Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric field effect in atomically thin carbon films,” Science 306, 666669 (2004).
2. H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “ Das Adsorptionsverhalten sehr dünner Kohlenstoff Folien,” Z. Anorg. Allg. Chem. 316, 119127 (1962).
3. A. J. van Bommel, J. E. Crombeen, and A. van Tooren, “ LEED and Auger electron observation of the SiC(0001) surface,” Surf. Sci. 48, 463472 (1975).
4. T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, “ Macroscopic graphene membranes and their extraordinary stiffness,” Nano Lett. 8, 24422446 (2008).
5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321, 385 (2008).
6. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “ Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6, 652655 (2007).
7. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “ Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
8. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “ Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902907 (2008).
9. A. K. Geim, “ Graphene: Status and prospects,” Science 324, 15301534 (2009).
10. P. R. Wallace, “ The band theory of graphite,” Phys. Rev. 71, 622634 (1947).
11. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “ The electronic properties of graphene,” Rev. Mod. Phys. 81, 109162 (2009).
12. S. D. Sarma, S. Adam, E. H. Hwang, and E. Rossi, “ Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407470 (2011).
13. P. Kim, “ Graphene and relativistic quantum physics,” Semin. Poincare 18, 121 (2014).
14. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “ Chiral tunneling and the Klein paradox in graphene,” Nat. Phys. 2, 620625 (2006).
15. A. F. Young and P. Kim, “ Quantum interference and Klein tunneling in graphene heterojunctions,” Nat. Phys. 5, 222226 (2009).
16. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “ Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett. 11, 23962399 (2011).
17. F. Schwierz, “ Graphene transistors,” Nat. Nanotechnol. 5, 487496 (2010).
18. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “ High-frequency, scaled graphene transistors on diamond-like carbon,” Nature 472, 7478 (2011).
19. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “ Control of graphene's properties by reversible hydrogenation: Evidence for graphane,” Science 323, 610613 (2009).
20. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, “ Properties of fluorinated graphene films,” Nano Lett. 10, 30013005 (2010).
21. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, “ Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett. 99, 216802 (2007).
22. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, and K. Kim, “ Graphene barristor, a triode device with a gate-controlled Schottky barrier,” Science 336, 11401143 (2012).
23. T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, and A. Mishchenko, “ Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol. 8, 100103 (2013).
24. K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “ Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 1795417961 (1996).
25. B. Trauzettel, D. V. Bulaev, D. Losss, and G. Burkard, “ Spin qubits in graphene quantum dots,” Nat. Phys. 3, 192196 (2007).
26. P. Recher and B. Trauzettel, “ Quantum dots and spin qubits in graphene,” Nanotechnology 21, 302001 (2010).
27. M. Fuchs, J. Schliemann, and B. Trauzettel, “ Ultralong spin decoherence times in graphene quantum dots with a small number of nuclear spins,” Phys. Rev. B 88, 245441 (2013).
28. H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, “ Intrinsic and Rashba spin-orbit interactions in graphene sheets,” Phys. Rev. B 74, 165310 (2006).
29. K. Ono and S. Tarucha, “ Nuclear-spin-induced oscillatory current in spin-blockaded quantum dots,” Phys. Rev. Lett. 92, 256803 (2004).
30. T. Meunier, I. T. Vink, L. H. Willelms van Beveren, K.-J. Tielrooij, R. Hanson, F. H. L. Koppens, H. P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. K. Vandersypen, “ Experimental signature of phonon-mediated spin relaxation in a two-electron quantum dot,” Phys. Rev. Lett. 98, 126601 (2007).
31. D. Kochan, M. Gmitra, and J. Fabian, “ Spin relaxation mechanism in graphene: Resonant scattering by magnetic impurities,” Phys. Rev. Lett. 112, 116602 (2014).
32. S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, “ Observation of Aharonov-Bohm conductance oscillations in a graphene ring,” Phys. Rev. B 77, 085413 (2008).
33. L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson, “ Atomic force microscope local oxidation nanolithography of graphene,” Appl. Phys. Lett. 93, 093107 (2008).
34. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn, “ Investigation of the Aharonov–Bohm effect in a gated graphene ring,” Phys. Status Solidi B 246, 27562759 (2009).
35. J. S. Yoo, Y. W. Park, V. Skákalová, and S. Roth, “ Shubnikov–de Haas and Aharonov Bohm effects in a graphene nanoring structure,” Appl. Phys. Lett. 96, 143112 (2010).
36. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn, “ The Aharonov–Bohm effect in a side-gated graphene ring,” New J. Phys. 12, 043054 (2010).
37. D. Smirnov, H. Schmidt, and R. J. Haug, “ Aharonov-Bohm effect in an electron-hole graphene ring system,” Appl. Phys. Lett. 100, 203114 (2012).
38. S. Lakshmi, S. Roche, and G. Cuniberti, “ Spin-valve effect in zigzag graphene nanoribbons by defect engineering,” Phys. Rev. B 80, 193404 (2009).
39. G. Autes and O. V. Yazyev, “ Engineering quantum spin Hall effect in graphene nanoribbons via edge functionalization,” Phys. Rev. B 87, 241404 (2013).
40. D. Bischoff, A. Varlet, P. Simonet, T. Ihn, and K. Ensslin, “ Electronic triple-dot transport through a bilayer graphene island with ultrasmall constrictions,” New J. Phys. 15, 083029 (2013).
41. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, “ Kondo effect in a single-electron transistor,” Nature 391, 156159 (1998).
42. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, “ A tunable Kondo effect in quantum dots,” Science 281, 540544 (1998).
43. S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, “ Shell filling and spin effects in a few electron quantum dot,” Phys. Rev. Lett. 77, 36133616 (1996).
44. D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, “ Spin splitting and even-odd effects in carbon nanotubes,” Phys. Rev. Lett. 81, 681684 (1998).
45. A. Jacobsen, P. Simonet, K. Ensslin, and T. Ihn, “ Finite-bias spectroscopy of a three-terminal graphene quantum dot in the multilevel regime,” Phys. Rev. B 89, 165413 (2014).
46. X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo, and H. Dai, “ Graphene nanoribbons with smooth edges behave as quantum wires,” Nat. Nanotechnol. 6, 563567 (2011).
47. J. Güttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, “ Transport through graphene quantum dots,” Rep. Prog. Phys. 75, 126502 (2012).
48. A. K. Geim and K. S. Novoselov, “ The rise of graphene,” Nat. Mater. 6, 183191 (2007).
49. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “ Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491495 (2008).
50. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, “ Observation of electron–hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4, 144148 (2008).
51. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “ The structure of suspended graphene sheets,” Nature 446, 6063 (2007).
52. J. Moser, A. Barreiro, and A. Bachtold, “ Current-induced cleaning of graphene,” Appl. Phys. Lett. 91, 163513 (2007).
53. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “ Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351355 (2008).
54. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “ Temperature-dependent transport in suspended graphene,” Phys. Rev. Lett. 101, 096802 (2008).
55. A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, and R. V. Gorbachev, “ How close can one approach the Dirac point in graphene experimentally?,” Nano Lett. 12, 46294634 (2012).
56. N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimarães, I. J. Vera-Marun, H. T. Jonkman, and B. J. van Wees, “ Quantized conductance of a suspended graphene nanoconstriction,” Nat. Phys. 7, 697700 (2011).
57. W. Bao, K. Myhro, Z. Zhao, Z. Chen, W. Jang, L. Jing, F. Miao, H. Zhang, C. Dames, and C. N. Lau, “ In situ observation of electrostatic and thermal manipulation of suspended graphene membranes,” Nano Lett. 12, 54705474 (2012).
