/1.2940736
76.
76. H. Yano, N. Kanafuji, A. Osawa, T. Hatayama, and T. Fuyuki, IEEE Trans. Electron Devices 62(2), 324332 (2015).
http://dx.doi.org/10.1109/TED.2014.2358260
77.
77. T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, and H. Matsunami, Jpn. J. Appl. Phys., Part 1 44(3), 12131218 (2005).
http://dx.doi.org/10.1143/JJAP.44.1213
78.
78. D. Okamoto, H. Yano, H. Kenji, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett. 31(7), 710712 (2010).
http://dx.doi.org/10.1109/LED.2010.2047239
79.
79. Y. K. Sharma, A. C. Ahyi, T. Issacs-Smith, X. Shen, S. T. Pantelides, X. Zhu, L. C. Feldman, J. Rozen, and J. R. Williams, Solid-State Electron. 68, 103107 (2012).
http://dx.doi.org/10.1016/j.sse.2011.10.030
80.
80. E. Ö. Sveinbjörnsson, F. Allerstam, H. Ö. Ólafsson, G. Gudjónsson, D. Dochev, T. Rödle, and R. Jos, Mater. Sci. Forum 556–557, 487492 (2007).
http://dx.doi.org/10.4028/www.scientific.net/MSF.556-557.487
81.
81. D. J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, and J. W. Palmour, Appl. Phys. Lett. 105, 182107 (2014).
http://dx.doi.org/10.1063/1.4901259
82.
82. X. Yang, B. Lee, and V. Misra, “ Effect of post deposition annealing for high mobility 4H-SiC MOSFET utilizing lanthanum silicate and atomic layer deposited SiO2,” in the 2nd IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2014.
83.
83. D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa, and H. Yano, IEEE Electron Device Lett. 35(12), 11761178 (2014).
http://dx.doi.org/10.1109/LED.2014.2362768
84.
84. S. Harada, S. Suzuki, J. Senzaki, R. Kosugi, K. Adachi, K. Fukuda, and K. Arai, IEEE Electron Device Lett. 22(6), 272274 (2001).
http://dx.doi.org/10.1109/55.924839
85.
85. A. Modic, G. Liu, A. C. Ahyi, Y. M. Zhou, P. Y. Xu, M. C. Hamilton, J. R. Williams, L. C. Feldman, and S. Dhar, IEEE Electron Device Lett. 35(9), 894896 (2014).
http://dx.doi.org/10.1109/LED.2014.2336592
86.
86. H. Kurimoto, K. Shibata, C. Kimura, H. Aoki, and T. Sugino, Appl. Surf. Sci. 253(5), 24162420 (2006).
http://dx.doi.org/10.1016/j.apsusc.2006.04.054
87.
87. R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 105(3), 032106 (2014).
http://dx.doi.org/10.1063/1.4891166
88.
88. S. M. Thomas, Y. K. Sharma, M. A. Crouch, C. A. Fisher, A. Perez-Tomas, M. R. Jennings, and P. A. Mawby, IEEE J. Electron Devices Soc. 2(5), 114117 (2014).
http://dx.doi.org/10.1109/JEDS.2014.2330737
89.
89. S. Dhar, Ph.D. dissertation, Vanderbilt University, 2005.
90.
90. H. Yano, T. Hirao, T. Kimoto, H. Matsunami, K. Asano, and Y. Sugawara, IEEE Electron Device Lett. 20(12), 611613 (1999).
http://dx.doi.org/10.1109/55.806101
91.
91. J. Senzaki, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki, and K. Fukuda, IEEE Electron Device Lett. 23(1), 1315 (2002).
http://dx.doi.org/10.1109/55.974797
92.
92. T. Endo, E. Okuno, T. Sakakibara, and S. Onda, Mater. Sci. Forum 600–603, 691694 (2009).
http://dx.doi.org/10.4028/www.scientific.net/MSF.600-603.691
93.
93. T. Hiyoshi, T. Masuda, K. Wada, S. Harada, and Y. Namikawa, Mater. Sci. Forum 740–742, 506509 (2013).
http://dx.doi.org/10.4028/www.scientific.net/MSF.740-742.506
94.
94. G. Liu, A. C. Ahyi, Y. Xu, T. Isaacs-Smith, Y. K. Sharma, J. R. Williams, L. C. Feldman, and S. Dhar, IEEE Electron Device Lett. 34(2), 181183 (2013).
http://dx.doi.org/10.1109/LED.2012.2233458
95.
