Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/3/10.1063/1.4926448
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric field effect in atomically thin carbon films,” Science 306, 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “ Das Adsorptionsverhalten sehr dünner Kohlenstoff Folien,” Z. Anorg. Allg. Chem. 316, 119127 (1962).
http://dx.doi.org/10.1002/zaac.19623160303
3.
3. A. J. van Bommel, J. E. Crombeen, and A. van Tooren, “ LEED and Auger electron observation of the SiC(0001) surface,” Surf. Sci. 48, 463472 (1975).
http://dx.doi.org/10.1016/0039-6028(75)90419-7
4.
4. T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “ Macroscopic graphene membranes and their extraordinary stiffness,” Nano Lett. 8, 24422446 (2008).
http://dx.doi.org/10.1021/nl801412y
5.
5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
6.
6. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “ Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6, 652655 (2007).
http://dx.doi.org/10.1038/nmat1967
7.
7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “ Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
8.
8. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “ Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902907 (2008).
http://dx.doi.org/10.1021/nl0731872
9.
9. A. K. Geim, “ Graphene: Status and prospects,” Science 324, 15301534 (2009).
http://dx.doi.org/10.1126/science.1158877
10.
10. P. R. Wallace, “ The band theory of graphite,” Phys. Rev. 71, 622634 (1947).
http://dx.doi.org/10.1103/PhysRev.71.622
11.
11. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “ The electronic properties of graphene,” Rev. Mod. Phys. 81, 109162 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
12.
12. S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “ Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407470 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.407
13.
13. P. Kim, “ Graphene and relativistic quantum physics,” Semin. Poincare 18, 121 (2014).
14.
14. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “ Chiral tunneling and the Klein paradox in graphene,” Nat. Phys. 2, 620625 (2006).
http://dx.doi.org/10.1038/nphys384
15.
15. A. F. Young and P. Kim, “ Quantum interference and Klein tunneling in graphene heterojunctions,” Nat. Phys. 5, 222226 (2009).
http://dx.doi.org/10.1038/nphys1198
16.
16. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “ Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11, 23962399 (2011).
http://dx.doi.org/10.1021/nl200758b
17.
17. F. Schwierz, “ Graphene transistors,” Nat. Nanotechnol. 5, 487496 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
18.
18. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “ High-frequency, scaled graphene transistors on diamond-like carbon,” Nature 472, 7478 (2011).
http://dx.doi.org/10.1038/nature09979
19.
19. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “ Control of graphene's properties by reversible hydrogenation: Evidence for graphane,” Science 323, 610613 (2009).
http://dx.doi.org/10.1126/science.1167130
20.
20. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, “ Properties of fluorinated graphene films,” Nano Lett. 10, 30013005 (2010).
http://dx.doi.org/10.1021/nl101437p
21.
21. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, “ Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99, 216802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216802
22.
22. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, and K. Kim, “ Graphene barristor, a triode device with a gate-controlled Schottky barrier,” Science 336, 11401143 (2012).
http://dx.doi.org/10.1126/science.1220527
23.
23. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “ Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100103 (2013).
http://dx.doi.org/10.1038/nnano.2012.224
24.
24. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “ Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 1795417961 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
25.
25. B. Trauzettel, D. V. Bulaev, D. Losss, and G. Burkard, “ Spin qubits in graphene quantum dots,” Nat. Phys. 3, 192196 (2007).
http://dx.doi.org/10.1038/nphys544
26.
26. P. Recher and B. Trauzettel, “ Quantum dots and spin qubits in graphene,” Nanotechnology 21, 302001 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/302001
27.
27. M. Fuchs, J. Schliemann, and B. Trauzettel, “ Ultralong spin decoherence times in graphene quantum dots with a small number of nuclear spins,” Phys. Rev. B 88, 245441 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245441
28.
28. H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, “ Intrinsic and Rashba spin-orbit interactions in graphene sheets,” Phys. Rev. B 74, 165310 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165310
29.
29. K. Ono and S. Tarucha, “ Nuclear-spin-induced oscillatory current in spin-blockaded quantum dots,” Phys. Rev. Lett. 92, 256803 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.256803
30.
30. T. Meunier, I. T. Vink, L. H. Willelms van Beveren, K.-J. Tielrooij, R. Hanson, F. H. L. Koppens, H. P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Vandersypen, “ Experimental signature of phonon-mediated spin relaxation in a two-electron quantum dot,” Phys. Rev. Lett. 98, 126601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.126601
31.
31. D. Kochan, M. Gmitra, and J. Fabian, “ Spin relaxation mechanism in graphene: Resonant scattering by magnetic impurities,” Phys. Rev. Lett. 112, 116602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.116602
32.
32. S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, “ Observation of Aharonov-Bohm conductance oscillations in a graphene ring,” Phys. Rev. B 77, 085413 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085413
33.
33. L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, “ Atomic force microscope local oxidation nanolithography of graphene,” Appl. Phys. Lett. 93, 093107 (2008).
http://dx.doi.org/10.1063/1.2976429
34.
34. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn, “ Investigation of the Aharonov–Bohm effect in a gated graphene ring,” Phys. Status Solidi B 246, 27562759 (2009).
http://dx.doi.org/10.1002/pssb.200982284
35.
35. J. S. Yoo, Y. W. Park, V. Skákalová, and S. Roth, “ Shubnikov–de Haas and Aharonov Bohm effects in a graphene nanoring structure,” Appl. Phys. Lett. 96, 143112 (2010).
http://dx.doi.org/10.1063/1.3380616
36.
36. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn, “ The Aharonov–Bohm effect in a side-gated graphene ring,” New J. Phys. 12, 043054 (2010).
http://dx.doi.org/10.1088/1367-2630/12/4/043054
37.
37. D. Smirnov, H. Schmidt, and R. J. Haug, “ Aharonov-Bohm effect in an electron-hole graphene ring system,” Appl. Phys. Lett. 100, 203114 (2012).
http://dx.doi.org/10.1063/1.4717622
38.
38. S. Lakshmi, S. Roche, and G. Cuniberti, “ Spin-valve effect in zigzag graphene nanoribbons by defect engineering,” Phys. Rev. B 80, 193404 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.193404
39.
39. G. Autes and O. V. Yazyev, “ Engineering quantum spin Hall effect in graphene nanoribbons via edge functionalization,” Phys. Rev. B 87, 241404 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.241404
40.
40. D. Bischoff, A. Varlet, P. Simonet, T. Ihn, and K. Ensslin, “ Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions,” New J. Phys. 15, 083029 (2013).
http://dx.doi.org/10.1088/1367-2630/15/8/083029
41.
41. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, “ Kondo effect in a single-electron transistor,” Nature 391, 156159 (1998).
http://dx.doi.org/10.1038/34373
42.
42. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, “ A tunable Kondo effect in quantum dots,” Science 281, 540544 (1998).
http://dx.doi.org/10.1126/science.281.5376.540
43.
43. S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, “ Shell filling and spin effects in a few electron quantum dot,” Phys. Rev. Lett. 77, 36133616 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3613
44.
44. D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, “ Spin splitting and even-odd effects in carbon nanotubes,” Phys. Rev. Lett. 81, 681684 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.681
45.
45. A. Jacobsen, P. Simonet, K. Ensslin, and T. Ihn, “ Finite-bias spectroscopy of a three-terminal graphene quantum dot in the multilevel regime,” Phys. Rev. B 89, 165413 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.165413
46.
46. X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, “ Graphene nanoribbons with smooth edges behave as quantum wires,” Nat. Nanotechnol. 6, 563567 (2011).
http://dx.doi.org/10.1038/nnano.2011.138
47.
47. J. Güttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, “ Transport through graphene quantum dots,” Rep. Prog. Phys. 75, 126502 (2012).
http://dx.doi.org/10.1088/0034-4885/75/12/126502
48.
48. A. K. Geim and K. S. Novoselov, “ The rise of graphene,” Nat. Mater. 6, 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
49.
49. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “ Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491495 (2008).
http://dx.doi.org/10.1038/nnano.2008.199
50.
50. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, “ Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4, 144148 (2008).
http://dx.doi.org/10.1038/nphys781
51.
51. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “ The structure of suspended graphene sheets,” Nature 446, 6063 (2007).
http://dx.doi.org/10.1038/nature05545
52.
52. J. Moser, A. Barreiro, and A. Bachtold, “ Current-induced cleaning of graphene,” Appl. Phys. Lett. 91, 163513 (2007).
http://dx.doi.org/10.1063/1.2789673
53.
53. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “ Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351355 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
54.
54. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “ Temperature-dependent transport in suspended graphene,” Phys. Rev. Lett. 101, 096802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.096802
55.
55. A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, and R. V. Gorbachev, “ How close can one approach the Dirac point in graphene experimentally?,” Nano Lett. 12, 46294634 (2012).
http://dx.doi.org/10.1021/nl301922d
56.
56. N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimarães, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, “ Quantized conductance of a suspended graphene nanoconstriction,” Nat. Phys. 7, 697700 (2011).
http://dx.doi.org/10.1038/nphys2009
57.