58. D.-K. Ki and A. F. Morpurgo, “ High-quality multiterminal suspended graphene devices,” Nano Lett. 13, 51655170 (2013).
59. R. Maurand, P. Rickhaus, P. Makk, S. Hess, E. Tovari, C. Handschin, M. Weiss, and C. Schönenberger, “ Fabrication of ballistic suspended graphene with local-gating,” Carbon 79, 486492 (2014).
60. R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, “ Broken-symmetry states in doubly gated suspended bilayer graphene,” Science 330, 812816 (2010).
61. M. T. Allen, J. Martin, and A. Yacoby, “ Gate-defined quantum confinement in suspended bilayer graphene,” Nat. Commun. 3, 934 (2012).
62. D.-K. Ki and A. F. Morpurgo, “ Crossover from Coulomb blockade to quantum Hall effect in suspended graphene nanoribbons,” Phys. Rev. Lett. 108, 266601 (2012).
63. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “ Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722726 (2010).
64. K. M. Burson, W. G. Cullen, S. Adam, C. R. Dean, K. Watanabe, T. Taniguchi, P. Kim, and M. S. Fuhrer, “ Direct imaging of charged impurity density in common graphene substrates,” Nano Lett. 13, 35763580 (2013).
65. S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “ Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett. 10, 49444951 (2010).
66. R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “ Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11, 22912295 (2011).
67. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “ Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10, 282285 (2011).
68. S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, and R. Gorbachev, “ Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices,” Nat. Mater. 11, 764767 (2012).
69. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “ One-dimensional electrical contact to a two-dimensional material,” Science 342, 614617 (2013).
70. P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi, K. Watanabe, D. Abanin, Z. Papic, P. Cadden-Zimansky, J. Hone, P. Kim, and C. R. Dean, “ Tunable fractional quantum Hall phases in bilayer graphene,” Science 345, 6164 (2014).
71. P. J. Zomer, M. H. D. Guimaraes, J. C. Brant, N. Tombros, and B. J. van Wees, “ Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride,” Appl. Phys. Lett. 105, 013101 (2014).
72. M. H. D. Guimaraes, P. J. Zomer, J. Ingla-Aynes, J. C. Brant, N. Tombros, and B. J. van Wees, “ Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field,” Phys. Rev. Lett. 113, 086602 (2014).
73. Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade, L. Li, and H. Liu, “ Effect of airborne contaminants on the wettability of supported graphene and graphite,” Nat. Mater. 12, 925931 (2013).
74. X. Wu, Y. Hu, M. Ruan, N. K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, and W. A. de Heer, “ Half integer quantum Hall effect in high mobility single layer epitaxial graphene,” Appl. Phys. Lett. 95, 223108 (2009).
75. S. Tanabe, Y. Sekine, H. Kageshima, M. Nagase, and H. Hibino, “ Carrier transport mechanism in graphene on SiC(0001),” Phys. Rev. B 84, 115458 (2011).
76. S. Kopylov, A. Tzalenchuk, S. Kubatkin, and V. I. Fal'ko, “ Charge transfer between epitaxial graphene and silicon carbide,” Appl. Phys. Lett. 97, 112109 (2010).
77. T. J. B. M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov, and V. I. Fal'ko, “ Anomalously strong pinning of the filling factor v=2 in epitaxial graphene,” Phys. Rev. B 83, 233402 (2011).
78. J. A. Alexander-Webber, A. M. R. Baker, T. J. B. M. Janssen, A. Tzalenchuck, S. Lara-Avila, S. Kubatkin, R. Yakimova, B. A. Piot, D. K. Maude, and R. J. Nicholas, “ Phase space for the breakdown of the quantum Hall effect in epitaxial graphene,” Phys. Rev. Lett. 111, 096601 (2013).
79. T. Ando, “ The electronic properties of graphene and carbon nanotubes,” NPG Asia Mater. 1, 1721 (2009).
80. M. Acik and Y. J. Chabal, “ Nature of graphene edges: A review,” Jpn. J. Appl. Phys., Part 1 50, 070101 (2011).
81. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, “ Peculiar localized state at zigzag graphite edge,” J. Phys. Soc. Jpn. 65, 19201923 (1996).
82. D. A. Areshkin, D. Gunlycke, and C. T. White, “ Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects,” Nano Lett. 7, 204210 (2007).
83. V. Barone, O. Hod, and G. Scuseria, “ Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6, 27482754 (2006).
84. Y.-W. Son, M. L. Cohen, and S. G. Louie, “ Energy gaps in graphene nanoribbons,” Phys. Rev. Lett. 97, 216803 (2006).
85. P. Koskinen, S. Malola, and H. Häkkinen, “ Self-passivating edge reconstructions of graphene,” Phys. Rev. Lett. 101, 115502 (2008).
86. B. Huang, M. Liu, N. Su, J. Wu, W. Duan, B.-L. Gu, and F. Liu, “ Quantum manifestations of graphene edge stress and edge instability: A first-principles study,” Phys. Rev. Lett. 102, 166404 (2009).
87. Q. Lu and R. Huang, “ Excess energy and deformation along free edges of graphene nanoribbons,” Phys. Rev. B 81, 155410 (2010).
88. T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, “ Structure, stability, edge states, and aromaticity of graphene ribbons,” Phys. Rev. Lett. 101, 096402 (2008).
89. S. M.-M. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J.-C. Charlier, and S. Roche, “ Quantum transport in graphene nanoribbons: Effects of edge reconstruction and chemical reactivity,” ACS Nano 4, 19711976 (2010).
90. P. Hawkins, M. Begliarbekov, M. Zivkovic, S. Strauf, and C. P. Search, “ Quantum transport in graphene nanoribbons with realistic edges,” J. Phys. Chem. C 116, 1838218387 (2012).
91. S. Ihnatsenka and G. Kirczenow, “ Effect of edge reconstruction and electron-electron interactions on quantum transport in graphene nanoribbons,” Phys. Rev. B 88, 125430 (2013).
92. P. Wagner, V. V. Ivanovskaya, M. Melle-Franco, B. Humbert, J.-J. Adjizian, P. R. Briddon, and C. P. Ewels, “ Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges,” Phys. Rev. B 88, 094106 (2013).
93. R. Ramprasad, P. von Allmen, and L. R. C. Fonseca, “ Contributions to the work function: A density-functional study of adsorbates at graphene ribbon edges,” Phys. Rev. B 60, 6023 (1999).
94. N. Gorjizadeh and Y. Kawazoe, “ Chemical functionalization of graphene nanoribbons,” J. Nanomater. 2010, 513501.
95. P. Wagner, C. P. Ewels, J.-J. Adjizian, L. Magaud, P. Pochet, S. Roche, A. Lopez-Bezanilla, V. V. Ivanovskaya, A. Yaya, M. Rayson, P. Briddon, and B. Humbert, “ Band gap engineering via edge-functionalization of graphene nanoribbons,” Phys. Chem. C 117, 2679026796 (2013).
96. J. Dauber, B. Terres, C. Volk, S. Trellenkamp, and C. Stampfer, “ Reducing disorder in graphene nanoribbons by chemical edge modification,” Appl. Phys. Lett. 104, 083105 (2014).
97. X. Wang, S. M. Tabakman, and H. Dai, “ Atomic layer deposition of metal oxides on pristine and functionalized graphene,” J. Am. Chem. Soc. 130, 81528153 (2008).
98. T. Kato, L. Jiao, X. Wang, H. Wang, X. Li, L. Zhang, R. Hatakeyama, and H. Dai, “ Room-temperature edge functionalization and doping of graphene by mild plasma,” Small 7, 574577 (2011).