95. T. Kimoto, H. Yoshioka, and T. Nakamura, in IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA) (2013), pp. 135138.
96.
96. M. Okamoto, M. Tanaka, T. Yatsuo, and K. Fukuda, Appl. Phys. Lett. 89(2), 023502 (2006).
http://dx.doi.org/10.1063/1.2221400
97.
97. M. Okamoto, Y. Makifuchi, M. Iijima, Y. Sakai, N. Iwamuro, H. Kimura, K. Fukuda, and H. Okumura, Appl. Phys. Express 5(4), 041302 (2012).
http://dx.doi.org/10.1143/APEX.5.041302
98.
98. M. Okamoto, Y. Makifuchi, T. Araoka, M. Miyazato, Y. Sugahara, T. Tsutsumi, Y. Onishi, H. Kimura, S. Harada, K. Fukuda, A. Otsuki, and H. Okumura, Mater. Sci. Forum 778–780, 975978 (2014).
http://dx.doi.org/10.4028/www.scientific.net/MSF.778-780.975
99.
99. T. Umeda, M. Okamoto, R. Kosugi, S. Harada, R. Arai, Y. Sato, T. Makino, and T. Ohshima, ECS Trans. 58(7), 5560 (2013).
http://dx.doi.org/10.1149/05807.0055ecst
100.
100. G. Liu, C. Xu, B. Yakshinskiy, L. Wielunski, T. Gustafsson, J. Bloch, S. Dhar, and L. C. Feldman, Appl. Phys. Lett. 105(19), 191602 (2014).
http://dx.doi.org/10.1063/1.4901719
101.
101. H. Yoshioka, J. Senzaki, A. Shimozato, Y. Tanaka, and H. Okumura, Appl. Phys. Lett. 104(8), 083516 (2014).
http://dx.doi.org/10.1063/1.4866790
102.
102. G. Liu, C. Xu, B. Yakshinskiy, L. Wielunski, T. Gustafsson, J. Bloch, S. Dhar, and L. C. Feldman, Appl. Phys. Lett. 106(12), 123502 (2015).
http://dx.doi.org/10.1063/1.4916266
103.
103. B. J. Baliga, Proc. IEEE 89(6), 822832 (2001).
http://dx.doi.org/10.1109/5.931471
104.
104. H. N. H. Yano, T. Hatayama, T. Uraoka, and T. Fuyuki, Mater. Sci. Forum 556–557, 807 (2007).
http://dx.doi.org/10.4028/www.scientific.net/MSF.556-557.807
105.
105. H. Yano, H. Nakao, H. Mikami, T. Hatayama, Y. Uraoka, and T. Fuyuki, Appl. Phys. Lett. 90(4), 042102 (2007).
http://dx.doi.org/10.1063/1.2434157
106.
106. S. Harada, S. Ito, M. Kato, A. Takatsuka, K. Kojima, K. Fukuda, and H. Okumura, Mater. Sci. Forum 645–648, 9991004 (2010).
http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.999
107.
107. Y. Sui, T. Tsuji, and J. A. Cooper, IEEE Electron Device Lett. 26(4), 255257 (2005).
http://dx.doi.org/10.1109/LED.2005.845495
108.
108. I. A. Khan, J. A. Cooper, Jr., M. A. Capano, T. Isaacs–Smith, and J. R. Williams, in Proceedings of the 14th International Symposium on Power Semiconductor Devices and ICs (2002), pp. 157160.
109.
109. Y. Kawada, T. Tawara, S. Nakamura, T. Tamori, and N. Iwamuro, Jpn. J. Appl. Phys., Part 1 48(11), 116508 (2009).
http://dx.doi.org/10.1143/JJAP.48.116508
110.
110. K. Kawahara, M. Krieger, J. Suda, and T. Kimoto, J. Appl. Phys. 108(2), 023706 (2010).
http://dx.doi.org/10.1063/1.3460636
111.
111. G. Liu, Y. Xu, C. Xu, A. Basile, F. Wang, S. Dhar, E. Conrad, P. Mooney, T. Gustafsson, and L. C. Feldman, Appl. Surf. Sci. 324, 3034 (2015).
http://dx.doi.org/10.1016/j.apsusc.2014.10.113
112.
112. D. K. Schroder, Semiconductor Material and Device Characterization ( Wiley, 2006).
113.
113. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology ( Wiley, 1982).
114.
114. H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 112(2), 024520 (2012).
http://dx.doi.org/10.1063/1.4740068
115.