57. W. Bao, K. Myhro, Z. Zhao, Z. Chen, W. Jang, L. Jing, F. Miao, H. Zhang, C. Dames, and C. N. Lau, “ In situ observation of electrostatic and thermal manipulation of suspended graphene membranes,” Nano Lett. 12, 54705474 (2012).
http://dx.doi.org/10.1021/nl301836q
58.
58. D.-K. Ki and A. F. Morpurgo, “ High-quality multiterminal suspended graphene devices,” Nano Lett. 13, 51655170 (2013).
http://dx.doi.org/10.1021/nl402462q
59.
59. R. Maurand, P. Rickhaus, P. Makk, S. Hess, E. Tovari, C. Handschin, M. Weiss, and C. Schönenberger, “ Fabrication of ballistic suspended graphene with local-gating,” Carbon 79, 486492 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.07.088
60.
60. R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, “ Broken-symmetry states in doubly gated suspended bilayer graphene,” Science 330, 812816 (2010).
http://dx.doi.org/10.1126/science.1194988
61.
61. M. T. Allen, J. Martin, and A. Yacoby, “ Gate-defined quantum confinement in suspended bilayer graphene,” Nat. Commun. 3, 934 (2012).
http://dx.doi.org/10.1038/ncomms1945
62.
62. D.-K. Ki and A. F. Morpurgo, “ Crossover from Coulomb blockade to quantum Hall effect in suspended graphene nanoribbons,” Phys. Rev. Lett. 108, 266601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.266601
63.
63. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “ Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722726 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
64.
64. K. M. Burson, W. G. Cullen, S. Adam, C. R. Dean, K. Watanabe, T. Taniguchi, P. Kim, and M. S. Fuhrer, “ Direct imaging of charged impurity density in common graphene substrates,” Nano Lett. 13, 35763580 (2013).
http://dx.doi.org/10.1021/nl4012529
65.
65. S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “ Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett. 10, 49444951 (2010).
http://dx.doi.org/10.1021/nl1029607
66.
66. R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “ Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11, 22912295 (2011).
http://dx.doi.org/10.1021/nl2005115
67.
67. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “ Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10, 282285 (2011).
http://dx.doi.org/10.1038/nmat2968
68.
68. S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, “ Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices,” Nat. Mater. 11, 764767 (2012).
http://dx.doi.org/10.1038/nmat3386
69.
69. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “ One-dimensional electrical contact to a two-dimensional material,” Science 342, 614617 (2013).
http://dx.doi.org/10.1126/science.1244358
70.
70. P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi, K. Watanabe, D. Abanin, Z. Papic, P. Cadden-Zimansky, J. Hone, P. Kim, and C. R. Dean, “ Tunable fractional quantum Hall phases in bilayer graphene,” Science 345, 6164 (2014).
http://dx.doi.org/10.1126/science.1252875
71.
71. P. J. Zomer, M. H. D. Guimaraes, J. C. Brant, N. Tombros, and B. J. van Wees, “ Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride,” Appl. Phys. Lett. 105, 013101 (2014).
http://dx.doi.org/10.1063/1.4886096
72.
72. M. H. D. Guimaraes, P. J. Zomer, J. Ingla-Aynes, J. C. Brant, N. Tombros, and B. J. van Wees, “ Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field,” Phys. Rev. Lett. 113, 086602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.086602
73.
73. Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade, L. Li, and H. Liu, “ Effect of airborne contaminants on the wettability of supported graphene and graphite,” Nat. Mater. 12, 925931 (2013).
http://dx.doi.org/10.1038/nmat3709
74.
74. X. Wu, Y. Hu, M. Ruan, N. K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, and W. A. de Heer, “ Half integer quantum Hall effect in high mobility single layer epitaxial graphene,” Appl. Phys. Lett. 95, 223108 (2009).
http://dx.doi.org/10.1063/1.3266524
75.
75. S. Tanabe, Y. Sekine, H. Kageshima, M. Nagase, and H. Hibino, “ Carrier transport mechanism in graphene on SiC(0001),” Phys. Rev. B 84, 115458 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115458
76.
76. S. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal'ko, “ Charge transfer between epitaxial graphene and silicon carbide,” Appl. Phys. Lett. 97, 112109 (2010).
http://dx.doi.org/10.1063/1.3487782
77.
77. T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov, and V. I. Fal'ko, “ Anomalously strong pinning of the filling factor v=2 in epitaxial graphene,” Phys. Rev. B 83, 233402 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.233402
78.
78. J. A. Alexander-Webber, A. M. R. Baker, T. J. B. M. Janssen, A. Tzalenchuck, S. Lara-Avila, S. Kubatkin, R. Yakimova, B. A. Piot, D. K. Maude, and R. J. Nicholas, “ Phase space for the breakdown of the quantum Hall effect in epitaxial graphene,” Phys. Rev. Lett. 111, 096601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.096601
79.
79. T. Ando, “ The electronic properties of graphene and carbon nanotubes,” NPG Asia Mater. 1, 1721 (2009).
http://dx.doi.org/10.1038/asiamat.2009.1
80.
80. M. Acik and Y. J. Chabal, “ Nature of graphene edges: A review,” Jpn. J. Appl. Phys., Part 1 50, 070101 (2011).
http://dx.doi.org/10.7567/JJAP.50.070101
81.
81. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, “ Peculiar localized state at zigzag graphite edge,” J. Phys. Soc. Jpn. 65, 19201923 (1996).
http://dx.doi.org/10.1143/JPSJ.65.1920
82.
82. D. A. Areshkin, D. Gunlycke, and C. T. White, “ Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects,” Nano Lett. 7, 204210 (2007).
http://dx.doi.org/10.1021/nl062132h
83.
83. V. Barone, O. Hod, and G. Scuseria, “ Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6, 27482754 (2006).
http://dx.doi.org/10.1021/nl0617033
84.
84. Y.-W. Son, M. L. Cohen, and S. G. Louie, “ Energy gaps in graphene nanoribbons,” Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
85.
85. P. Koskinen, S. Malola, and H. Häkkinen, “ Self-passivating edge reconstructions of graphene,” Phys. Rev. Lett. 101, 115502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.115502
86.
86. B. Huang, M. Liu, N. Su, J. Wu, W. Duan, B.-L. Gu, and F. Liu, “ Quantum manifestations of graphene edge stress and edge instability: A first-principles study,” Phys. Rev. Lett. 102, 166404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.166404
87.
87. Q. Lu and R. Huang, “ Excess energy and deformation along free edges of graphene nanoribbons,” Phys. Rev. B 81, 155410 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155410
88.
88. T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, “ Structure, stability, edge states, and aromaticity of graphene ribbons,” Phys. Rev. Lett. 101, 096402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.096402
89.
89. S. M.-M. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J.-C. Charlier, and S. Roche, “ Quantum transport in graphene nanoribbons: Effects of edge reconstruction and chemical reactivity,” ACS Nano 4, 19711976 (2010).
http://dx.doi.org/10.1021/nn100028q
90.
90. P. Hawkins, M. Begliarbekov, M. Zivkovic, S. Strauf, and C. P. Search, “ Quantum transport in graphene nanoribbons with realistic edges,” J. Phys. Chem. C 116, 1838218387 (2012).
http://dx.doi.org/10.1021/jp304676h
91.
91. S. Ihnatsenka and G. Kirczenow, “ Effect of edge reconstruction and electron-electron interactions on quantum transport in graphene nanoribbons,” Phys. Rev. B 88, 125430 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.125430
92.
92. P. Wagner, V. V. Ivanovskaya, M. Melle-Franco, B. Humbert, J.-J. Adjizian, P. R. Briddon, and C. P. Ewels, “ Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges,” Phys. Rev. B 88, 094106 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.094106
93.
93. R. Ramprasad, P. von Allmen, and L. R. C. Fonseca, “ Contributions to the work function: A density-functional study of adsorbates at graphene ribbon edges,” Phys. Rev. B 60, 6023 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.6023
94.
94. N. Gorjizadeh and Y. Kawazoe, “ Chemical functionalization of graphene nanoribbons,” J. Nanomater. 2010, 513501.
http://dx.doi.org/10.1155/2010/513501
95.
95. P. Wagner, C. P. Ewels, J.-J. Adjizian, L. Magaud, P. Pochet, S. Roche, A. Lopez-Bezanilla, V. V. Ivanovskaya, A. Yaya, M. Rayson, P. Briddon, and B. Humbert, “ Band gap engineering via edge-functionalization of graphene nanoribbons,” Phys. Chem. C 117, 2679026796 (2013).
http://dx.doi.org/10.1021/jp408695c
96.
96. J. Dauber, B. Terres, C. Volk, S. Trellenkamp, and C. Stampfer, “ Reducing disorder in graphene nanoribbons by chemical edge modification,” Appl. Phys. Lett. 104, 083105 (2014).
http://dx.doi.org/10.1063/1.4866289
97.
97. X. Wang, S. M. Tabakman, and H. Dai, “ Atomic layer deposition of metal oxides on pristine and functionalized graphene,” J. Am. Chem. Soc. 130, 81528153 (2008).
http://dx.doi.org/10.1021/ja8023059
98.