99. R. Sekiya, Y. Uemura, H. Murakami, and T. Haino, “ White-light-emitting edge-functionalized graphene quantum dots,” Angew. Chem. 126, 57255729 (2014).
100. D. Gunlycke, D. A. Areshkin, and C. T. White, “ Semiconducting graphene nanostrips with edge disorder,” Appl. Phys. Lett. 90, 142104 (2007).
101. D. Basu, M. J. Gilbert, L. F. Register, and S. K. Banerjee, “ Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett. 92, 042114 (2008).
102. T. C. Li and S.-P. Lu, “ Quantum conductance of graphene nanoribbons with edge defects,” Phys. Rev. B 77, 085408 (2008).
103. M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, “ Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons,” Phys. Rev. B 78, 161407(R) (2008).
104. I. Martin and Ya. M. Blanter, “ Transport in disordered graphene nanoribbons,” Phys. Rev. B 79, 235132 (2009).
105. A. Cresti and S. Roche, “ Range and correlation effects in edge disordered graphene nanoribbons,” New J. Phys. 11, 095004 (2009).
106. E. R. Mucciolo, A. H. C. Neto, and C. H. Lewenkopf, “ Conductance quantization and transport gaps in disordered graphene nanoribbons,” Phys. Rev. B 79, 075407 (2009).
107. D. Querlioz, Y. Apertet, A. Valentin, K. Huet, A. Bournel, S. Galdin-Retailleau, and P. Dollfus, “ Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder,” Appl. Phys. Lett. 92, 042108 (2008).
108. A. Pieper, G. Schubert, G. Wellein, and H. Fehske, “ Effects of disorder and contacts on transport through graphene nanoribbons,” Phys. Rev. B 88, 195409 (2013).
109. R. Reiter, U. Derra, S. Birner, B. Terres, F. Libisch, J. Burgdörfer, and C. Stampfer, “ Negative quantum capacitance in graphene nanoribbons with lateral gates,” Phys. Rev. B 89, 115406 (2014).
110. K. Wakabayashi and M. Sigrist, “ Zero-conductance resonances due to flux states in nanographite ribbon junctions,” Phys. Rev. Lett. 84, 33903393 (2000).
111. H. Xu, T. Heinzel, and I. V. Zozoulenko, “ Edge disorder and localization regimes in bilayer graphene nanoribbons,” Phys. Rev. B 80, 045308 (2009).
112. S. Ihnatsenka and G. Kirczenow, “ Conductance quantization in graphene nanoconstrictions with mesoscopically smooth but atomically stepped boundaries,” Phys. Rev. B 85, 121407 (2012).
113. F. Libisch, S. Rotter, and J. Burgdörfer, “ Coherent transport through graphene nanoribbons in the presence of edge disorder,” New J. Phys. 14, 123006 (2012).
114. I. Kleftogiannis, I. Amanatidis, and V. A. Gopar, “ Conductance through disordered graphene nanoribbons: Standard and anomalous electron localization,” Phys. Rev. B 88, 205414 (2013).
115. K. Wakabayashi, “ Electronic transport properties of nanographite ribbon junctions,” Phys. Rev. B 64, 125428 (2001).
116. F. Munoz-Rojas, D. Jacob, J. Fernández-Rossier, and J. J. Palacios, “ Coherent transport in graphene nanoconstrictions,” Phys. Rev. B 74, 195417 (2006).
117. A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, “ Valley filter and valley valve in graphene,” Nat. Phys. 3, 172175 (2007).
118. P. Darancet, V. Olevano, and D. Mayou, “ Coherent electronic transport through graphene constrictions: Subwavelength regime and optical analogy,” Phys. Rev. Lett. 102, 136803 (2009).
119. J. Wurm, M. Wimmer, I. Adagideli, K. Richter, and H. U. Baranger, “ Interfaces within graphene nanoribbons,” New J. Phys. 11, 095022 (2009).
120. L.-L. Jiang, L. Huang, R. Yang, and Y.-C. Lai, “ Control of transmission in disordered graphene nanojunctions through stochastic resonance,” Appl. Phys. Lett. 96, 262114 (2010).
121. F. Libisch, S. Rotter, and J. Burgdörfer, “ Disorder scattering in graphene nanoribbons,” Phys. Status Solidi B 248, 25982603 (2011).
122. H.-Y. Deng, K. Wakabayashi, and C.-H. Lam, “ Formation mechanism of bound states in graphene point contacts,” Phys. Rev. B 89, 045423 (2014).
123. F. Sols, F. Guinea, and A. H. C. Neto, “ Coulomb blockade in graphene nanoribbons,” Phys. Rev. Lett. 99, 166803 (2007).
124. C. Archambault and A. Rochefort, “ States modulation in graphene nanoribbons through metal contacts,” ACS Nano 7, 54145420 (2013).
125. M. Ijäs, M. Ervasti, A. Uppstu, P. Liljeroth, J. van der Lit, I. Swart, and A. Harju, “ Electronic states in finite graphene nanoribbons: Effect of charging and defects,” Phys. Rev. B 88, 075429 (2013).
126. A. A. Shylau, J. W. Klos, and I. V. Zozoulenko, “ Capacitance of graphene nanoribbons,” Phys. Rev. B 80, 205402 (2009).
127. Y. M. You, Z. H. Ni, T. Yu, and Z. X. Shen, “ Edge chirality determination of graphene by Raman spectroscopy,” Appl. Phys. Lett. 93, 163112 (2008).
128. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “ Raman spectroscopy of graphene edges,” Nano Lett. 9, 14331441 (2009).
129. Y. N. Xu, D. Zhan, L. Liu, H. Suo, Z. H. Ni, T. T. Nguyen, C. Zhao, and Z. X. Shen, “ Thermal dynamics of graphene edges investigated by polarized Raman spectroscopy,” ACS Nano 5, 147152 (2011).
130. B. Krauss, P. Nemes-Incze, V. Skakalova, L. P. Biro, K. v. Klitzing, and J. H. Smet, “ Raman scattering at pure graphene zigzag edges,” Nano Lett. 10, 45444548 (2010).
131. D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, and C. Stampfer, “ Raman spectroscopy on etched graphene nanoribbons,” J. Appl. Phys. 109, 073710 (2011).
132. S. Ryu, J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “ Raman spectroscopy of lithographically patterned graphene nanoribbons,” ACS Nano 5, 41234130 (2011).
133. L. Xie, H. Wang, C. Jin, X. Wang, L. Jiao, K. Suenaga, and H. Dai, “ Graphene nanoribbons from unzipped carbon nanotubes: Atomic structures, Raman spectroscopy, and electrical properties,” J. Am. Chem. Soc. 133, 1039410397 (2011).
134. R. Yang, Z. Shi, L. Zhang, D. Shi, and G. Zhang, “ Observation of Raman G-peak split for graphene nanoribbons with hydrogen-terminated zigzag edges,” Nano Lett. 11, 40834088 (2011).
135. L. G. Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, “ Influence of the atomic structure on the Raman spectra of graphite edges,” Phys. Rev. Lett. 93, 247401 (2004).
136. A. Chuvilin, J. C. Meyer, G. Algara-Siller, and U. Kaiser, “ From graphene constrictions to single carbon chains,” New J. Phys. 11, 083019 (2009).
137. C. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, “ Graphene at the edge: Stability and dynamics,” Science 323, 17051708 (2009).
138. X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus, “ Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons,” Science 323, 17011705 (2009).
139. P. Koskinen, S. Malola, and H. Häkkinen, “ Evidence for graphene edges beyond zigzag and armchair,” Phys. Rev. B 80, 073401 (2009).
140. Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, “ Open and closed edges of graphene layers,” Phys. Rev. Lett. 102, 015501 (2009).