115. S. Nakazawa, T. Okuda, J. Suda, T. Nakamura, and T. Kimoto, IEEE Trans. Electron Devices 62(2), 309315 (2015).
http://dx.doi.org/10.1109/TED.2014.2352117
116.
116. H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 115(1), 014502 (2014).
http://dx.doi.org/10.1063/1.4858435
117.
117. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices 41(12), 23572362 (1994).
http://dx.doi.org/10.1109/16.337449
118.
118. S. C. Sun and J. D. Plummer, IEEE J. Solid–State Circuits 15(4), 562573 (1980).
http://dx.doi.org/10.1109/JSSC.1980.1051439
119.
119. S. Dhar, S. Haney, L. Cheng, S. R. Ryu, A. K. Agarwal, L. C. Yu, and K. P. Cheung, J. Appl. Phys. 108(5), 054509 (2010).
http://dx.doi.org/10.1063/1.3484043
120.
120. S. Potbhare, N. Goldsman, A. Lelis, J. M. McGarrity, F. B. McLean, and D. Habersat, IEEE Trans. Electron Devices 55(8), 20292040 (2008).
http://dx.doi.org/10.1109/TED.2008.926665
121.
121. V. Tilak, K. Matocha, and G. Dunne, IEEE Trans. Electron Devices 54(11), 28232829 (2007).
http://dx.doi.org/10.1109/TED.2007.906929
122.
122. S. Dhar, A. C. Ahyi, J. R. Williams, S. H. Ryu, and A. K. Agarwal, Silicon Carbide and Related Materials 2011, Pts 1 and 2 ( Trans Tech Publications, Inc., 2012), Vol. 717–720, pp. 713716.
123.
123. P. Fiorenza, L. K. Swanson, M. Vivona, F. Giannazzo, C. Bongiorno, A. Frazzetto, and F. Roccaforte, Appl. Phys. A: Mater. Sci. Process. 115(1), 333339 (2014).
http://dx.doi.org/10.1007/s00339-013-7824-y
124.
124. S. M. N. K. K. Sze, Physics of Semiconductor Devices ( Wiley-Interscience, Hoboken, NJ, 2007).
125.
125. A. Modic, in 9th Annual ARL SiC MOS Workshop (2014).
126.
126. P. Liu, G. Li, G. Duscher, Y. K. Sharma, A. C. Ahyi, T. Isaacs-Smith, J. R. Williams, and S. Dhar, J. Vac. Sci. Technol., A 32(6), 060603 (2014).
http://dx.doi.org/10.1116/1.4897377
127.
127. P. Fiorenza, F. Giannazzo, M. Vivona, A. La Magna, and F. Roccaforte, Appl. Phys. Lett. 103(15), 153508 (2013).
http://dx.doi.org/10.1063/1.4824980
128.
128. N. O. Lipari, J. Vac. Sci. Technol. 15(4), 14121416 (1978).
http://dx.doi.org/10.1116/1.569798
129.
129. B. R. Tuttle, S. Dhar, S. H. Ryu, X. Zhu, J. R. Williams, L. C. Feldman, and S. T. Pantelides, J. Appl. Phys. 109(2), 023702 (2011).
http://dx.doi.org/10.1063/1.3533767
130.
130. J. P. Campbell, P. M. Lenahan, C. J. Cochrane, A. T. Krishnan, and S. Krishnan, IEEE Trans. Device Mater. Reliab. 7(4), 540557 (2007).
http://dx.doi.org/10.1109/TDMR.2007.911379
131.
131. J. P. Campbell, P. M. Lenahan, A. T. Krishnan, and S. Krishnan, Appl. Phys. Lett. 91(13), 133507 (2007).
http://dx.doi.org/10.1063/1.2790776
132.
132. X. Shen, E. X. Zhang, C. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S.-H. Ryu, and S. T. Pantelides, Appl. Phys. Lett. 98(6), 063507 (2011).
http://dx.doi.org/10.1063/1.3554428
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/2/10.1063/1.4922748
Loading
/content/aip/journal/apr2/2/2/10.1063/1.4922748
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/2/10.1063/1.4922748
2015-06-18
2016-12-10

Abstract

A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/2/1.4922748.html;jsessionid=GHuSue-kiNTrdxuA7H_31ZEh.x-aip-live-03?itemId=/content/aip/journal/apr2/2/2/10.1063/1.4922748&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/2/10.1063/1.4922748&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/2/10.1063/1.4922748'
Right1,Right2,Right3,