Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/3/10.1063/1.4929762
1.
1. A. Chroneos and H. Bracht, Appl. Phys. Rev. 1, 011301 (2014).
http://dx.doi.org/10.1063/1.4838215
2.
2. N. E. B. Cowern, S. Simdyankin, C. Ahn, N. S. Bennett, J. P. Goss, J.-M. Hartmann, A. Pakfar, S. Hamm, J. Valentin, E. Napolitani, D. De Salvador, E. Bruno, and S. Mirabella, Phys. Rev. Lett. 110, 155501 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.155501
3.
3. A. Seeger and K. P. Chik, Phys. Status Solidi 29, 455 (1968).
http://dx.doi.org/10.1002/pssb.19680290202
4.
4. A. Seeger, Phys. Status Solidi B 248, 2772 (2011).
http://dx.doi.org/10.1002/pssb.201147002
5.
5. H. Bracht, R. Kube, E. Hüger, and H. Schmidt, Solid State Phenom. 205–206, 151 (2014).
http://dx.doi.org/10.4028/www.scientific.net/SSP.205-206.151
6.
6. S. Schneider, H. Bracht, J. N. Klug, J. Lundsgaard-Hansen, A. Nylandsted-Larsen, D. Bougeard, and E. E. Haller, Phys. Rev. B 87, 115202 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115202
7.
7. N. E. B. Cowern, G. F. A van de Walle, D. J. Gravesteijn, and C. J. Vriezema, Phys. Rev. Lett. 67, 212 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.212
8.
8. E. Bruno, S. Mirabella, G. Scapellato, G. Impellizzeri, A. Terrasi, F. Priolo, E. Napolitani, D. De Salvador, M. Mastromatteo, and A. Carnera, Phys. Rev. B 80, 033204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.033204
9.
9. N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, and D. J. Gravesteijn, Phys. Rev. Lett. 65, 2434 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2434
10.
10. N. E. B. Cowern, B. Colombeau, F. Roozeboom, M. Hopstaken, H. Snijders, P. Meunier-Beillard, and W. Lerch, in Si Front-End Formation Technologies, edited by D. F. Downey, M. E. Law, A. P. Claverie, and M. J. Rendon ( Mater. Res. Soc. Symp. Proc., 2002), Vol. 717, p. 255.
11.
11. S. Uppal, A. F. W. Willoughby, J. M. Bonar, N. E. B. Cowern, T. Grasby, R. J. H. Morris, and M. G. Dowsett, J. Appl. Phys. 96, 1376 (2004).
http://dx.doi.org/10.1063/1.1766090
12.
12.The beam flux in Ref. 8 is 0.37× that in Ref. 1, but the number of FPs produced per proton is about 3× higher.
13.
13.The doping-independence of λ at 550 °C confirms that, at least at this temperature, the reaction Bs + I ↔ BI is charge balanced without the involvement of charge carriers.
14.
14. G. G. Scapellato, E. Bruno, A. J. Smith, W. Napolitani, D. De Salvador, S. Mirabella, M. Mastromatteo, A. Carnera, R. Gwilliam, and F. Priolo, Nucl. Instrum. Methods Phys. Res. B 282, 8 (2012).
http://dx.doi.org/10.1016/j.nimb.2011.08.041
15.
15.The data point at λ = 1.5 nm in Fig. 2 of Ref. 2 is superseded by one with threefold improved accuracy,14 shown here.
16.
16. H. Haesslein, R. Sielemann, and C. Zistl, Phys. Rev. Lett. 80, 2626 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2626
17.
17. R. Sielemann, Nucl. Instrum. Methods Phys. Res. B 146, 329 (1998).
http://dx.doi.org/10.1016/S0168-583X(98)00426-1
18.
18. P. Śpiewak, J. Vanhellemont, K. Sueoka, K. J. Kurzydłowski, and I. Romandic, Mater. Sci. Semicond. Proc. 11, 328 (2008).
http://dx.doi.org/10.1016/j.mssp.2008.09.002
19.
19. D. Alloyeau, B. Freitag, S. Dag, L. W. Wang, and C. Kisielowsi, Phys. Rev. B 80, 014114 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014114
20.
20. S. Simdyankin and J. P. Goss, private communication (2013).
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/3/10.1063/1.4929762
Loading
/content/aip/journal/apr2/2/3/10.1063/1.4929762
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/3/10.1063/1.4929762
2015-09-02
2016-12-11

Abstract

The authors of the above paper call into question recent evidence on the properties of self-interstitials, I, in Ge [Cowern ., Phys. Rev. Lett. , 155501 (2013)]. We show that this judgment stems from invalid model assumptions during analysis of data on B marker-layer diffusion during proton irradiation, and that a corrected analysis fully supports the reported evidence. As previously stated, I-mediated self-diffusion in Ge exhibits two distinct regimes of temperature, : high-, dominated by amorphous-like mono-interstitial clusters—imorphs—with self-diffusion entropy ≈30  and low-, where transport is dominated by simple self-interstitials. In a transitional range centered on 475 °C both mechanisms contribute. The experimental I migration energy of 1.84 ± 0.26 eV reported by the Münster group based on measurements of self-diffusion during irradiation at 550 °C < T < 680 °C further establishes our proposed i-morph mechanism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/3/1.4929762.html;jsessionid=V-Vz9nkGAhXK-s12NJ2Jzm35.x-aip-live-02?itemId=/content/aip/journal/apr2/2/3/10.1063/1.4929762&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/3/10.1063/1.4929762&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/3/10.1063/1.4929762'
Right1,Right2,Right3,