141. K. Suenaga and M. Koshino, “ Atom-by-atom spectroscopy at graphene edge,” Nature 468, 10881090 (2010).
142. R. Zan, Q. M. Ramasse, U. Bangert, and K. S. Novoselov, “ Graphene reknits its holes,” Nano Lett. 12, 39363940 (2012).
143. A. Sinitskii, A. A. Fursina, D. V. Kosynkin, A. L. Higginbotham, D. Natelson, and J. M. Tour, “ Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes,” Appl. Phys. Lett. 95, 253108 (2009).
144. L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, “ Facile synthesis of high-quality graphene nanoribbons,” Nat. Nanotechnol. 5, 321325 (2010).
145. Z. J. Qi, J. A. Rodriguez-Manzo, A. R. Botello-Mendez, S. J. Hong, E. A. Stach, Y. W. Park, J.-C. Charlier, M. Drndic, and A. T. C. Johnson, “ Correlating atomic structure and transport in suspended graphene nanoribbons,” Nano Lett. 14, 42384244 (2014).
146. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, “ Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges,” Phys. Rev. B 73, 085421 (2006).
147. K. A. Ritter and J. W. Lyding, “ The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons,” Nat. Mater. 8, 235242 (2009).
148. R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, “ An anisotropic etching effect in the graphene basal plane,” Adv. Mater. 22, 40144019 (2010).
149. X. Zhang, O. V. Yazyev, J. Feng, L. Xie, C. Tao, Y.-C. Chen, L. Jiao, Z. Pedramrazi, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, “ Experimentally engineering the edge termination of graphene nanoribbons,” ACS Nano 7, 198202 (2013).
150. Y. Kobayashi, K. Fukui, T. Enoki, and K. Kusakabe, “ Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy,” Phys. Rev. B 73, 125415 (2006).
151. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, “ Atomically precise bottom-up fabrication of graphene nanoribbons,” Nature 466, 470473 (2010).
152. C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, “ Spatially resolving edge states of chiral graphene nanoribbons,” Nat. Phys. 7, 616620 (2011).
153. M. Pan, E. C. Girao, X. Jia, S. Bhaviripudi, Q. Li, J. Kong, V. Meunier, and M. S. Dresselhaus, “ Topographic and spectroscopic characterization of electronic edge states in CVD grown graphene nanoribbons,” Nano Lett. 12, 19281933 (2012).
154. X. Jia, J. Campos-Delgado, E. E. Gracia-Espino, M. Hofmann, H. Muramatsu, Y. A. Kim, T. Hayashi, M. Endo, J. Kong, M. Terrones, and M. S. Dresselhaus, “ Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating,” J. Vac. Sci. Technol., B 27, 1996 (2009).
155. W. J. Yu, S. H. Chae, D. Perello, S. Y. Lee, G. H. Han, M. Yun, and Y. H. Lee, “ Synthesis of edge-closed graphene ribbons with enhanced conductivity,” ACS Nano 4, 54805486 (2010).
156. Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, “ Graphene nano-ribbon electronics,” Physica E 40, 228232 (2007).
157. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “ Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98, 206805 (2007).
158. B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, and P. Kim, “ Electronic transport in locally gated graphene nanoconstrictions,” Appl. Phys. Lett. 91, 192107 (2007).
159. S. Adam, S. Cho, M. S. Fuhrer, and S. D. Sarma, “ Density inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons,” Phys. Rev. Lett. 101, 046404 (2008).
160. X. Liu, J. B. Oostinga, A. F. Morpurgo, and L. M. K. Vandersypen, “ Electrostatic confinement of electrons in graphene nanoribbons,” Phys. Rev. B 80, 121407 (2009).
161. R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “ Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
162. K. Todd, H.-T. Chou, S. Amasha, and D. Goldhaber-Gordon, “ Quantum dot behavior in graphene nanoconstrictions,” Nano Lett. 9, 416421 (2009).
163. J. Bai, X. Duan, and Y. Huang, “ Rational fabrication of graphene nanoribbons using a nanowire etch mask,” Nano Lett. 9, 20832087 (2009).
164. J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. Duan, “ Very large magnetoresistance in graphene nanoribbons,” Nat. Nanotechnol. 5, 655659 (2010).
165. P. Gallagher, K. Todd, and D. Goldhaber-Gordon, “ Disorder-induced gap behavior in graphene nanoribbons,” Phys. Rev. B 81, 115409 (2010).
166. M. Y. Han, J. C. Brant, and P. Kim, “ Electron transport in disordered graphene nanoribbons,” Phys. Rev. Lett. 104, 056801 (2010).
167. Y. Yang and R. Murali, “ Impact of size effect on graphene nanoribbon transport,” IEEE Electron Device Lett. 31, 237239 (2010).
168. C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, and D. Jena, “ Quantum transport in graphene nanoribbons patterned by metal masks,” Appl. Phys. Lett. 96, 103109 (2010).
169. L. Liao, J. Bai, Y.-C. Lin, Y. Qu, Y. Huang, and X. Duan, “ High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics,” Adv. Mater. 22, 19411945 (2010).
170. L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, and X. Duan, “ Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics,” Nano Lett. 10, 19171921 (2010).
171. A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop, “ Thermally limited current carrying ability of graphene nanoribbons,” Phys. Rev. Lett. 106, 256801 (2011).
172. Y.-S. Shin, J. Y. Son, M.-H. Jo, Y.-H. Shin, and H. M. Jang, “ High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography,” J. Am. Chem. Soc. 133, 56235625 (2011).
173. R. Ribeiro, J.-M. Poumirol, A. Cresti, W. Escoffier, M. Goiran, J.-M. Broto, S. Roche, and B. Raquet, “ Unveiling the magnetic structure of graphene nanoribbons,” Phys. Rev. Lett. 107, 086601 (2011).
174. M. Wang, E. B. Song, S. Lee, J. Tang, M. Lang, C. Zeng, G. Xu, Y. Zhou, and K. L. Wang, “ Quantum dot behavior in bilayer graphene nanoribbons,” ACS Nano 5, 87698773 (2011).
175. Y.-J. Yu, M. Y. Han, S. Berciaud, A. B. Georgescu, T. F. Heinz, L. E. Brus, K. S. Kim, and P. Kim, “ High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon,” Appl. Phys. Lett. 99, 183105 (2011).
176. A. Behnam, A. S. Lyons, M.-H. Bae, E. K. Chow, S. Islam, C. M. Neumann, and E. Pop, “ Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition,” Nano Lett. 12, 44244430 (2012).
177. S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li, K. Tsukagoshi, S. Sato, and N. Yokoyama, “ Gate-controlled P–I–N junction switching device with graphene nanoribbon,” Appl. Phys. Express 5, 015101 (2012).
178. W. J. Yu and X. Duan, “ Tunable transport gap in narrow bilayer graphene nanoribbons,” Sci. Rep. 3, 1248 (2013).
179. M. J. Hollander, H. Madan, N. Shukla, D. A. Snyder, J. A. Robinson, and S. Datta, “ Short-channel graphene nanoribbon transistors with enhanced symmetry between p- and n-branches,” Appl. Phys. Express 7, 055103 (2014).
180. W. S. Hwang, P. Zhao, K. Tahy, L. O. Nyakiti, V. D. Wheeler, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, J. A. Robinson, W. Haensch, H. Xing, A. Seabaugh, and D. Jena, “ Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates,” APL Mater. 3, 011101 (2015).
181. P. Simonet, D. Bischoff, A. Moser, T. Ihn, and K. Ensslin, “ Graphene nanoribbons: Relevance of etching process,” J. Appl. Phys. 117, 184303 (2015).