98. T. Kato, L. Jiao, X. Wang, H. Wang, X. Li, L. Zhang, R. Hatakeyama, and H. Dai, “ Room-temperature edge functionalization and doping of graphene by mild plasma,” Small 7, 574577 (2011).
http://dx.doi.org/10.1002/smll.201002146
99.
99. R. Sekiya, Y. Uemura, H. Murakami, and T. Haino, “ White-light-emitting edge-functionalized graphene quantum dots,” Angew. Chem. 126, 57255729 (2014).
http://dx.doi.org/10.1002/ange.201311248
100.
100. D. Gunlycke, D. A. Areshkin, and C. T. White, “ Semiconducting graphene nanostrips with edge disorder,” Appl. Phys. Lett. 90, 142104 (2007).
http://dx.doi.org/10.1063/1.2718515
101.
101. D. Basu, M. J. Gilbert, L. F. Register, and S. K. Banerjee, “ Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett. 92, 042114 (2008).
http://dx.doi.org/10.1063/1.2839330
102.
102. T. C. Li and S.-P. Lu, “ Quantum conductance of graphene nanoribbons with edge defects,” Phys. Rev. B 77, 085408 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085408
103.
103. M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, “ Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons,” Phys. Rev. B 78, 161407(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.78.161407
104.
104. I. Martin and Ya. M. Blanter, “ Transport in disordered graphene nanoribbons,” Phys. Rev. B 79, 235132 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.235132
105.
105. A. Cresti and S. Roche, “ Range and correlation effects in edge disordered graphene nanoribbons,” New J. Phys. 11, 095004 (2009).
http://dx.doi.org/10.1088/1367-2630/11/9/095004
106.
106. E. R. Mucciolo, A. H. C. Neto, and C. H. Lewenkopf, “ Conductance quantization and transport gaps in disordered graphene nanoribbons,” Phys. Rev. B 79, 075407 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075407
107.
107. D. Querlioz, Y. Apertet, A. Valentin, K. Huet, A. Bournel, S. Galdin-Retailleau, and P. Dollfus, “ Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder,” Appl. Phys. Lett. 92, 042108 (2008).
http://dx.doi.org/10.1063/1.2838354
108.
108. A. Pieper, G. Schubert, G. Wellein, and H. Fehske, “ Effects of disorder and contacts on transport through graphene nanoribbons,” Phys. Rev. B 88, 195409 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.195409
109.
109. R. Reiter, U. Derra, S. Birner, B. Terres, F. Libisch, J. Burgdörfer, and C. Stampfer, “ Negative quantum capacitance in graphene nanoribbons with lateral gates,” Phys. Rev. B 89, 115406 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.115406
110.
110. K. Wakabayashi and M. Sigrist, “ Zero-conductance resonances due to flux states in nanographite ribbon junctions,” Phys. Rev. Lett. 84, 33903393 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3390
111.
111. H. Xu, T. Heinzel, and I. V. Zozoulenko, “ Edge disorder and localization regimes in bilayer graphene nanoribbons,” Phys. Rev. B 80, 045308 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045308
112.
112. S. Ihnatsenka and G. Kirczenow, “ Conductance quantization in graphene nanoconstrictions with mesoscopically smooth but atomically stepped boundaries,” Phys. Rev. B 85, 121407 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.121407
113.
113. F. Libisch, S. Rotter, and J. Burgdörfer, “ Coherent transport through graphene nanoribbons in the presence of edge disorder,” New J. Phys. 14, 123006 (2012).
http://dx.doi.org/10.1088/1367-2630/14/12/123006
114.
114. I. Kleftogiannis, I. Amanatidis, and V. A. Gopar, “ Conductance through disordered graphene nanoribbons: Standard and anomalous electron localization,” Phys. Rev. B 88, 205414 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.205414
115.
115. K. Wakabayashi, “ Electronic transport properties of nanographite ribbon junctions,” Phys. Rev. B 64, 125428 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.125428
116.
116. F. Munoz-Rojas, D. Jacob, J. Fernández-Rossier, and J. J. Palacios, “ Coherent transport in graphene nanoconstrictions,” Phys. Rev. B 74, 195417 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195417
117.
117. A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “ Valley filter and valley valve in graphene,” Nat. Phys. 3, 172175 (2007).
http://dx.doi.org/10.1038/nphys547
118.
118. P. Darancet, V. Olevano, and D. Mayou, “ Coherent electronic transport through graphene constrictions: Subwavelength regime and optical analogy,” Phys. Rev. Lett. 102, 136803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.136803
119.
119. J. Wurm, M. Wimmer, I. Adagideli, K. Richter, and H. U. Baranger, “ Interfaces within graphene nanoribbons,” New J. Phys. 11, 095022 (2009).
http://dx.doi.org/10.1088/1367-2630/11/9/095022
120.
120. L.-L. Jiang, L. Huang, R. Yang, and Y.-C. Lai, “ Control of transmission in disordered graphene nanojunctions through stochastic resonance,” Appl. Phys. Lett. 96, 262114 (2010).
http://dx.doi.org/10.1063/1.3460291
121.
121. F. Libisch, S. Rotter, and J. Burgdörfer, “ Disorder scattering in graphene nanoribbons,” Phys. Status Solidi B 248, 25982603 (2011).
http://dx.doi.org/10.1002/pssb.201100157
122.
122. H.-Y. Deng, K. Wakabayashi, and C.-H. Lam, “ Formation mechanism of bound states in graphene point contacts,” Phys. Rev. B 89, 045423 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.045423
123.
123. F. Sols, F. Guinea, and A. H. C. Neto, “ Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.166803
124.
124. C. Archambault and A. Rochefort, “ States modulation in graphene nanoribbons through metal contacts,” ACS Nano 7, 54145420 (2013).
http://dx.doi.org/10.1021/nn401357p
125.
125. M. Ijäs, M. Ervasti, A. Uppstu, P. Liljeroth, J. van der Lit, I. Swart, and A. Harju, “ Electronic states in finite graphene nanoribbons: Effect of charging and defects,” Phys. Rev. B 88, 075429 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075429
126.
126. A. A. Shylau, J. W. Klos, and I. V. Zozoulenko, “ Capacitance of graphene nanoribbons,” Phys. Rev. B 80, 205402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205402
127.
127. Y. M. You, Z. H. Ni, T. Yu, and Z. X. Shen, “ Edge chirality determination of graphene by Raman spectroscopy,” Appl. Phys. Lett. 93, 163112 (2008).
http://dx.doi.org/10.1063/1.3005599
128.
128. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “ Raman spectroscopy of graphene edges,” Nano Lett. 9, 14331441 (2009).
http://dx.doi.org/10.1021/nl8032697
129.
129. Y. N. Xu, D. Zhan, L. Liu, H. Suo, Z. H. Ni, T. T. Nguyen, C. Zhao, and Z. X. Shen, “ Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy,” ACS Nano 5, 147152 (2011).
http://dx.doi.org/10.1021/nn101920c
130.
130. B. Krauss, P. Nemes-Incze, V. Skakalova, L. P. Biro, K. v. Klitzing, and J. H. Smet, “ Raman scattering at pure graphene zigzag edges,” Nano Lett. 10, 45444548 (2010).
http://dx.doi.org/10.1021/nl102526s
131.
131. D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, and C. Stampfer, “ Raman spectroscopy on etched graphene nanoribbons,” J. Appl. Phys. 109, 073710 (2011).
http://dx.doi.org/10.1063/1.3561838
132.
132. S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “ Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 41234130 (2011).
http://dx.doi.org/10.1021/nn200799y
133.
133. L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai, “ Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties,” J. Am. Chem. Soc. 133, 1039410397 (2011).
http://dx.doi.org/10.1021/ja203860a
134.
134. R. Yang, Z. Shi, L. Zhang, D. Shi, and G. Zhang, “ Observation of Raman G-peak split for graphene nanoribbons with hydrogen-terminated zigzag edges,” Nano Lett. 11, 40834088 (2011).
http://dx.doi.org/10.1021/nl201387x
135.
135. L. G. Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, “ Influence of the atomic structure on the Raman spectra of graphite edges,” Phys. Rev. Lett. 93, 247401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.247401
136.
136. A. Chuvilin, J. C. Meyer, G. Algara-Siller, and U. Kaiser, “ From graphene constrictions to single carbon chains,” New J. Phys. 11, 083019 (2009).
http://dx.doi.org/10.1088/1367-2630/11/8/083019
137.
137. C. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, “ Graphene at the edge: Stability and dynamics,” Science 323, 17051708 (2009).
http://dx.doi.org/10.1126/science.1166999
138.
138. X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus, “ Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons,” Science 323, 17011705 (2009).
http://dx.doi.org/10.1126/science.1166862
139.
139. P. Koskinen, S. Malola, and H. Häkkinen, “ Evidence for graphene edges beyond zigzag and armchair,” Phys. Rev. B 80, 073401 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.073401
140.
140. Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, “ Open and closed edges of graphene layers,” Phys. Rev. Lett. 102, 015501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.015501
141.
141. K. Suenaga and M. Koshino, “ Atom-by-atom spectroscopy at graphene edge,” Nature 468, 10881090 (2010).
http://dx.doi.org/10.1038/nature09664
142.
142. R. Zan, Q. M. Ramasse, U. Bangert, and K. S. Novoselov, “ Graphene reknits its holes,” Nano Lett. 12, 39363940 (2012).
http://dx.doi.org/10.1021/nl300985q
143.
143. A. Sinitskii, A. A. Fursina, D. V. Kosynkin, A. L. Higginbotham, D. Natelson, and J. M. Tour, “ Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes,” Appl. Phys. Lett. 95, 253108 (2009).
http://dx.doi.org/10.1063/1.3276912
144.
144. L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, “ Facile synthesis of high-quality graphene nanoribbons,” Nat. Nanotechnol. 5, 321325 (2010).
http://dx.doi.org/10.1038/nnano.2010.54
145.
145. Z. J. Qi, J. A. Rodriguez-Manzo, A. R. Botello-Mendez, S. J. Hong, E. A. Stach, Y. W. Park, J.-C. Charlier, M. Drndic, and A. T. C. Johnson, “ Correlating atomic structure and transport in suspended graphene nanoribbons,” Nano Lett. 14, 42384244 (2014).
http://dx.doi.org/10.1021/nl501872x
146.
146. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, “ Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges,” Phys. Rev. B 73, 085421 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.085421
147.
147. K. A. Ritter and J. W. Lyding, “ The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons,” Nat. Mater. 8, 235242 (2009).
http://dx.doi.org/10.1038/nmat2378
148.
148. R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, “ An anisotropic etching effect in the graphene basal plane,” Adv. Mater. 22, 40144019 (2010).
http://dx.doi.org/10.1002/adma.201000618
149.
149. X. Zhang, O. V. Yazyev, J. Feng, L. Xie, C. Tao, Y.-C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, “ Experimentally engineering the edge termination of graphene nanoribbons,” ACS Nano 7, 198202 (2013).
http://dx.doi.org/10.1021/nn303730v
150.
150. Y. Kobayashi, K. Fukui, T. Enoki, and K. Kusakabe, “ Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy,” Phys. Rev. B 73, 125415 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.125415
151.
151. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “ Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466, 470473 (2010).
http://dx.doi.org/10.1038/nature09211
152.
152. C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, “ Spatially resolving edge states of chiral graphene nanoribbons,” Nat. Phys. 7, 616620 (2011).
http://dx.doi.org/10.1038/nphys1991
153.
153. M. Pan, E. C. Girao, X. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier, and M. S. Dresselhaus, “ Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons,” Nano Lett. 12, 19281933 (2012).
http://dx.doi.org/10.1021/nl204392s
154.
154. X. Jia, J. Campos-Delgado, E. E. Gracia-Espino, M. Hofmann, H. Muramatsu, Y. A. Kim, T. Hayashi, M. Endo, J. Kong, M. Terrones, and M. S. Dresselhaus, “ Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating,” J. Vac. Sci. Technol., B 27, 1996 (2009).
http://dx.doi.org/10.1116/1.3148829
155.
155. W. J. Yu, S. H. Chae, D. Perello, S. Y. Lee, G. H. Han, M. Yun, and Y. H. Lee, “ Synthesis of edge-closed graphene ribbons with enhanced conductivity,” ACS Nano 4, 54805486 (2010).
http://dx.doi.org/10.1021/nn101581k
156.
156. Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, “ Graphene nano-ribbon electronics,” Physica E 40, 228232 (2007).
http://dx.doi.org/10.1016/j.physe.2007.06.020
157.
157. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “ Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
158.
158. B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, and P. Kim, “ Electronic transport in locally gated graphene nanoconstrictions,” Appl. Phys. Lett. 91, 192107 (2007).
http://dx.doi.org/10.1063/1.2803074
159.
159. S. Adam, S. Cho, M. S. Fuhrer, and S. D. Sarma, “ Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons,” Phys. Rev. Lett. 101, 046404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.046404
160.
160. X. Liu, J. B. Oostinga, A. F. Morpurgo, and L. M. K. Vandersypen, “ Electrostatic confinement of electrons in graphene nanoribbons,” Phys. Rev. B 80, 121407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.121407
161.
161. R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “ Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
http://dx.doi.org/10.1063/1.3147183
162.
162. K. Todd, H.-T. Chou, S. Amasha, and D. Goldhaber-Gordon, “ Quantum dot behavior in graphene nanoconstrictions,” Nano Lett. 9, 416421 (2009).
http://dx.doi.org/10.1021/nl803291b
163.
163. J. Bai, X. Duan, and Y. Huang, “ Rational fabrication of graphene nanoribbons using a nanowire etch mask,” Nano Lett. 9, 20832087 (2009).
http://dx.doi.org/10.1021/nl900531n
164.
164. J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. Duan, “ Very large magnetoresistance in graphene nanoribbons,” Nat. Nanotechnol. 5, 655659 (2010).
http://dx.doi.org/10.1038/nnano.2010.154
165.
165. P. Gallagher, K. Todd, and D. Goldhaber-Gordon, “ Disorder-induced gap behavior in graphene nanoribbons,” Phys. Rev. B 81, 115409 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115409
166.
166. M. Y. Han, J. C. Brant, and P. Kim, “ Electron transport in disordered graphene nanoribbons,” Phys. Rev. Lett. 104, 056801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.056801
167.
167. Y. Yang and R. Murali, “ Impact of size effect on graphene nanoribbon transport,” IEEE Electron Device Lett. 31, 237239 (2010).
http://dx.doi.org/10.1109/LED.2009.2039915
168.
168. C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, and D. Jena, “ Quantum transport in graphene nanoribbons patterned by metal masks,” Appl. Phys. Lett. 96, 103109 (2010).
http://dx.doi.org/10.1063/1.3352559
169.
169. L. Liao, J. Bai, Y.-C. Lin, Y. Qu, Y. Huang, and X. Duan, “ High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics,” Adv. Mater. 22, 19411945 (2010).
http://dx.doi.org/10.1002/adma.200904415
170.
170. L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, “ Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics,” Nano Lett. 10, 19171921 (2010).
http://dx.doi.org/10.1021/nl100840z
171.
171. A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop, “ Thermally limited current carrying ability of graphene nanoribbons,” Phys. Rev. Lett. 106, 256801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.256801
172.
172. Y.-S. Shin, J. Y. Son, M.-H. Jo, Y.-H. Shin, and H. M. Jang, “ High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography,” J. Am. Chem. Soc. 133, 56235625 (2011).
http://dx.doi.org/10.1021/ja108464s
173.
173. R. Ribeiro, J.-M. Poumirol, A. Cresti, W. Escoffier, M. Goiran, J.-M. Broto, S. Roche, and B. Raquet, “ Unveiling the magnetic structure of graphene nanoribbons,” Phys. Rev. Lett. 107, 086601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.086601
174.
174. M. Wang, E. B. Song, S. Lee, J. Tang, M. Lang, C. Zeng, G. Xu, Y. Zhou, and K. L. Wang, “ Quantum dot behavior in bilayer graphene nanoribbons,” ACS Nano 5, 87698773 (2011).
http://dx.doi.org/10.1021/nn2027566
175.
175. Y.-J. Yu, M. Y. Han, S. Berciaud, A. B. Georgescu, T. F. Heinz, L. E. Brus, K. S. Kim, and P. Kim, “ High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon,” Appl. Phys. Lett. 99, 183105 (2011).
http://dx.doi.org/10.1063/1.3657515
176.
176. A. Behnam, A. S. Lyons, M.-H. Bae, E. K. Chow, S. Islam, C. M. Neumann, and E. Pop, “ Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition,” Nano Lett. 12, 44244430 (2012).
http://dx.doi.org/10.1021/nl300584r
177.
177. S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li, K. Tsukagoshi, S. Sato, and N. Yokoyama, “ Gate-controlled P–I–N junction switching device with graphene nanoribbon,” Appl. Phys. Express 5, 015101 (2012).
http://dx.doi.org/10.1143/APEX.5.015101
178.
178. W. J. Yu and X. Duan, “ Tunable transport gap in narrow bilayer graphene nanoribbons,” Sci. Rep. 3, 1248 (2013).
http://dx.doi.org/10.1038/srep01248
179.
179. M. J. Hollander, H. Madan, N. Shukla, D. A. Snyder, J. A. Robinson, and S. Datta, “ Short-channel graphene nanoribbon transistors with enhanced symmetry between p- and n-branches,” Appl. Phys. Express 7, 055103 (2014).
http://dx.doi.org/10.7567/APEX.7.055103
180.
180. W. S. Hwang, P. Zhao, K. Tahy, L. O. Nyakiti, V. D. Wheeler, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, J. A. Robinson, W. Haensch, H. Xing, A. Seabaugh, and D. Jena, “ Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates,” APL Mater. 3, 011101 (2015).
http://dx.doi.org/10.1063/1.4905155
181.
181. P. Simonet, D. Bischoff, A. Moser, T. Ihn, and K. Ensslin, “ Graphene nanoribbons: Relevance of etching process,” J. Appl. Phys. 117, 184303 (2015).
http://dx.doi.org/10.1063/1.4921104
182.
182. Y. M. Lin, V. Perebeinos, Z. Chen, and P. Avouris, “ Electrical observation of subband formation in graphene nanoribbons,” Phys. Rev. B 78, 161409 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.161409
183.
183. Y.-M. Lin and P. Avouris, “ Strong suppression of electrical noise in bilayer graphene nanodevices,” Nano Lett. 8, 21192125 (2008).
http://dx.doi.org/10.1021/nl080241l
184.
184. A. Fasoli, A. Colli, A. Lombardo, and A. C. Ferrari, “ Fabrication of graphene nanoribbons via nanowire lithography,” Phys. Status Solidi B 246, 25142517 (2009).
http://dx.doi.org/10.1002/pssb.200982356
185.
185. X. Liang, Y.-S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, “ Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography,” Nano Lett. 10, 24542460 (2010).
http://dx.doi.org/10.1021/nl100750v
186.
186. A. Candini, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and M. Affronte, “ Graphene spintronic devices with molecular nanomagnets,” Nano Lett. 11, 26342639 (2011).
http://dx.doi.org/10.1021/nl2006142
187.
187. W. S. Hwang, K. Tahy, X. Li, H. Xing, A. C. Seabaugh, C. Y. Sung, and D. Jena, “ Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene,” Appl. Phys. Lett. 100, 203107 (2012).
http://dx.doi.org/10.1063/1.4716983
188.
188. W. S. Hwang, K. Tahy, L. O. Nyakiti, V. D. Wheeler, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, H. Xing, A. Seabaugh, and D. Jena, “ Fabrication of top-gated epitaxial graphene nanoribbon FETs using hydrogen-silsesquioxane,” J. Vac. Sci. Technol., B 30, 03D104 (2012).
http://dx.doi.org/10.1116/1.3693593
189.
189. S. Minke, S. H. Jhang, J. Wurm, Y. Skourski, J. Wosnitza, C. Strunk, D. Weiss, K. Richter, and J. Eroms, “ Magnetotransport through graphene nanoribbons at high magnetic fields,” Phys. Rev. B 85, 195432 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195432
190.
190. S. Minke, J. Bundesmann, D. Weiss, and J. Eroms, “ Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays,” Phys. Rev. B 86, 155403 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.155403
191.
191. X. Liang and S. Wi, “ Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons,” ACS Nano 6, 97009710 (2012).
http://dx.doi.org/10.1021/nn303127y
192.
192. V. Abramova, A. S. Slesarev, and J. M. Tour, “ Meniscus-mask lithography for narrow graphene nanoribbons,” ACS Nano 7, 68946898 (2013).
http://dx.doi.org/10.1021/nn403057t
193.
193. P. D. Nguyen, T. C. Nguyen, A. T. Huynh, and E. Skafidas, “ High frequency characterization of graphene nanoribbon interconnects,” Mater. Res. Express 1, 035009 (2014).
http://dx.doi.org/10.1088/2053-1591/1/3/035009
194.
194. D.-H. Chae, B. Krauss, K. v. Klitzing, and J. H. Smet, “ Hot phonons in an electrically biased graphene constriction,” Nano Lett. 10, 466471 (2010).
http://dx.doi.org/10.1021/nl903167f
195.
195. J. B. Oostinga, B. Sacépé, M. F. Craciun, and A. F. Morpurgo, “ Magnetotransport through graphene nanoribbons,” Phys. Rev. B 81, 193408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.193408
196.
196. R. Danneau, F. Wu, M. Y. Tomi, J. B. Oostinga, A. F. Morpurgo, and P. J. Hakonen, “ Shot noise suppression and hopping conduction in graphene nanoribbons,” Phys. Rev. B 82, 161405 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.161405
197.
197. F. Duerr, J. B. Oostinga, C. Gould, and L. W. Molenkamp, “ Edge state transport through disordered graphene nanoribbons in the quantum Hall regime,” Phys. Rev. B 86, 081410 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.081410
198.
198. H. Hettmansperger, F. Duerr, J. B. Oostinga, C. Gould, B. Trauzettel, and L. W. Molenkamp, “ Quantum Hall effect in narrow graphene ribbons,” Phys. Rev. B 86, 195417 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.195417
199.
199. Z. B. Tan, A. Puska, T. Nieminen, F. Duerr, C. Gould, L. W. Molenkamp, B. Trauzettel, and P. J. Hakonen, “ Shot noise in lithographically patterned graphene nanoribbons,” Phys. Rev. B 88, 245415 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245415
200.
200. F. Molitor, A. Jacobsen, C. Stampfer, J. Güttinger, T. Ihn, and K. Ensslin, “ Transport gap in side-gated graphene constrictions,” Phys. Rev. B 79, 075426 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075426
201.
201. C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. Ihn, “ Energy gaps in etched graphene nanoribbons,” Phys. Rev. Lett. 102, 056403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.056403
202.
202. F. Molitor, C. Stampfer, J. Güttinger, A. Jacobsen, T. Ihn, and K. Ensslin, “ Energy and transport gaps in etched graphene nanoribbons,” Semicond. Sci. Technol. 25, 034002 (2010).
http://dx.doi.org/10.1088/0268-1242/25/3/034002
203.
203. S. Dröscher, H. Knowles, Y. Meir, K. Ensslin, and T. Ihn, “ Coulomb gap in graphene nanoribbons,” Phys. Rev. B 84, 073405 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.073405
204.
204. B. Terrés, J. Dauber, C. Volk, S. Trellenkamp, U. Wichmann, and C. Stampfer, “ Disorder induced Coulomb gaps in graphene constrictions with different aspect ratios,” Appl. Phys. Lett. 98, 032109 (2011).
http://dx.doi.org/10.1063/1.3544580
205.
205. D. Bischoff, T. Krähenmann, S. Dröscher, M. A. Gruner, C. Barraud, T. Ihn, and K. Ensslin, “ Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate,” Appl. Phys. Lett. 101, 203103 (2012).
http://dx.doi.org/10.1063/1.4765345
206.
206. N. Pascher, D. Bischoff, T. Ihn, and K. Ensslin, “ Scanning gate microscopy on a graphene nanoribbon,” Appl. Phys. Lett. 101, 063101 (2012).
http://dx.doi.org/10.1063/1.4742862
207.
207. S. Engels, P. Weber, B. Terres, J. Dauber, C. Meyer, C. Volk, S. Trellenkamp, U. Wichmann, and C. Stampfer, “ Fabrication of coupled graphene–nanotube quantum devices,” Nanotechnology 24, 035204 (2013).
http://dx.doi.org/10.1088/0957-4484/24/3/035204
208.
208. E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “ Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
http://dx.doi.org/10.1063/1.4789850
209.
209. D. Bischoff, F. Libisch, J. Burgdörfer, T. Ihn, and K. Ensslin, “ Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate,” Phys. Rev. B 90, 115405 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.115405
210.
210. D. Bischoff, M. Eich, A. Varlet, P. Simonet, T. Ihn, and K. Ensslin, “ Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon,” Phys. Rev. B 91, 115441 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.115441
211.
211. C. W. Smith, J. Katoch, and M. Ishigami, “ Impact of charge impurities on transport properties of graphene nanoribbons,” Appl. Phys. Lett. 102, 133502 (2013).
http://dx.doi.org/10.1063/1.4799675
212.
212. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “ Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319, 12291232 (2008).
http://dx.doi.org/10.1126/science.1150878
213.
213. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “ Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Phys. Rev. Lett. 100, 206803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206803
214.
214. J.-M. Poumirol, A. Cresti, S. Roche, W. Escoffier, M. Goiran, X. Wang, X. Li, H. Dai, and B. Raquet, “ Edge magnetotransport fingerprints in disordered graphene nanoribbons,” Phys. Rev. B 82, 041413 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.041413
215.
215. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “ Narrow graphene nanoribbons from carbon nanotubes,” Nature 458, 877880 (2009).
http://dx.doi.org/10.1038/nature07919
216.
216. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, “ Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature 458, 872877 (2009).
http://dx.doi.org/10.1038/nature07872
217.
217. D. V. Kosynkin, W. Lu, A. Sinitskii, G. Pera, Z. Sun, and J. M. Tour, “ Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor,” ACS Nano 5, 968974 (2011).
http://dx.doi.org/10.1021/nn102326c
218.
218. M.-W. Lin, C. Ling, L. A. Agapito, N. Kioussis, Y. Zhang, M. M.-C. Cheng, W. L. Wang, E. Kaxiras, and Z. Zhou, “ Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons,” Phys. Rev. B 84, 125411 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.125411
219.
219. M.-W. Lin, C. Ling, Y. Zhang, H. J. Yoon, M. M.-C. Cheng, L. A. Agapito, N. Kioussis, N. Widjaja, and Z. Zhou, “ Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors,” Nanotechnology 22, 265201 (2011).
http://dx.doi.org/10.1088/0957-4484/22/26/265201
220.
220. T. Shimizu, J. Haruyama, D. C. Marcano, D. V. Kosinkin, J. M. Tour, K. Hirose, and K. Suenaga, “ Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons,” Nat. Nanotechnol. 6, 4550 (2011).
http://dx.doi.org/10.1038/nnano.2010.249
221.
221. D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “ Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
http://dx.doi.org/10.1038/ncomms2366
222.
222. S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, K. Mullen, R. Fasel, and C. A. Pignedoli, “ Intraribbon heterojunction formation in ultranarrow graphene nanoribbons,” ACS Nano 6, 20202025 (2012).
http://dx.doi.org/10.1021/nn203129a
223.
223. P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Mullen, C. A. Pignedoli, and R. Fasel, “ Electronic structure of atomically precise graphene nanoribbons,” ACS Nano 6, 69306935 (2012).
http://dx.doi.org/10.1021/nn3021376
224.
224. M. Koch, F. Ample, C. Joachim, and L. Grill, “ Voltage-dependent conductance of a single graphene nanoribbon,” Nat. Nanotechnol. 7, 713717 (2012).
http://dx.doi.org/10.1038/nnano.2012.169
225.
225. H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. C. Neto, and A. T. S. Wee, “ Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons,” Sci. Rep. 2, 983 (2012).
http://dx.doi.org/10.1038/srep00983
226.
226. J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, and I. Swart, “ Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom,” Nat. Commun. 4, 2023 (2013).
http://dx.doi.org/10.1038/ncomms3023
227.
227. X. Wang and H. Dai, “ Etching and narrowing of graphene from the edges,” Nat. Chem. 2, 661665 (2010).
http://dx.doi.org/10.1038/nchem.719
228.
228. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp1, and W. A. de Heer, “ Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506, 349354 (2014).
http://dx.doi.org/10.1038/nature12952
229.
229. M. S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T. O. Mentes, A. Locatelli, and E. H. Conrad, “ The bottom-up growth of edge specific graphene nano-ribbons,” Nano Lett. 14, 60806086 (2014).
http://dx.doi.org/10.1021/nl502942z
230.
230. S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, “ Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope,” Appl. Phys. Lett. 94, 082107 (2009).
http://dx.doi.org/10.1063/1.3089693
231.
231. M. Moreno-Moreno, A. Castellanos-Gomez, G. Rubio-Bollinger, J. Gomez-Herrero, and N. Agrait, “ Ultralong natural graphene nanoribbons and their electrical conductivity,” Small 5, 924927 (2009).
http://dx.doi.org/10.1002/smll.200801442
232.
232. M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, “ Etching of graphene devices with a helium ion beam,” ACS Nano 3, 26742676 (2009).
http://dx.doi.org/10.1021/nn900744z
233.
233. A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “ Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 15381546 (2014).
http://dx.doi.org/10.1021/nn405759v
234.
234. A. M. Goossens, S. C. M. Driessen, T. A. Baart, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, “ Gate-defined confinement in bilayer graphene-hexagonal boron nitride hybrid devices,” Nano Lett. 12, 46564660 (2012).
http://dx.doi.org/10.1021/nl301986q
235.
235. L. Tapaszto, G. Dobrik, P. Lambin, and L. P. Biro, “ Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography,” Nat. Nanotechnol. 3, 397401 (2008).
http://dx.doi.org/10.1038/nnano.2008.149
236.
236. L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, “ Anisotropic etching and nanoribbon formation in single-layer graphene,” Nano Lett. 9, 26002604 (2009).
http://dx.doi.org/10.1021/nl900811r
237.
237. Y. Lu, B. Goldsmith, D. R. Strachan, J. H. Lim, Z. Luo, and A. T. C. Johnson, “ High-on/off-ratio graphene nanoconstriction field-effect transistor,” Small 6, 27482754 (2010).
http://dx.doi.org/10.1002/smll.201001324
238.
238. T. Kato and R. Hatakeyama, “ Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars,” Nat. Nanotechnol. 7, 651656 (2012).
http://dx.doi.org/10.1038/nnano.2012.145
239.
239. C.-H. Huang, C.-Y. Su, T. Okada, L.-J. Li, K.-I. Ho, P.-W. Li, I.-H. Chen, C. Chou, C.-S. Lai, and S. Samukawa, “ Ultra-low-edge-defect graphene nanoribbons patterned by neutral beam,” Carbon 61, 229235 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.04.099
240.
240. J. Moser and A. Bachtold, “ Fabrication of large addition energy quantum dots in graphene,” Appl. Phys. Lett. 95, 173506 (2009).
http://dx.doi.org/10.1063/1.3243690
241.
241. X.-X. Song, H.-O. Li, J. You, T.-Y. Han, G. Cao, T. Tu, M. Xiao, G.-C. Guo, H.-W. Jiang, and G.-P. Guo, “ Suspending effect on low-frequency charge noise in graphene quantum dot,” Sci. Rep. 5, 8142 (2015).
http://dx.doi.org/10.1038/srep08142
242.
242. S. Engels, A. Epping, C. Volk, S. Korte, B. Voigtlander, K. Watanabe, T. Taniguchi, S. Trellenkamp, and C. Stampfer, “ Etched graphene quantum dots on hexagonal boron nitride,” Appl. Phys. Lett. 103, 073113 (2013).
http://dx.doi.org/10.1063/1.4818627
243.
243. A. Epping, S. Engels, C. Volk, K. Watanabe, T. Taniguchi, S. Trellenkamp, and C. Stampfer, “ Etched graphene single electron transistors on hexagonal boron nitride in high magnetic fields,” Phys. Status Solidi B 250, 26922696 (2013).
http://dx.doi.org/10.1002/pssb.201300295
244.
244. J. Güttinger, C. Stampfer, S. Hellmüller, F. Molitor, T. Ihn, and K. Ensslin, “ Charge detection in graphene quantum dots,” Appl. Phys. Lett. 93, 212102 (2008).
http://dx.doi.org/10.1063/1.3036419
245.
245. J. Güttinger, C. Stampfer, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “ Coulomb oscillations in three-layer graphene nanostructures,” New J. Phys. 10, 125029 (2008).
http://dx.doi.org/10.1088/1367-2630/10/12/125029
246.
246. C. Stampfer, J. Güttinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “ Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
http://dx.doi.org/10.1063/1.2827188
247.
247. C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “ Tunable graphene single electron transistor,” Nano Lett. 8, 23782383 (2008).
http://dx.doi.org/10.1021/nl801225h
248.
248. J. Güttinger, C. Stampfer, F. Libisch, T. Frey, J. Burgdörfer, T. Ihn, and K. Ensslin, “ Electron-hole crossover in graphene quantum dots,” Phys. Rev. Lett. 103, 046810 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.046810
249.
249. J. Güttinger, C. Stampfer, T. Frey, T. Ihn, and K. Ensslin, “ Graphene quantum dots in perpendicular magnetic fields,” Phys. Status Solidi B 246, 25532557 (2009).
http://dx.doi.org/10.1002/pssb.200982312
250.
250. F. Molitor, S. Dröscher, J. Güttinger, A. Jacobsen, C. Stampfer, T. Ihn, and K. Ensslin, “ Transport through graphene double dots,” Appl. Phys. Lett. 94, 222107 (2009).
http://dx.doi.org/10.1063/1.3148367
251.
251. S. Schnez, F. Molitor, C. Stampfer, J. Güttinger, I. Shorubalko, T. Ihn, and K. Ensslin, “ Observation of excited states in a graphene quantum dot,” Appl. Phys. Lett. 94, 012107 (2009).
http://dx.doi.org/10.1063/1.3064128
252.
252. J. Güttinger, T. Frey, C. Stampfer, T. Ihn, and K. Ensslin, “ Spin states in graphene quantum dots,” Phys. Rev. Lett. 105, 116801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.116801
253.
253. X. L. Liu, D. Hug, and L. M. K. Vandersypen, “ Gate-defined graphene double quantum dot and excited state spectroscopy,” Nano Lett. 10, 16231627 (2010).
http://dx.doi.org/10.1021/nl9040912
254.
254. F. Molitor, H. Knowles, S. Dröscher, U. Gasser, T. Choi, P. Roulleau, J. Güttinger, A. Jacobsen, C. Stampfer, K. Ensslin, and T. Ihn, “ Observation of excited states in a graphene double quantum dot,” Europhys. Lett. 89, 67005 (2010).
http://dx.doi.org/10.1209/0295-5075/89/67005
255.
255. P. Roulleau, S. Baer, T. Choi, F. Molitor, J. Güttinger, T. Müller, S. Dröscher, K. Ensslin, and T. Ihn, “ Coherent electron–phonon coupling in tailored quantum systems,” Nat. Commun. 2, 239 (2011).
http://dx.doi.org/10.1038/ncomms1241
256.
256. S. Schnez, J. Güttinger, M. Huefner, C. Stampfer, K. Ensslin, and T. Ihn, “ Imaging localized states in graphene nanostructures,” Phys. Rev. B 82, 165445 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165445
257.
257. M. Arai, S. Masubuchi, and T. Machida, “ Single-electron switching effect in graphene parallel-coupled double quantum dots,” J. Phys.: Conf. Ser. 334, 012041 (2011).
http://dx.doi.org/10.1088/1742-6596/334/1/012041
258.
258. S. Fringes, C. Volk, C. Norda, B. Terres, J. Dauber, S. Engels, S. Trellenkamp, and C. Stampfer, “ Charge detection in a bilayer graphene quantum dot,” Phys. Status Solidi B 248, 26842687 (2011).
http://dx.doi.org/10.1002/pssb.201100189
259.
259. J. Güttinger, J. Seif, C. Stampfer, A. Capelli, K. Ensslin, and T. Ihn, “ Time-resolved charge detection in graphene quantum dots,” Phys. Rev. B 83, 165445 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165445
260.
260. J. Güttinger, C. Stampfer, T. Frey, T. Ihn, and K. Ensslin, “ Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field,” Nanoscale Res. Lett. 6, 253 (2011).
http://dx.doi.org/10.1186/1556-276X-6-253
261.
261. C. Volk, S. Fringes, B. Terrees, J. Dauber, S. Engels, S. Trellenkamp, and C. Stampfer, “ Electronic excited states in bilayer graphene double quantum dots,” Nano Lett. 11, 35813586 (2011).
http://dx.doi.org/10.1021/nl201295s
262.
262. L.-J. Wang, G.-P. Guo, D. Wei, G. Cao, T. Tu, M. Xiao, G.-C. Guo, and A. M. Chang, “ Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene,” Appl. Phys. Lett. 99, 112117 (2011).
http://dx.doi.org/10.1063/1.3638471
263.
263. S. Dröscher, J. Güttinger, T. Mathis, B. Batlogg, T. Ihn, and K. Ensslin, “ High-frequency gate manipulation of a bilayer graphene quantum dot,” Appl. Phys. Lett. 101, 043107 (2012).
http://dx.doi.org/10.1063/1.4737937
264.
264. S. Fringes, C. Volk, B. Terres, J. Dauber, S. Engels, S. Trellenkamp, and C. Stampfer, “ Tunable capacitive inter-dot coupling in a bilayer graphene double quantum dot,” Phys. Status Solidi C 9, 169174 (2012).
http://dx.doi.org/10.1002/pssc.201100340
265.
265. A. Jacobsen, P. Simonet, K. Ensslin, and T. Ihn, “ Transport in a three-terminal graphene quantum dot in the multi-level regime,” New J. Phys. 14, 023052 (2012).
http://dx.doi.org/10.1088/1367-2630/14/2/023052
266.
266. T. Müller, J. Güttinger, D. Bischoff, S. Hellmüller, K. Ensslin, and T. Ihn, “ Fast detection of single-charge tunneling to a graphene quantum dot in a multi-level regime,” Appl. Phys. Lett. 101, 012104 (2012).
http://dx.doi.org/10.1063/1.4733613
267.
267. C. Neumann, C. Volk, S. Engels, and C. Stampfer, “ Graphene-based charge sensors,” Nanotechnology 24, 444001 (2013).
http://dx.doi.org/10.1088/0957-4484/24/44/444001
268.
268. C. Volk, C. Neumann, S. Kazarski, S. Fringes, S. Engels, F. Haupt, A. Müller, and C. Stampfer, “ Probing relaxation times in graphene quantum dots,” Nat. Commun. 4, 1753 (2013).
http://dx.doi.org/10.1038/ncomms2738
269.
269. S. Moriyama, D. Tsuya, E. Watanabe, S. Uji, M. Shimizu, T. Mori, T. Yamaguchi, and K. Ishibashi, “ Coupled quantum dots in a graphene-based two-dimensional semimetal,” Nano Lett. 9, 28912896 (2009).
http://dx.doi.org/10.1021/nl9011535
270.
270. S. Moriyama, Y. Morita, E. Watanabe, D. Tsuya, S. Uji, M. Shimizu, and K. Ishibashi, “ Fabrication of quantum-dot devices in graphene,” Sci. Technol. Adv. Mater. 11, 054601 (2010).
http://dx.doi.org/10.1088/1468-6996/11/5/054601
271.
271. L.-J. Wang, G. Cao, T. Tu, H.-O. Li, C. Zhou, X.-J. Hao, Z. Su, G.-C. Guo, H.-W. Jiang, and G.-P. Guo, “ A graphene quantum dot with a single electron transistor as an integrated charge sensor,” Appl. Phys. Lett. 97, 262113 (2010).
http://dx.doi.org/10.1063/1.3533021
272.
272. L.-J. Wang, H.-O. Li, T. Tu, G. Cao, C. Zhou, X.-J. Hao, Z. Su, M. Xiao, G.-C. Guo, A. M. Chang, and G.-P. Guo, “ Controllable tunnel coupling and molecular states in a graphene double quantum dot,” Appl. Phys. Lett. 100, 022106 (2012).
http://dx.doi.org/10.1063/1.3676083
273.
273. M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher, C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal'ko, C. G. Smith, and T. J. B. M. Janssen, “ Gigahertz quantized charge pumping in graphene quantum dots,” Nat. Nanotechnol. 8, 417420 (2013).
http://dx.doi.org/10.1038/nnano.2013.73
274.
274. A. Müller, B. Kaestner, F. Hohls, T. Weimann, K. Pierz, and H. W. Schumacher, “ Bilayer graphene quantum dot defined by topgates,” J. Appl. Phys. 115, 233710 (2014).
http://dx.doi.org/10.1063/1.4884617
275.
275. A. Barreiro, H. S. J. van der Zant, and L. M. K. Vandersypen, “ Quantum dots at room temperature carved out from few-layer graphene,” Nano Lett. 12, 60966100 (2012).
http://dx.doi.org/10.1021/nl3036977
276.
276. S. Neubeck, L. A. Ponomarenko, F. Freitag, A. J. M. Giesbers, U. Zeitler, S. V. Morozov, P. Blake, A. K. Geim, and K. S. Novoselov, “ From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching,” Small 6, 14691473 (2010).
http://dx.doi.org/10.1002/smll.201000291
277.
277. R. K. Puddy, C. J. Chua, and M. R. Buitelaar, “ Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography,” Appl. Phys. Lett. 103, 183117 (2013).
http://dx.doi.org/10.1063/1.4828663
278.
278. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, “ Chaotic Dirac billiard in graphene quantum dots,” Science 320, 356358 (2008).
http://dx.doi.org/10.1126/science.1154663
279.
279. J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, “ Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots,” Nano Lett. 5, 287290 (2005).
http://dx.doi.org/10.1021/nl048111+
280.
280. T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport ( Oxford University Press, 2009).
281.
281. C. W. J. Beenakker and H. van Houten, “ Quantum transport in semiconductor nanostructures,” Solid State Phys. 44, 1228 (1991).
http://dx.doi.org/10.1016/S0081-1947(08)60091-0
282.
282. L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha, “ Excitation spectra of circular, few-electron quantum dots,” Science 278, 17881792 (1997).
http://dx.doi.org/10.1126/science.278.5344.1788
283.
283. L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, “ Few-electron quantum dots,” Rep. Prog. Phys. 64, 701736 (2001).
http://dx.doi.org/10.1088/0034-4885/64/6/201
284.
284. H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, “ Coulomb-blockade oscillations in semiconductor nanostructures,” Single Charge Tunneling and Coulomb Blockade Phenomena in Nanostructures ( Springer, 1992).
285.
285. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, “ Electron transport through double quantum dots,” Rev. Mod. Phys. 75, 122 (2002).
http://dx.doi.org/10.1103/RevModPhys.75.1
286.
286.While a band gap is a “bulk” material property, a confinement gap could arise due to the finite size of the device in analogy to a “particle in a box.”
287.
287. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, “ One-dimensional transport and the quantisation of the ballistic resistance,” J. Phys. C: Solid State Phys. 21, L209 (1988).
http://dx.doi.org/10.1088/0022-3719/21/8/002
288.
288. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, “ Quantized conductance of point contacts in a two-dimensional electron gas,” Phys. Rev. Lett. 60, 848850 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.848
289.
289. J. Nygard, D. H. Cobden, and P. E. Lindelof, “ Kondo physics in carbon nanotubes,” Nature 408, 342346 (2000).
http://dx.doi.org/10.1038/35042545
290.
290. H. O. H. Churchill, A. J. Bestwick, J. W. Harlow, F. Kuemmeth, D. Marcos, C. H. Stwertka, S. K. Watson, and C. M. Marcus, “ Electron–nuclear interaction in 13C nanotube double quantum dots,” Nat. Phys. 5, 321326 (2009).
http://dx.doi.org/10.1038/nphys1247
291.
291. M. R. Buitelaar, J. Fransson, A. L. Cantone, C. G. Smith, D. Anderson, G. A. C. Jones, A. Ardavan, A. N. Khlobystov, A. A. R. Watt, K. Porfyrakis, and G. A. D. Briggs, “ Pauli spin blockade in carbon nanotube double quantum dots,” Phys. Rev. B 77, 245439 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245439
292.
292. P. Fallahi, A. C. Bleszynski, R. M. Westervelt, J. Huang, J. D. Walls, E. J. Heller, M. Hanson, and A. C. Gossard, “ Imaging a single-electron quantum dot,” Nano Lett. 5, 223226 (2005).
http://dx.doi.org/10.1021/nl048405v
293.
293. W. Liang, M. Bockrath, and H. Park, “ Shell filling and exchange coupling in metallic single-walled carbon nanotubes,” Phys. Rev. Lett. 88, 126801 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.126801
294.
294. D. H. Cobden and J. Nygard, “ Shell filling in closed single-wall carbon nanotube quantum dots,” Phys. Rev. Lett. 89, 046803 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.046803
295.
295. E. B. Foxman, U. Meirav, P. L. McEuen, M. A. Kastner, O. Klein, P. A. Belk, D. M. Abusch, and S. J. Wind, “ Crossover from single-level to multilevel transport in artificial atoms,” Phys. Rev. B 50, 1419314199 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.14193
296.
296. M. Pierre, M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet, and S. Deleonibus, “ Background charges and quantum effects in quantum dots transport spectroscopy,” Eur. Phys. J. B 70, 475481 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00258-4
297.
297. R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold, E. Mariani, M. G. Schultz, F. v. Oppen, and K. Ensslin, “ Franck-condon blockade in suspended carbon nanotube quantum dots,” Nat. Phys. 5, 327331 (2009).
http://dx.doi.org/10.1038/nphys1234
298.
298. T. Schmidt, R. J. Haug, K. v. Klitzing, A. Förster, and H. Lüth, “ Spectroscopy of the single-particle states of a quantum-dot molecule,” Phys. Rev. Lett. 78, 15441547 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1544
299.
299. W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Möttönen, K. W. Chan, A. Morello, and A. S. Dzurak, “ Observation of the single-electron regime in a highly tunable silicon quantum dot,” Appl. Phys. Lett. 95, 242102 (2009).
http://dx.doi.org/10.1063/1.3272858
300.
300. S. K. Hämäläinen, Z. Sun, M. P. Boneschanscher, A. Uppstu, M. Ijäs, A. Harju, D. Vanmaekelbergh, and P. Liljeroth, “ Quantum-confined electronic states in atomically well-defined graphene nanostructures,” Phys. Rev. Lett. 107, 236803 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.236803
301.
301. S.-H. Phark, J. Borme, A. L. Vanegas, M. Corbetta, D. Sander, and J. Kirschner, “ Direct observation of electron confinement in epitaxial graphene nanoislands,” ACS Nano 5, 81628166 (2011).
http://dx.doi.org/10.1021/nn2028105
302.
302. D. Subramaniam, F. Libisch, Y. Li, C. Pauly, V. Geringer, R. Reiter, T. Mashoff, M. Liebmann, J. Burgdorfer, C. Busse, T. Michely, R. Mazzarello, M. Pratzer, and M. Morgenstern, “ Wave-function mapping of graphene quantum dots with soft confinement,” Phys. Rev. Lett. 108, 046801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.046801
303.
303. F. Craes, S. Runte, J. Klinkhammer, M. Kralj, T. Michely, and C. Busse, “ Mapping image potential states on graphene quantum dots,” Phys. Rev. Lett. 111, 056804 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.056804
304.
304. W. Jolie, F. Craes, M. Petrovic, N. Atodiresei, V. Caciuc, S. Blügel, M. Kralj, T. Michely, and C. Busse, “ Confinement of Dirac electrons in graphene quantum dots,” Phys. Rev. B 89, 155435 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155435
305.
305. M. Bacon, S. J. Bradley, and T. Nann, “ Graphene quantum dots,” Part. Part. Syst. Charact. 31, 415428 (2014).
http://dx.doi.org/10.1002/ppsc.201300252
306.
306. R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C.-C. Hwang, G. Ruan, G. Ceriotti, A.-R. O. Raji, A. A. Marti, and J. M. Tour, “ Coal as an abundant source of graphene quantum dots,” Nat. Commun. 4, 2943 (2013).
http://dx.doi.org/10.1038/ncomms3943
307.
307. X. Yan, X. Cui, B. Li, and L. Li, “ Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10, 18691873 (2010).
http://dx.doi.org/10.1021/nl101060h
308.
308. K. J. Williams, C. A. Nelson, X. Yan, L.-S. Li, and X. Zhu, “ Hot electron injection from graphene quantum dots to TiO2,” ACS Nano 7, 13881394 (2013).
http://dx.doi.org/10.1021/nn305080c
309.
309. Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “ Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 1518 (2012).
http://dx.doi.org/10.1021/ja206030c
310.
310. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, and S. P. Lau, “ Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6, 51025110 (2012).
http://dx.doi.org/10.1021/nn300760g
311.
311. Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, and P. M. Ajayan, “ In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes,” Nat. Nanotechnol. 8, 119124 (2013).
http://dx.doi.org/10.1038/nnano.2012.256
312.
312. Q. Xu, Q. Zhou, Z. Hua, Q. Xue, C. Zhang, X. Wang, D. Pan, and M. Xiao, “ Single-particle spectroscopic measurements of fluorescent graphene quantum dots,” ACS Nano 7, 1065410661 (2013).
http://dx.doi.org/10.1021/nn4053342
313.
313. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “ Graphene quantum dots derived from carbon fibers,” Nano Lett. 12, 844849 (2012).
http://dx.doi.org/10.1021/nl2038979
314.
314. D. Pan, J. Zhang, Z. Li, and M. Wu, “ Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734738 (2010).
http://dx.doi.org/10.1002/adma.200902825
315.
315. H. Sun, L. Wu, W. Wei, and X. Qu, “ Recent advances in graphene quantum dots for sensing,” Mater. Today 16, 433442 (2013).
http://dx.doi.org/10.1016/j.mattod.2013.10.020
316.
316. M. L. Mueller, X. Yan, J. A. McGuire, and L. Li, “ Triplet states and electronic relaxation in photoexcited graphene quantum dots,” Nano Lett. 10, 26792682 (2010).
http://dx.doi.org/10.1021/nl101474d
317.
317. D. Joung, L. Zhai, and S. I. Khondaker, “ Coulomb blockade and hopping conduction in graphene quantum dots array,” Phys. Rev. B 83, 115323 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115323
318.
318. N. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, “ Electromechanical properties of graphene drumheads,” Science 336, 15571561 (2012).
http://dx.doi.org/10.1126/science.1220335
319.
319. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “ The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263275 (2013).
http://dx.doi.org/10.1038/nchem.1589
320.
320. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “ Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197200 (2005).
http://dx.doi.org/10.1038/nature04233
321.
321. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “ Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372377 (2014).
http://dx.doi.org/10.1038/nnano.2014.35
322.
322. C. N. R. Rao, H. S. S. R. Matte, and U. Maitra, “ Graphene analogues of inorganic layered materials,” Angew. Chem. 52, 1316213185 (2013).
http://dx.doi.org/10.1002/anie.201301548
323.
323. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, “ Liquid exfoliation of layered materials,” Science 340, 1226419 (2013).
http://dx.doi.org/10.1126/science.1226419
324.
324. C. Kittel, Einführung in die Festkörperphysik ( Oldernbourg Verlag München Wien, 2006), Vol. 14, pp. 181206.
325.
325. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, Ph. Avouris, and M. Steiner, “ Electroluminescence in single layer MoS2,” Nano Lett. 13, 14161421 (2013).
http://dx.doi.org/10.1021/nl400516a
326.
326. A. Damascelli, “ Probing the electronic structure of complex systems by ARPES,” Phys. Scr. 2004, 6174 (2004).
http://dx.doi.org/10.1238/Physica.Topical.109a00061
327.
327. R. M. Feenstra, V. Ramachandran, and H. Chen, “ Recent developments in scanning tunneling spectroscopy of semiconductor surfaces,” Appl. Phys. A 72, S193S199 (2001).
http://dx.doi.org/10.1007/s003390100718
328.
328. N. W. Ashcroft and N. D. Mermin, Solid State Physics ( Brooks/Cole, 1976).
329.
329. H. Ibach and H. Lüth, Festkörperphysik ( Springer, 2009), Vol. 7.
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/3/10.1063/1.4926448
Loading
/content/aip/journal/apr2/2/3/10.1063/1.4926448
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/3/10.1063/1.4926448
2015-07-17
2016-12-07

Abstract

Graphene—two-dimensional carbon—is a material with unique mechanical, optical, chemical, and electronic properties. Its use in a wide range of applications was therefore suggested. From an electronic point of view, nanostructured graphene is of great interest due to the potential opening of a band gap, applications in quantum devices, and investigations of physical phenomena. Narrow graphene stripes called “nanoribbons” show clearly different electronical transport properties than micron-sized graphene devices. The conductivity is generally reduced and around the charge neutrality point, the conductance is nearly completely suppressed. While various mechanisms can lead to this observed suppression of conductance, disordered edges resulting in localized charge carriers are likely the main cause in a large number of experiments. Localized charge carriers manifest themselves in transport experiments by the appearance of Coulomb blockade diamonds. This review focuses on the mechanisms responsible for this charge localization, on interpreting the transport details, and on discussing the consequences for physics and applications. Effects such as multiple coupled sites of localized charge, cotunneling processes, and excited states are discussed. Also, different geometries of quantum devices are compared. Finally, an outlook is provided, where open questions are addressed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/3/1.4926448.html;jsessionid=gpobKpnRtEKD8AKJTKCy3qRU.x-aip-live-02?itemId=/content/aip/journal/apr2/2/3/10.1063/1.4926448&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/3/10.1063/1.4926448&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/3/10.1063/1.4926448'
Right1,Right2,Right3,