182. Y. M. Lin, V. Perebeinos, Z. Chen, and P. Avouris, “ Electrical observation of subband formation in graphene nanoribbons,” Phys. Rev. B 78, 161409 (2008).
183. Y.-M. Lin and P. Avouris, “ Strong suppression of electrical noise in bilayer graphene nanodevices,” Nano Lett. 8, 21192125 (2008).
184. A. Fasoli, A. Colli, A. Lombardo, and A. C. Ferrari, “ Fabrication of graphene nanoribbons via nanowire lithography,” Phys. Status Solidi B 246, 25142517 (2009).
185. X. Liang, Y.-S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, “ Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography,” Nano Lett. 10, 24542460 (2010).
186. A. Candini, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and M. Affronte, “ Graphene spintronic devices with molecular nanomagnets,” Nano Lett. 11, 26342639 (2011).
187. W. S. Hwang, K. Tahy, X. Li, H. Xing, A. C. Seabaugh, C. Y. Sung, and D. Jena, “ Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene,” Appl. Phys. Lett. 100, 203107 (2012).
188. W. S. Hwang, K. Tahy, L. O. Nyakiti, V. D. Wheeler, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, H. Xing, A. Seabaugh, and D. Jena, “ Fabrication of top-gated epitaxial graphene nanoribbon FETs using hydrogen-silsesquioxane,” J. Vac. Sci. Technol., B 30, 03D104 (2012).
189. S. Minke, S. H. Jhang, J. Wurm, Y. Skourski, J. Wosnitza, C. Strunk, D. Weiss, K. Richter, and J. Eroms, “ Magnetotransport through graphene nanoribbons at high magnetic fields,” Phys. Rev. B 85, 195432 (2012).
190. S. Minke, J. Bundesmann, D. Weiss, and J. Eroms, “ Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays,” Phys. Rev. B 86, 155403 (2012).
191. X. Liang and S. Wi, “ Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons,” ACS Nano 6, 97009710 (2012).
192. V. Abramova, A. S. Slesarev, and J. M. Tour, “ Meniscus-mask lithography for narrow graphene nanoribbons,” ACS Nano 7, 68946898 (2013).
193. P. D. Nguyen, T. C. Nguyen, A. T. Huynh, and E. Skafidas, “ High frequency characterization of graphene nanoribbon interconnects,” Mater. Res. Express 1, 035009 (2014).
194. D.-H. Chae, B. Krauss, K. v. Klitzing, and J. H. Smet, “ Hot phonons in an electrically biased graphene constriction,” Nano Lett. 10, 466471 (2010).
195. J. B. Oostinga, B. Sacépé, M. F. Craciun, and A. F. Morpurgo, “ Magnetotransport through graphene nanoribbons,” Phys. Rev. B 81, 193408 (2010).
196. R. Danneau, F. Wu, M. Y. Tomi, J. B. Oostinga, A. F. Morpurgo, and P. J. Hakonen, “ Shot noise suppression and hopping conduction in graphene nanoribbons,” Phys. Rev. B 82, 161405 (2010).
197. F. Duerr, J. B. Oostinga, C. Gould, and L. W. Molenkamp, “ Edge state transport through disordered graphene nanoribbons in the quantum Hall regime,” Phys. Rev. B 86, 081410 (2012).
198. H. Hettmansperger, F. Duerr, J. B. Oostinga, C. Gould, B. Trauzettel, and L. W. Molenkamp, “ Quantum Hall effect in narrow graphene ribbons,” Phys. Rev. B 86, 195417 (2012).
199. Z. B. Tan, A. Puska, T. Nieminen, F. Duerr, C. Gould, L. W. Molenkamp, B. Trauzettel, and P. J. Hakonen, “ Shot noise in lithographically patterned graphene nanoribbons,” Phys. Rev. B 88, 245415 (2013).
200. F. Molitor, A. Jacobsen, C. Stampfer, J. Güttinger, T. Ihn, and K. Ensslin, “ Transport gap in side-gated graphene constrictions,” Phys. Rev. B 79, 075426 (2009).
201. C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. Ihn, “ Energy gaps in etched graphene nanoribbons,” Phys. Rev. Lett. 102, 056403 (2009).
202. F. Molitor, C. Stampfer, J. Güttinger, A. Jacobsen, T. Ihn, and K. Ensslin, “ Energy and transport gaps in etched graphene nanoribbons,” Semicond. Sci. Technol. 25, 034002 (2010).
203. S. Dröscher, H. Knowles, Y. Meir, K. Ensslin, and T. Ihn, “ Coulomb gap in graphene nanoribbons,” Phys. Rev. B 84, 073405 (2011).
204. B. Terrés, J. Dauber, C. Volk, S. Trellenkamp, U. Wichmann, and C. Stampfer, “ Disorder induced Coulomb gaps in graphene constrictions with different aspect ratios,” Appl. Phys. Lett. 98, 032109 (2011).
205. D. Bischoff, T. Krähenmann, S. Dröscher, M. A. Gruner, C. Barraud, T. Ihn, and K. Ensslin, “ Reactive-ion-etched graphene nanoribbons on a hexagonal boron nitride substrate,” Appl. Phys. Lett. 101, 203103 (2012).
206. N. Pascher, D. Bischoff, T. Ihn, and K. Ensslin, “ Scanning gate microscopy on a graphene nanoribbon,” Appl. Phys. Lett. 101, 063101 (2012).
207. S. Engels, P. Weber, B. Terres, J. Dauber, C. Meyer, C. Volk, S. Trellenkamp, U. Wichmann, and C. Stampfer, “ Fabrication of coupled graphene–nanotube quantum devices,” Nanotechnology 24, 035204 (2013).
208. E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “ Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
209. D. Bischoff, F. Libisch, J. Burgdörfer, T. Ihn, and K. Ensslin, “ Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate,” Phys. Rev. B 90, 115405 (2014).
210. D. Bischoff, M. Eich, A. Varlet, P. Simonet, T. Ihn, and K. Ensslin, “ Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon,” Phys. Rev. B 91, 115441 (2015).
211. C. W. Smith, J. Katoch, and M. Ishigami, “ Impact of charge impurities on transport properties of graphene nanoribbons,” Appl. Phys. Lett. 102, 133502 (2013).
212. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “ Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319, 12291232 (2008).
213. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “ Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Phys. Rev. Lett. 100, 206803 (2008).
214. J.-M. Poumirol, A. Cresti, S. Roche, W. Escoffier, M. Goiran, X. Wang, X. Li, H. Dai, and B. Raquet, “ Edge magnetotransport fingerprints in disordered graphene nanoribbons,” Phys. Rev. B 82, 041413 (2010).
215. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “ Narrow graphene nanoribbons from carbon nanotubes,” Nature 458, 877880 (2009).
216. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, “ Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature 458, 872877 (2009).
217. D. V. Kosynkin, W. Lu, A. Sinitskii, G. Pera, Z. Sun, and J. M. Tour, “ Highly conductive graphene nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor,” ACS Nano 5, 968974 (2011).
218. M.-W. Lin, C. Ling, L. A. Agapito, N. Kioussis, Y. Zhang, M. M.-C. Cheng, W. L. Wang, E. Kaxiras, and Z. Zhou, “ Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons,” Phys. Rev. B 84, 125411 (2011).
219. M.-W. Lin, C. Ling, Y. Zhang, H. J. Yoon, M. M.-C. Cheng, L. A. Agapito, N. Kioussis, N. Widjaja, and Z. Zhou, “ Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors,” Nanotechnology 22, 265201 (2011).
220. T. Shimizu, J. Haruyama, D. C. Marcano, D. V. Kosinkin, J. M. Tour, K. Hirose, and K. Suenaga, “ Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons,” Nat. Nanotechnol. 6, 4550 (2011).
221. D. Wei, L. Xie, K. K. Lee, Z. Hu, S. Tan, W. Chen, C. H. Sow, K. Chen, Y. Liu, and A. T. S. Wee, “ Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nat. Commun. 4, 1374 (2013).
222. S. Blankenburg, J. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X. Feng, K. Mullen, R. Fasel, and C. A. Pignedoli, “ Intraribbon heterojunction formation in ultranarrow graphene nanoribbons,” ACS Nano 6, 20202025 (2012).
223. P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Mullen, C. A. Pignedoli, and R. Fasel, “ Electronic structure of atomically precise graphene nanoribbons,” ACS Nano 6, 69306935 (2012).
224. M. Koch, F. Ample, C. Joachim, and L. Grill, “ Voltage-dependent conductance of a single graphene nanoribbon,” Nat. Nanotechnol. 7, 713717 (2012).
225. H. Huang, D. Wei, J. Sun, S. L. Wong, Y. P. Feng, A. H. C. Neto, and A. T. S. Wee, “ Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons,” Sci. Rep. 2, 983 (2012).
226. J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, and I. Swart, “ Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom,” Nat. Commun. 4, 2023 (2013).
227. X. Wang and H. Dai, “ Etching and narrowing of graphene from the edges,” Nat. Chem. 2, 661665 (2010).
228. J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A.-P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp1, and W. A. de Heer, “ Exceptional ballistic transport in epitaxial graphene nanoribbons,” Nature 506, 349354 (2014).
229. M. S. Nevius, F. Wang, C. Mathieu, N. Barrett, A. Sala, T. O. Mentes, A. Locatelli, and E. H. Conrad, “ The bottom-up growth of edge specific graphene nano-ribbons,” Nano Lett. 14, 60806086 (2014).
230. S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa, and T. Machida, “ Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope,” Appl. Phys. Lett. 94, 082107 (2009).
231. M. Moreno-Moreno, A. Castellanos-Gomez, G. Rubio-Bollinger, J. Gomez-Herrero, and N. Agrait, “ Ultralong natural graphene nanoribbons and their electrical conductivity,” Small 5, 924927 (2009).
232. M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, “ Etching of graphene devices with a helium ion beam,” ACS Nano 3, 26742676 (2009).
233. A. N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, and C. Zhou, “ Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography,” ACS Nano 8, 15381546 (2014).
234. A. M. Goossens, S. C. M. Driessen, T. A. Baart, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, “ Gate-defined confinement in bilayer graphene-hexagonal boron nitride hybrid devices,” Nano Lett. 12, 46564660 (2012).
235. L. Tapaszto, G. Dobrik, P. Lambin, and L. P. Biro, “ Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography,” Nat. Nanotechnol. 3, 397401 (2008).
236. L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, “ Anisotropic etching and nanoribbon formation in single-layer graphene,” Nano Lett. 9, 26002604 (2009).
237. Y. Lu, B. Goldsmith, D. R. Strachan, J. H. Lim, Z. Luo, and A. T. C. Johnson, “ High-on/off-ratio graphene nanoconstriction field-effect transistor,” Small 6, 27482754 (2010).
238. T. Kato and R. Hatakeyama, “ Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars,” Nat. Nanotechnol. 7, 651656 (2012).
239. C.-H. Huang, C.-Y. Su, T. Okada, L.-J. Li, K.-I. Ho, P.-W. Li, I.-H. Chen, C. Chou, C.-S. Lai, and S. Samukawa, “ Ultra-low-edge-defect graphene nanoribbons patterned by neutral beam,” Carbon 61, 229235 (2013).
240. J. Moser and A. Bachtold, “ Fabrication of large addition energy quantum dots in graphene,” Appl. Phys. Lett. 95, 173506 (2009).
241. X.-X. Song, H.-O. Li, J. You, T.-Y. Han, G. Cao, T. Tu, M. Xiao, G.-C. Guo, H.-W. Jiang, and G.-P. Guo, “ Suspending effect on low-frequency charge noise in graphene quantum dot,” Sci. Rep. 5, 8142 (2015).
242. S. Engels, A. Epping, C. Volk, S. Korte, B. Voigtlander, K. Watanabe, T. Taniguchi, S. Trellenkamp, and C. Stampfer, “ Etched graphene quantum dots on hexagonal boron nitride,” Appl. Phys. Lett. 103, 073113 (2013).
243. A. Epping, S. Engels, C. Volk, K. Watanabe, T. Taniguchi, S. Trellenkamp, and C. Stampfer, “ Etched graphene single electron transistors on hexagonal boron nitride in high magnetic fields,” Phys. Status Solidi B 250, 26922696 (2013).
244. J. Güttinger, C. Stampfer, S. Hellmüller, F. Molitor, T. Ihn, and K. Ensslin, “ Charge detection in graphene quantum dots,” Appl. Phys. Lett. 93, 212102 (2008).
245. J. Güttinger, C. Stampfer, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “ Coulomb oscillations in three-layer graphene nanostructures,” New J. Phys. 10, 125029 (2008).
246. C. Stampfer, J. Güttinger, F. Molitor, D. Graf, T. Ihn, and K. Ensslin, “ Tunable Coulomb blockade in nanostructured graphene,” Appl. Phys. Lett. 92, 012102 (2008).
247. C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “ Tunable graphene single electron transistor,” Nano Lett. 8, 23782383 (2008).
248. J. Güttinger, C. Stampfer, F. Libisch, T. Frey, J. Burgdörfer, T. Ihn, and K. Ensslin, “ Electron-hole crossover in graphene quantum dots,” Phys. Rev. Lett. 103, 046810 (2009).
249. J. Güttinger, C. Stampfer, T. Frey, T. Ihn, and K. Ensslin, “ Graphene quantum dots in perpendicular magnetic fields,” Phys. Status Solidi B 246, 25532557 (2009).
250. F. Molitor, S. Dröscher, J. Güttinger, A. Jacobsen, C. Stampfer, T. Ihn, and K. Ensslin, “ Transport through graphene double dots,” Appl. Phys. Lett. 94, 222107 (2009).
251. S. Schnez, F. Molitor, C. Stampfer, J. Güttinger, I. Shorubalko, T. Ihn, and K. Ensslin, “ Observation of excited states in a graphene quantum dot,” Appl. Phys. Lett. 94, 012107 (2009).
252. J. Güttinger, T. Frey, C. Stampfer, T. Ihn, and K. Ensslin, “ Spin states in graphene quantum dots,” Phys. Rev. Lett. 105, 116801 (2010).
253. X. L. Liu, D. Hug, and L. M. K. Vandersypen, “ Gate-defined graphene double quantum dot and excited state spectroscopy,” Nano Lett. 10, 16231627 (2010).
254. F. Molitor, H. Knowles, S. Dröscher, U. Gasser, T. Choi, P. Roulleau, J. Güttinger, A. Jacobsen, C. Stampfer, K. Ensslin, and T. Ihn, “ Observation of excited states in a graphene double quantum dot,” Europhys. Lett. 89, 67005 (2010).
255. P. Roulleau, S. Baer, T. Choi, F. Molitor, J. Güttinger, T. Müller, S. Dröscher, K. Ensslin, and T. Ihn, “ Coherent electron–phonon coupling in tailored quantum systems,” Nat. Commun. 2, 239 (2011).
256. S. Schnez, J. Güttinger, M. Huefner, C. Stampfer, K. Ensslin, and T. Ihn, “ Imaging localized states in graphene nanostructures,” Phys. Rev. B 82, 165445 (2010).
257. M. Arai, S. Masubuchi, and T. Machida, “ Single-electron switching effect in graphene parallel-coupled double quantum dots,” J. Phys.: Conf. Ser. 334, 012041 (2011).
258. S. Fringes, C. Volk, C. Norda, B. Terres, J. Dauber, S. Engels, S. Trellenkamp, and C. Stampfer, “ Charge detection in a bilayer graphene quantum dot,” Phys. Status Solidi B 248, 26842687 (2011).
259. J. Güttinger, J. Seif, C. Stampfer, A. Capelli, K. Ensslin, and T. Ihn, “ Time-resolved charge detection in graphene quantum dots,” Phys. Rev. B 83, 165445 (2011).
260. J. Güttinger, C. Stampfer, T. Frey, T. Ihn, and K. Ensslin, “ Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field,” Nanoscale Res. Lett. 6, 253 (2011).
261. C. Volk, S. Fringes, B. Terrees, J. Dauber, S. Engels, S. Trellenkamp, and C. Stampfer, “ Electronic excited states in bilayer graphene double quantum dots,” Nano Lett. 11, 35813586 (2011).
262. L.-J. Wang, G.-P. Guo, D. Wei, G. Cao, T. Tu, M. Xiao, G.-C. Guo, and A. M. Chang, “ Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene,” Appl. Phys. Lett. 99, 112117 (2011).
263. S. Dröscher, J. Güttinger, T. Mathis, B. Batlogg, T. Ihn, and K. Ensslin, “ High-frequency gate manipulation of a bilayer graphene quantum dot,” Appl. Phys. Lett. 101, 043107 (2012).
264. S. Fringes, C. Volk, B. Terres, J. Dauber, S. Engels, S. Trellenkamp, and C. Stampfer, “ Tunable capacitive inter-dot coupling in a bilayer graphene double quantum dot,” Phys. Status Solidi C 9, 169174 (2012).
265. A. Jacobsen, P. Simonet, K. Ensslin, and T. Ihn, “ Transport in a three-terminal graphene quantum dot in the multi-level regime,” New J. Phys. 14, 023052 (2012).
266. T. Müller, J. Güttinger, D. Bischoff, S. Hellmüller, K. Ensslin, and T. Ihn, “ Fast detection of single-charge tunneling to a graphene quantum dot in a multi-level regime,” Appl. Phys. Lett. 101, 012104 (2012).
267. C. Neumann, C. Volk, S. Engels, and C. Stampfer, “ Graphene-based charge sensors,” Nanotechnology 24, 444001 (2013).
268. C. Volk, C. Neumann, S. Kazarski, S. Fringes, S. Engels, F. Haupt, A. Müller, and C. Stampfer, “ Probing relaxation times in graphene quantum dots,” Nat. Commun. 4, 1753 (2013).
269. S. Moriyama, D. Tsuya, E. Watanabe, S. Uji, M. Shimizu, T. Mori, T. Yamaguchi, and K. Ishibashi, “ Coupled quantum dots in a graphene-based two-dimensional semimetal,” Nano Lett. 9, 28912896 (2009).
270. S. Moriyama, Y. Morita, E. Watanabe, D. Tsuya, S. Uji, M. Shimizu, and K. Ishibashi, “ Fabrication of quantum-dot devices in graphene,” Sci. Technol. Adv. Mater. 11, 054601 (2010).
271. L.-J. Wang, G. Cao, T. Tu, H.-O. Li, C. Zhou, X.-J. Hao, Z. Su, G.-C. Guo, H.-W. Jiang, and G.-P. Guo, “ A graphene quantum dot with a single electron transistor as an integrated charge sensor,” Appl. Phys. Lett. 97, 262113 (2010).
272. L.-J. Wang, H.-O. Li, T. Tu, G. Cao, C. Zhou, X.-J. Hao, Z. Su, M. Xiao, G.-C. Guo, A. M. Chang, and G.-P. Guo, “ Controllable tunnel coupling and molecular states in a graphene double quantum dot,” Appl. Phys. Lett. 100, 022106 (2012).
273. M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher, C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal'ko, C. G. Smith, and T. J. B. M. Janssen, “ Gigahertz quantized charge pumping in graphene quantum dots,” Nat. Nanotechnol. 8, 417420 (2013).
274. A. Müller, B. Kaestner, F. Hohls, T. Weimann, K. Pierz, and H. W. Schumacher, “ Bilayer graphene quantum dot defined by topgates,” J. Appl. Phys. 115, 233710 (2014).
275. A. Barreiro, H. S. J. van der Zant, and L. M. K. Vandersypen, “ Quantum dots at room temperature carved out from few-layer graphene,” Nano Lett. 12, 60966100 (2012).
276. S. Neubeck, L. A. Ponomarenko, F. Freitag, A. J. M. Giesbers, U. Zeitler, S. V. Morozov, P. Blake, A. K. Geim, and K. S. Novoselov, “ From one electron to one hole: Quasiparticle counting in graphene quantum dots determined by electrochemical and plasma etching,” Small 6, 14691473 (2010).
277. R. K. Puddy, C. J. Chua, and M. R. Buitelaar, “ Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography,” Appl. Phys. Lett. 103, 183117 (2013).
278. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, “ Chaotic Dirac billiard in graphene quantum dots,” Science 320, 356358 (2008).
279. J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, “ Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots,” Nano Lett. 5, 287290 (2005).
280. T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport ( Oxford University Press, 2009).
281. C. W. J. Beenakker and H. van Houten, “ Quantum transport in semiconductor nanostructures,” Solid State Phys. 44, 1228 (1991).
282. L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha, “ Excitation spectra of circular, few-electron quantum dots,” Science 278, 17881792 (1997).
283. L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, “ Few-electron quantum dots,” Rep. Prog. Phys. 64, 701736 (2001).
284. H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, “ Coulomb-blockade oscillations in semiconductor nanostructures,” Single Charge Tunneling and Coulomb Blockade Phenomena in Nanostructures ( Springer, 1992).
285. W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, “ Electron transport through double quantum dots,” Rev. Mod. Phys. 75, 122 (2002).
286.While a band gap is a “bulk” material property, a confinement gap could arise due to the finite size of the device in analogy to a “particle in a box.”
287. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, “ One-dimensional transport and the quantisation of the ballistic resistance,” J. Phys. C: Solid State Phys. 21, L209 (1988).
288. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, “ Quantized conductance of point contacts in a two-dimensional electron gas,” Phys. Rev. Lett. 60, 848850 (1988).
289. J. Nygard, D. H. Cobden, and P. E. Lindelof, “ Kondo physics in carbon nanotubes,” Nature 408, 342346 (2000).
290. H. O. H. Churchill, A. J. Bestwick, J. W. Harlow, F. Kuemmeth, D. Marcos, C. H. Stwertka, S. K. Watson, and C. M. Marcus, “ Electron–nuclear interaction in 13C nanotube double quantum dots,” Nat. Phys. 5, 321326 (2009).
291. M. R. Buitelaar, J. Fransson, A. L. Cantone, C. G. Smith, D. Anderson, G. A. C. Jones, A. Ardavan, A. N. Khlobystov, A. A. R. Watt, K. Porfyrakis, and G. A. D. Briggs, “ Pauli spin blockade in carbon nanotube double quantum dots,” Phys. Rev. B 77, 245439 (2008).
292. P. Fallahi, A. C. Bleszynski, R. M. Westervelt, J. Huang, J. D. Walls, E. J. Heller, M. Hanson, and A. C. Gossard, “ Imaging a single-electron quantum dot,” Nano Lett. 5, 223226 (2005).
293. W. Liang, M. Bockrath, and H. Park, “ Shell filling and exchange coupling in metallic single-walled carbon nanotubes,” Phys. Rev. Lett. 88, 126801 (2002).
294. D. H. Cobden and J. Nygard, “ Shell filling in closed single-wall carbon nanotube quantum dots,” Phys. Rev. Lett. 89, 046803 (2002).
295. E. B. Foxman, U. Meirav, P. L. McEuen, M. A. Kastner, O. Klein, P. A. Belk, D. M. Abusch, and S. J. Wind, “ Crossover from single-level to multilevel transport in artificial atoms,” Phys. Rev. B 50, 1419314199 (1994).
296. M. Pierre, M. Hofheinz, X. Jehl, M. Sanquer, G. Molas, M. Vinet, and S. Deleonibus, “ Background charges and quantum effects in quantum dots transport spectroscopy,” Eur. Phys. J. B 70, 475481 (2009).
297. R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold, E. Mariani, M. G. Schultz, F. v. Oppen, and K. Ensslin, “ Franck-condon blockade in suspended carbon nanotube quantum dots,” Nat. Phys. 5, 327331 (2009).
298. T. Schmidt, R. J. Haug, K. v. Klitzing, A. Förster, and H. Lüth, “ Spectroscopy of the single-particle states of a quantum-dot molecule,” Phys. Rev. Lett. 78, 15441547 (1997).
299. W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Möttönen, K. W. Chan, A. Morello, and A. S. Dzurak, “ Observation of the single-electron regime in a highly tunable silicon quantum dot,” Appl. Phys. Lett. 95, 242102 (2009).
300. S. K. Hämäläinen, Z. Sun, M. P. Boneschanscher, A. Uppstu, M. Ijäs, A. Harju, D. Vanmaekelbergh, and P. Liljeroth, “ Quantum-confined electronic states in atomically well-defined graphene nanostructures,” Phys. Rev. Lett. 107, 236803 (2011).
301. S.-H. Phark, J. Borme, A. L. Vanegas, M. Corbetta, D. Sander, and J. Kirschner, “ Direct observation of electron confinement in epitaxial graphene nanoislands,” ACS Nano 5, 81628166 (2011).
302. D. Subramaniam, F. Libisch, Y. Li, C. Pauly, V. Geringer, R. Reiter, T. Mashoff, M. Liebmann, J. Burgdorfer, C. Busse, T. Michely, R. Mazzarello, M. Pratzer, and M. Morgenstern, “ Wave-function mapping of graphene quantum dots with soft confinement,” Phys. Rev. Lett. 108, 046801 (2012).
303. F. Craes, S. Runte, J. Klinkhammer, M. Kralj, T. Michely, and C. Busse, “ Mapping image potential states on graphene quantum dots,” Phys. Rev. Lett. 111, 056804 (2013).
304. W. Jolie, F. Craes, M. Petrovic, N. Atodiresei, V. Caciuc, S. Blügel, M. Kralj, T. Michely, and C. Busse, “ Confinement of Dirac electrons in graphene quantum dots,” Phys. Rev. B 89, 155435 (2014).
305. M. Bacon, S. J. Bradley, and T. Nann, “ Graphene quantum dots,” Part. Part. Syst. Charact. 31, 415428 (2014).
306. R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. P. Cook, E. L. G. Samuel, C.-C. Hwang, G. Ruan, G. Ceriotti, A.-R. O. Raji, A. A. Marti, and J. M. Tour, “ Coal as an abundant source of graphene quantum dots,” Nat. Commun. 4, 2943 (2013).
307. X. Yan, X. Cui, B. Li, and L. Li, “ Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10, 18691873 (2010).
308. K. J. Williams, C. A. Nelson, X. Yan, L.-S. Li, and X. Zhu, “ Hot electron injection from graphene quantum dots to TiO2,” ACS Nano 7, 13881394 (2013).
309. Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, and L. Qu, “ Nitrogen-doped graphene quantum dots with oxygen-rich functional groups,” J. Am. Chem. Soc. 134, 1518 (2012).
310. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, and S. P. Lau, “ Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6, 51025110 (2012).
311. Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, A. Babakhani, J.-C. Idrobo, R. Vajtai, J. Lou, and P. M. Ajayan, “ In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes,” Nat. Nanotechnol. 8, 119124 (2013).
312. Q. Xu, Q. Zhou, Z. Hua, Q. Xue, C. Zhang, X. Wang, D. Pan, and M. Xiao, “ Single-particle spectroscopic measurements of fluorescent graphene quantum dots,” ACS Nano 7, 1065410661 (2013).
313. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “ Graphene quantum dots derived from carbon fibers,” Nano Lett. 12, 844849 (2012).
314. D. Pan, J. Zhang, Z. Li, and M. Wu, “ Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots,” Adv. Mater. 22, 734738 (2010).
315. H. Sun, L. Wu, W. Wei, and X. Qu, “ Recent advances in graphene quantum dots for sensing,” Mater. Today 16, 433442 (2013).
316. M. L. Mueller, X. Yan, J. A. McGuire, and L. Li, “ Triplet states and electronic relaxation in photoexcited graphene quantum dots,” Nano Lett. 10, 26792682 (2010).
317. D. Joung, L. Zhai, and S. I. Khondaker, “ Coulomb blockade and hopping conduction in graphene quantum dots array,” Phys. Rev. B 83, 115323 (2011).
318. N. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, “ Electromechanical properties of graphene drumheads,” Science 336, 15571561 (2012).
319. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “ The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5, 263275 (2013).
320. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “ Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197200 (2005).
321. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, “ Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9, 372377 (2014).
322. C. N. R. Rao, H. S. S. R. Matte, and U. Maitra, “ Graphene analogues of inorganic layered materials,” Angew. Chem. 52, 1316213185 (2013).
323. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, “ Liquid exfoliation of layered materials,” Science 340, 1226419 (2013).
324. C. Kittel, Einführung in die Festkörperphysik ( Oldernbourg Verlag München Wien, 2006), Vol. 14, pp. 181206.
325. R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, Ph. Avouris, and M. Steiner, “ Electroluminescence in single layer MoS2,” Nano Lett. 13, 14161421 (2013).
326. A. Damascelli, “ Probing the electronic structure of complex systems by ARPES,” Phys. Scr. 2004, 6174 (2004).
327. R. M. Feenstra, V. Ramachandran, and H. Chen, “ Recent developments in scanning tunneling spectroscopy of semiconductor surfaces,” Appl. Phys. A 72, S193S199 (2001).
328. N. W. Ashcroft and N. D. Mermin, Solid State Physics ( Brooks/Cole, 1976).
329. H. Ibach and H. Lüth, Festkörperphysik ( Springer, 2009), Vol. 7.

Data & Media loading...


Article metrics loading...



Graphene—two-dimensional carbon—is a material with unique mechanical, optical, chemical, and electronic properties. Its use in a wide range of applications was therefore suggested. From an electronic point of view, nanostructured graphene is of great interest due to the potential opening of a band gap, applications in quantum devices, and investigations of physical phenomena. Narrow graphene stripes called “nanoribbons” show clearly different electronical transport properties than micron-sized graphene devices. The conductivity is generally reduced and around the charge neutrality point, the conductance is nearly completely suppressed. While various mechanisms can lead to this observed suppression of conductance, disordered edges resulting in localized charge carriers are likely the main cause in a large number of experiments. Localized charge carriers manifest themselves in transport experiments by the appearance of Coulomb blockade diamonds. This review focuses on the mechanisms responsible for this charge localization, on interpreting the transport details, and on discussing the consequences for physics and applications. Effects such as multiple coupled sites of localized charge, cotunneling processes, and excited states are discussed. Also, different geometries of quantum devices are compared. Finally, an outlook is provided, where open questions are addressed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd