Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/3/10.1063/1.4929913
1.
1. M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, IEEE Trans. Device Mater. Reliab. 8(2), 323331 (2008).
http://dx.doi.org/10.1109/TDMR.2008.921527
2.
2. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64(13), 16871689 (1994).
http://dx.doi.org/10.1063/1.111832
3.
3. N. Trivellin, M. Meneghini, E. Zanoni, K. Orita, M. Yuri, and G. Meneghesso, “A review on the reliability of GaN-based laser diodes,” in 2010 IEEE International Reliability Physics Symposium (IRPS), 2–6 May 2010, pp.16.
http://dx.doi.org/10.1109/IRPS.2010.5488866
4.
4. J. A. del Alamo and J. Joh, Microelectron. Reliab. 49(9), 12001206 (2009).
http://dx.doi.org/10.1016/j.microrel.2009.07.003
5.
5. J. Nord, K. Nordlund, J. Keinonen, and K. Albe, Nucl. Instrum. Methods Phys. Res., Sect. B 202, 9399 (2003).
http://dx.doi.org/10.1016/S0168-583X(02)01839-6
6.
6. J. Grant, R. Bates, W. Cunningham, A. Blue, J. Melone, F. McEwan, J. Vaitkus, E. Gaubas, and V. O'Shea, Nucl. Instrum. Methods Phys. Res., Sect. A 576(1), 6065 (2007).
http://dx.doi.org/10.1016/j.nima.2007.01.121
7.
7. H. Arabshahi, Braz. J. Phys. 39(1), 3538 (2009).
http://dx.doi.org/10.1590/S0103-97332009000100006
8.
8. J. Vaitkus, E. Gaubas, T. Shirahama, S. Sakai, T. Wang, K. M. Smith, and W. Cunningham, Nucl. Instrum. Methods Phys. Res., Sect. A 514(1–3), 141145 (2003).
http://dx.doi.org/10.1016/j.nima.2003.08.096
9.
9. J. Vaitkus, W. Cunningham, E. Gaubas, M. Rahman, S. Sakai, K. M. Smith, and T. Wang, Nucl. Instrum. Methods Phys. Res., Sect. A 509(1–3), 6064 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01550-X
10.
10. P. J. Sellin, D. Hoxley, A. Lohstroh, A. Simon, W. Cunningham, M. Rahman, J. Vaitkus, and E. Gaubas, Nucl. Instrum. Methods Phys. Res., Sect. A 531(1–2), 8286 (2004).
http://dx.doi.org/10.1016/j.nima.2004.05.078
11.
11. P. J. Sellin and J. Vaitkus, Nucl. Instrum. Methods Phys. Res., Sect. A 557(2), 479489 (2006).
http://dx.doi.org/10.1016/j.nima.2005.10.128
12.
12. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A. V. Markov, E. A. Kozhukhova, I. M. Gazizov, N. G. Kolin, D. I. Merkurisov, V. M. Boiko, A. V. Korulin, V. M. Zalyetin, S. J. Pearton, I. H. Lee, A. M. Dabiran, and P. P. Chow, J. Appl. Phys. 106(10), 103708 (2009).
http://dx.doi.org/10.1063/1.3261806
13.
13. M. Lu, G. G. Zhang, K. Fu, and G. H. Yu, Chin. Phys. Lett. 27(5), 052901 (2010).
http://dx.doi.org/10.1088/0256-307X/27/5/052901
14.
14. I. H. Lee, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, E. A. Kozhukhova, V. M. Zaletin, I. M. Gazizov, N. G. Kolin, and S. J. Pearton, J. Vac. Sci. Technol., B 30(2), 021205 (2012).
http://dx.doi.org/10.1116/1.3690644
15.
15. J. Y. Duboz, M. Lauegt, D. Schenk, B. Beaumont, J. L. Reverchon, A. D. Wieck, and T. Zimmerling, Appl. Phys. Lett. 92(26), 263501 (2008).
http://dx.doi.org/10.1063/1.2951619
16.
16. J. Y. Duboz, B. Beaumont, J. L. Reverchon, and A. D. Wieck, J. Appl. Phys. 105(11), 114512 (2009).
http://dx.doi.org/10.1063/1.3141818
17.
17. J. Y. Duboz, E. Frayssinet, S. Chenot, J. L. Reverchon, and M. Idir, Appl. Phys. Lett. 97(16), 163504 (2010).
http://dx.doi.org/10.1063/1.3500838
18.
18. J. Wang, P. Kandlakunta, T. F. Kent, J. Carlin, D. R. Hoy, R. C. Myers, and L. Cao, Trans. Am. Nucl. Soc. 14, 209210 (2011).
19.
19. J. Grant, W. Cunningham, A. Blue, V. O'Shea, J. Vaitkus, E. Gaubas, and M. Rahman, Nucl. Instrum. Methods Phys. Res., Sect. A 546(1–2), 213217 (2005).
http://dx.doi.org/10.1016/j.nima.2005.03.038
20.
20. P. Mulligan, J. H. Wang, and L. Cao, Nucl. Instrum. Methods Phys. Res., Sect. A 719, 1316 (2013).
http://dx.doi.org/10.1016/j.nima.2013.04.019
21.
21. G. Wang, K. Fu, C. S. Yao, D. Su, G. G. Zhang, J. Y. Wang, and M. Lu, Nucl. Instrum. Methods Phys. Res., Sect. A 663(1), 1013 (2012).
http://dx.doi.org/10.1016/j.nima.2011.09.003
22.
22. C. S. Yao, K. Fu, G. Wang, G. H. Yu, and M. Lu, Phys. Status Solidi A 209(1), 204206 (2012).
http://dx.doi.org/10.1002/pssa.201127446
23.
23. F. H. Li, X. Gao, Y. L. Yuan, J. S. Yuan, and M. Lu, Sci. China Technol. Sci. 57(1), 2528 (2014).
http://dx.doi.org/10.1007/s11431-013-5422-z
24.
24. C. Honsberg, W. A. Doolittle, M. Allen, and C. Wang, in IEEE Photovoltaic Specialists Conference, 2005, pp. 102105.
25.
25. Z. J. Cheng, H. S. San, Y. F. Li, and X. Y. Chen, in Proceedings of the 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2010, pp. 582586.
26.
26. Z. J. Cheng, H. S. San, X. Y. Chen, B. Liu, and Z. H. Feng, Chin. Phys. Lett. 28(7), 078401 (2011).
http://dx.doi.org/10.1088/0256-307X/28/7/078401
27.
27. Z. J. Cheng, X. Y. Chen, H. S. San, Z. H. Feng, and B. Liu, J. Micromech. Microeng. 22(7), 074011 (2012).
http://dx.doi.org/10.1088/0960-1317/22/7/074011
28.
28. M. Lu, G. Wang, and C. S. Yao, Adv. Mater. Res. (Switz.) 343–344, 5661 (2012).
http://dx.doi.org/10.4028/www.scientific.net/AMR.343-344.56
29.
29. M. Lu, G. G. Zhang, K. Fu, G. H. Yu, D. Su, and J. F. Hu, Energy Convers. Manage. 52(4), 19551958 (2011).
http://dx.doi.org/10.1016/j.enconman.2010.10.048
30.
30. M. Rogalla, T. Eich, N. Evans, R. Geppert, R. Goppert, R. Irsigler, J. Ludwig, K. Runge, T. Schmid, and D. G. Marder, Nucl. Instrum. Methods Phys. Res., Sect. A 395(1), 4953 (1997).
http://dx.doi.org/10.1016/S0168-9002(97)00632-3
31.
31. V. A. Soltamov, I. V. Ilyin, A. A. Soltamova, E. N. Mokhov, and P. G. Baranov, J. Appl. Phys. 107(11), 113515 (2010).
http://dx.doi.org/10.1063/1.3432755
32.
32. D. R. Kania, M. I. Landstrass, M. A. Plano, L. S. Pan, and S. Han, Diamond Relat. Mater. 2(5–7), 10121019 (1993).
http://dx.doi.org/10.1016/0925-9635(93)90266-5
33.
33. X. A. Cao, S. J. Pearton, and F. Ren, Crit. Rev. Solid State 25(4), 279390 (2000).
http://dx.doi.org/10.1080/10408430091149187
34.
34. F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, Meas. Sci. Technol. 19(10), 102001 (2008).
http://dx.doi.org/10.1088/0957-0233/19/10/102001
35.
35. A. Burger, D. Nason, and L. Franks, J. Cryst. Growth 379, 36 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.06.031
36.
36. J. I. Pankove, Mater. Sci. Eng., B 61–62, 305309 (1999).
http://dx.doi.org/10.1016/S0921-5107(98)00523-6
37.
37. P. Carrier and S. H. Wei, J. Appl. Phys. 97(3), 033707 (2005).
http://dx.doi.org/10.1063/1.1849425
38.
38. K. S. A. Butcher and T. L. Tansley, Superlattices Microstruct. 38(1), 137 (2005).
http://dx.doi.org/10.1016/j.spmi.2005.03.004
39.
39.See http://www.ioffe.ru/SVA/NSM/Semicond/GaN/ for the detailed mechanical, thermal and electrical properties of GaN.
40.
40. Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, and A. Hanser, Solid-State Electron. 50(11–12), 17441747 (2006).
http://dx.doi.org/10.1016/j.sse.2006.09.009
41.
41. C. Canali, M. Martini, G. Ottavian, and K. R. Zanio, Phys. Rev. B: Solid State 4(2), 422431 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.422
42.
42. J. C. Bourgoin and B. Massarani, Phys. Rev. B 14(8), 36903694 (1976).
http://dx.doi.org/10.1103/PhysRevB.14.3690
43.
43. J. Nord, K. Nordlund, and J. Keinonen, Phys. Rev. B 68(18), 184104 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.184104
44.
44. R. Devanathan and W. J. Weber, J. Nucl. Mater. 278(2–3), 258265 (2000).
http://dx.doi.org/10.1016/S0022-3115(99)00266-4
45.
45. F. J. Bryant and E. Webster, Phys. Status Solidi 21(1), 315321 (1967).
http://dx.doi.org/10.1002/pssb.19670210132
46.
46. F. J. Bryant and A. F. J. Cox, Proc. R. Soc. London, Ser. A 310(1502), 319339 (1969).
http://dx.doi.org/10.1098/rspa.1969.0078
47.
47. L. Liu and J. H. Edgar, Mater. Sci. Eng., R 37(3), 61127 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00008-6
48.
48. A. Denis, G. Goglio, and G. Demazeau, Mater. Sci. Eng., R 50(6), 167194 (2006).
http://dx.doi.org/10.1016/j.mser.2005.11.001
49.
49. J. A. Freitas, J. Phys. D: Appl. Phys. 43(7), 073001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/7/073001
50.
50. B. A. Haskell, S. Nakamura, S. P. DenBaars, and J. S. Speck, Phys. Status Solidi B 244(8), 28472858 (2007).
http://dx.doi.org/10.1002/pssb.200675625
51.
51. F. Scholz, Semicond. Sci. Technol. 27(2), 024002 (2012).
http://dx.doi.org/10.1088/0268-1242/27/2/024002
52.
52. S. E. Bennett, Mater. Sci. Technol. 26(9), 10171028 (2010).
http://dx.doi.org/10.1179/026708310X12668415533685
53.
53. V. Avrutin, D. J. Silversmith, Y. Mori, F. Kawamura, Y. Kitaoka, and H. Morkoc, Proc. IEEE 98(7), 13021315 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2044967
54.
54. A. Dadgar, M. Poschenrieder, A. Reiher, J. Blasing, J. Christen, A. Krtschil, T. Finger, T. Hempel, A. Diez, and A. Krost, Appl. Phys. Lett. 82(1), 2830 (2003).
http://dx.doi.org/10.1063/1.1534940
55.
55. D. S. Peng, Y. C. Feng, W. X. Wang, X. F. Liu, W. Shi, and H. B. Niu, J. Phys. D: Appl. Phys. 40(4), 11081112 (2007).
http://dx.doi.org/10.1088/0022-3727/40/4/030
56.
56. V. Ramachandran, R. M. Feenstra, W. L. Sarney, L. Salamanca-Riba, and D. W. Greve, J. Vac. Sci. Technol., A 18(4), 19151918 (2000).
http://dx.doi.org/10.1116/1.582445
57.
57. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83(7), 36563659 (1998).
http://dx.doi.org/10.1063/1.366585
58.
58. J. S. Speck, Mater. Sci. Forum 353–356, 769778 (2001).
http://dx.doi.org/10.4028/www.scientific.net/MSF.353-356.769
59.
59. D. S. Jiang, D. G. Zhao, and H. Yang, Phys. Status Solidi B 244(8), 28782891 (2007).
http://dx.doi.org/10.1002/pssb.200675604
60.
60. K. Leung, A. F. Wright, and E. B. Stechel, Appl. Phys. Lett. 74(17), 24952497 (1999).
http://dx.doi.org/10.1063/1.123018
61.
61. S. Nakamura, Jpn. J. Appl. Phys., Part 2 30(10A), L1705L1707 (1991).
http://dx.doi.org/10.1143/JJAP.30.L1705
62.
62. S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, J. Cryst. Growth 221, 334337 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00709-0
63.
63. N. N. Morgan, Z. Z. Ye, and Y. B. Xu, Mater. Sci. Eng., B 90(1–2), 201205 (2002).
http://dx.doi.org/10.1016/S0921-5107(01)00937-0
64.
64. Z. Liliental–Weber, J. Jasinski, and D. N. Zakharov, Opto-Electron. Rev. 12(4), 339346 (2004).
65.
65. J. Jasinski and Z. Liliental-Weber, J. Electron. Mater. 31(5), 429436 (2002).
http://dx.doi.org/10.1007/s11664-002-0096-5
66.
66.See http://www.kymatech.com/ for the specifications of the HVPE grown bulk GaN templates.
67.
67. H. Morkoc, Mater. Sci. Eng., R 33(5–6), 135207 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00031-6
68.
68. T. A. G. Eberlein, R. Jones, S. Oberg, and P. R. Briddon, Appl. Phys. Lett. 91(13), 132105 (2007).
http://dx.doi.org/10.1063/1.2776852
69.
69. W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys. Lett. 68(22), 31443146 (1996).
http://dx.doi.org/10.1063/1.115805
70.
70. S. O. Kucheyev, J. S. Williams, and S. J. Pearton, Mater. Sci. Eng., R 33(2–3), 51107 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00028-6
71.
71. C. Ronning, E. P. Carlson, and R. F. Davis, Phys. Rep. 351(5), 349385 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00142-3
72.
72. M. H. Zaldivar, P. Fernandez, J. Piqueras, and J. Solis, J. Appl. Phys. 85(2), 11201123 (1999).
http://dx.doi.org/10.1063/1.369254
73.
73. D. H. Youn, M. Lachab, M. S. Hao, T. Sugahara, H. Takenaka, Y. Naoi, and S. Sakai, Jpn. J. Appl. Phys., Part 1 38(2A), 631634 (1999).
http://dx.doi.org/10.1143/JJAP.38.631
74.
74. O. S. Elsherif, K. D. Vernon–Parry, I. M. Dharmadasa, J. H. Evans-Freeman, R. J. Airey, M. J. Kappers, and C. J. Humphreys, Thin Solid Films 520(7), 30643070 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.11.020
75.
75. M. Lachab, D. H. Youn, R. S. Q. Fareed, T. Wang, and S. Sakai, Solid-State Electron. 44(9), 16691677 (2000).
http://dx.doi.org/10.1016/S0038-1101(00)00072-1
76.
76. K. Saarinen, J. Nissila, J. Oila, V. Ranki, M. Hakala, M. J. Puska, P. Hautojarvi, J. Likonen, T. Suski, I. Grzegory, B. Lucznik, and S. Porowski, Physica B 273–274, 3338 (1999).
http://dx.doi.org/10.1016/S0921-4526(99)00400-7
77.
77. A. F. Wright and T. R. Mattsson, J. Appl. Phys. 96(4), 20152022 (2004).
http://dx.doi.org/10.1063/1.1767981
78.
78. Q. M. Yan, A. Janotti, M. Scheffler, and C. G. Van de Walle, Appl. Phys. Lett. 100(14), 142110 (2012).
http://dx.doi.org/10.1063/1.3699009
79.
79. Z. H. Feng, B. Liu, F. P. Yuan, J. Y. Yin, D. Liang, X. B. Li, Z. Feng, K. W. Yang, and S. J. Cai, J. Cryst. Growth 309(1), 811 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2007.08.032
80.
80. S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 81(3), 439441 (2002).
http://dx.doi.org/10.1063/1.1490396
81.
81. J. Dashdorj, M. E. Zvanut, J. G. Harrison, K. Udwary, and T. Paskova, J. Appl. Phys. 112(1), 013712 (2012).
http://dx.doi.org/10.1063/1.4732352
82.
82. D. O. Dumcenco, S. Levcenco, Y. S. Huang, C. L. Reynolds, J. G. Reynolds, K. K. Tiong, T. Paskova, and K. R. Evans, J. Appl. Phys. 109(12), 123508 (2011).
http://dx.doi.org/10.1063/1.3592343
83.
83. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, V. I. Vdovin, A. V. Markov, A. A. Shlensky, E. Prebble, D. Hanser, J. M. Zavada, and S. J. Pearton, J. Vac. Sci. Technol., B 25(3), 686690 (2007).
http://dx.doi.org/10.1116/1.2718962
84.
84. A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 96(15), 151902 (2010).
http://dx.doi.org/10.1063/1.3389497
85.
85.See http://ammono.com/ for the specifications of the Mg-doped semi-insulating GaN wafer.
86.
86. D. Alquier, F. Cayrel, O. Menard, A. E. Bazin, A. Yvon, and E. Collard, Jpn. J. Appl. Phys., Part 1 51(1), 01AG08 (2012).
http://dx.doi.org/10.7567/JJAP.51.01AG08
87.
87. O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett. 80(3), 347349 (2002).
http://dx.doi.org/10.1063/1.1433910
88.
88. J. Wang, P. L. Mulligan, and L. R. Cao, Nucl. Instrum. Meth. A 761, 712 (2014).
http://dx.doi.org/10.1016/j.nima.2014.05.098
89.
89. I. Eliashevich, Y. X. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek, Proc. Soc. Photo-Opt. Instrum. Eng. 3621, 2836 (1999).
http://dx.doi.org/10.1117/12.344483
90.
90. K. Fu, G. H. Yu, C. S. Yao, G. Wang, M. Lu, and G. G. Zhang, Phys. Status Solidi RRL 5(5–6), 187189 (2011).
http://dx.doi.org/10.1002/pssr.201105163
91.
91. M. Mohamadian, S. A. H. Feghhi, and H. Afarideh, in Proceedings of the 13th International Conference on Emerging of Nuclear Energy System, 2007.
92.
92. X. B. Tang, Y. P. Liu, D. Ding, and D. Chen, Sci. China Technol. Sci. 55(3), 659664 (2012).
http://dx.doi.org/10.1007/s11431-011-4739-8
93.
93. Y. L. Yuan, C. S. Yao, G. Wang, and M. Lu, Res. Process SSE 32(2), 15 (2012).
94.
94. D. S. McGregor, M. D. Hammig, Y. H. Yang, H. K. Gersch, and R. T. Klann, Nucl. Instrum. Methods Phys. Res., Sect. A 500(1–3), 272308 (2003).
http://dx.doi.org/10.1016/S0168-9002(02)02078-8
95.
95. D. S. McGregor and J. K. Shultis, Nucl. Instrum. Methods Phys. Res., Sect. A 517(1–3), 180188 (2004).
http://dx.doi.org/10.1016/j.nima.2003.09.037
96.
96. A. A. Bickley, C. Young, B. Thomas, J. W. McClory, P. A. Dowben, and J. C. Petrosky, MRS Proc. 1341, 7580 (2011).
http://dx.doi.org/10.1557/opl.2011.1507
97.
97. A. N. Caruso, J. Phys.: Condens. Matter 22(44), 132 (2010).
http://dx.doi.org/10.1088/0953-8984/22/44/443201
98.
98. P. Kandlakunta and L. R. Cao, J. Radioanal. Nucl. Chem. 300(3), 953961 (2014).
http://dx.doi.org/10.1007/s10967-014-3083-4
99.
99. P. Kandlakunta and L. Cao, Radiat. Prot. Dosim. 151(3), 586590 (2012).
http://dx.doi.org/10.1093/rpd/ncs031
100.
100. S. R. McHale, J. W. McClory, J. C. Petrosky, J. Wu, A. Rivera, R. Palai, Y. B. Losovyj, and P. A. Dowben, Eur. Phys. J.: Appl. Phys. 55(3), 31301 (2011).
http://dx.doi.org/10.1051/epjap/2011110082
101.
101. L. Wang, W. N. Mei, S. R. McHale, J. W. McClory, J. C. Petrosky, J. Wu, R. Palai, Y. B. Losovyj, and P. A. Dowben, Semicond. Sci. Technol. 27(11), 115017 (2012).
http://dx.doi.org/10.1088/0268-1242/27/11/115017
102.
102. A. Melton, E. Burgett, M. Jamil, T. Zaidi, N. Hertel, and I. Ferguson, in IEEE SoutheastCon, 2010, pp. 402403.
103.
103. A. G. Melton, E. Burgett, T. M. Xu, N. Hertel, and I. T. Ferguson, Phys. Status Solidi C 9(3–4), 957959 (2012).
http://dx.doi.org/10.1002/pssc.201100432
104.
104. P. Ramvall, Y. Aoyagi, A. Kuramata, P. Hacke, K. Domen, and K. Horino, Appl. Phys. Lett. 76(21), 29942996 (2000).
http://dx.doi.org/10.1063/1.126556
105.
105. L. Cao, Battelle Energy Alliance, LLC Project No. 11–3004, 2015, pp. 144.
106.
106. P. Mulligan, J. Qiu, C. H. Lin, L. J. Brillson, R. G. Downing, and L. Cao, “Intrinsic neutron sensitivity of GaN and radiation effects on forward-biased devices,” J. Nucl. Mater. Manage. (to be published).
107.
107. S. J. Pearton, R. Deist, F. Ren, L. Liu, A. Y. Polyakov, and J. Kim, J. Vac. Sci. Technol., A 31(5), 050801 (2013).
http://dx.doi.org/10.1116/1.4799504
108.
108. A. Y. Polyakov, S. J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, J. Mater. Chem. C 1(5), 877887 (2013).
http://dx.doi.org/10.1039/C2TC00039C
109.
109. J. G. Marques, K. Lorenz, N. Franco, and E. Alves, Nucl. Instrum. Methods Phys. Res., Sect. B 249, 358361 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.04.028
110.
110. K. Kuriyama, Y. Mizuki, H. Sano, A. Onoue, K. Kushida, M. Okada, M. Hasegawa, I. Sakamoto, and A. Kinomura, Nucl. Instrum. Methods Phys. Res., Sect. B 249, 132135 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.098
111.
111. P. N. Son, T. T. Anh, C. D. Vu, and V. H. Tan, J. Korean Phys. Soc. 59(2), 17611764 (2011).
http://dx.doi.org/10.3938/jkps.59.1761
112.
112. E. T. Jurney, J. W. Starner, and J. E. Lynn, Phys. Rev. C 56(1), 118134 (1997).
http://dx.doi.org/10.1103/PhysRevC.56.118
113.
113. K. Lorenz, J. G. Marques, N. Franco, E. Alves, M. Peres, M. R. Correia, and T. Monteiro, Nucl. Instrum. Methods Phys. Res., Sect. B 266(12–13), 27802783 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.116
114.
114. V. M. Boyko, S. S. Verevkin, N. G. Kolin, A. V. Korulin, D. I. Merkurisov, A. Y. Polyakov, and V. A. Chevychelov, Semiconductors 45(1), 134140 (2011).
http://dx.doi.org/10.1134/S1063782611010052
115.
115. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A. V. Markov, N. G. Kolin, D. I. Merkurisov, V. M. Boiko, K. D. Shcherbatchev, V. T. Bublik, M. I. Voronova, S. J. Pearton, A. Dabiran, and A. V. Osinsky, J. Vac. Sci. Technol., B 24(5), 22562261 (2006).
http://dx.doi.org/10.1116/1.2338045
116.
116. R. X. Wang, S. J. Xu, S. Fung, C. D. Beling, K. Wang, S. Li, Z. F. Wei, T. J. Zhou, J. D. Zhang, Y. Huang, and M. Gong, Appl. Phys. Lett. 87(3), 031906 (2005).
http://dx.doi.org/10.1063/1.1999011
117.
117. A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A. V. Markov, S. J. Pearton, N. G. Kolin, D. I. Merkurisov, V. M. Boiko, C. R. Lee, and I. H. Lee, J. Vac. Sci. Technol., B 25(2), 436442 (2007).
http://dx.doi.org/10.1116/1.2713406
118.
118. J. Qiu, E. Katz, C. H. Lin, L. Cao, and L. J. Brillson, Radiat. Eff. Defects Solids 168(11–12), 924932 (2013).
http://dx.doi.org/10.1080/10420150.2013.792819
119.
119. D. O'Mahony, W. Zimmerman, S. Steffen, J. Hilgarth, P. Maaskant, R. Ginige, L. Lewis, B. Lambert, and B. Corbett, Semicond. Sci. Technol. 24(12), 125008 (2009).
http://dx.doi.org/10.1088/0268-1242/24/12/125008
120.
120. B. P. Luther, S. D. Wolter, and S. E. Mohney, Sens. Actuators, B 56(1–2), 164168 (1999).
http://dx.doi.org/10.1016/S0925-4005(99)00174-4
121.
121. P. Mulligan, J. Qiu, J. H. Wang, and L. R. Cao, IEEE Trans. Nucl. Sci. 61(4), 20402044 (2014).
http://dx.doi.org/10.1109/TNS.2014.2320816
122.
122. C. W. Wang, J. Vac. Sci. Technol., B 20(5), 18211826 (2002).
http://dx.doi.org/10.1116/1.1498275
123.
123. C. W. Wang, Appl. Phys. Lett. 80(9), 15681570 (2002).
http://dx.doi.org/10.1063/1.1458076
124.
124. C. H. Lin, E. J. Katz, J. Qiu, Z. C. Zhang, U. K. Mishra, L. Cao, and L. J. Brillson, Appl. Phys. Lett. 103(16), 162106 (2013).
http://dx.doi.org/10.1063/1.4826091
125.
125. E. J. Katz, C. H. Lin, J. Qiu, Z. C. Zhang, U. K. Mishra, L. Cao, and L. J. Brillson, J. Appl. Phys. 115(12), 123705 (2014).
http://dx.doi.org/10.1063/1.4869552
126.
126. L. Dobos, B. Pecz, L. Toth, Z. J. Horvath, Z. E. Horvath, A. Toth, E. Horvath, B. Beaumont, and Z. Bougrioua, Appl. Surf. Sci. 253(2), 655661 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.12.167
127.
127. Z. F. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 68(12), 16721674 (1996).
http://dx.doi.org/10.1063/1.115901
128.
128. Q. Feng, L. M. Li, Y. Hao, J. Y. Ni, and J. C. Zhang, Solid State Electron. 53(9), 955958 (2009).
http://dx.doi.org/10.1016/j.sse.2009.06.002
129.
129. S. Ruvimov, Z. Liliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z. F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69(11), 15561558 (1996).
http://dx.doi.org/10.1063/1.117060
130.
130. N. A. Papanicolaou, M. V. Rao, J. Mittereder, and W. T. Anderson, J. Vac. Sci. Technol., B 19(1), 261267 (2001).
http://dx.doi.org/10.1116/1.1331291
131.
131. Z. X. Qin, Z. Z. Chen, Y. Z. Tong, X. M. Ding, X. D. Hu, T. J. Yu, and G. Y. Zhang, Appl. Phys. A: Mater. 78(5), 729731 (2004).
http://dx.doi.org/10.1007/s00339-002-1989-0
132.
132. Q. Z. Liu and S. S. Lau, Solid-State Electron. 42(5), 677691 (1998).
http://dx.doi.org/10.1016/S0038-1101(98)00099-9
133.
133. J. Kim, F. Ren, A. G. Baca, and S. J. Pearton, Appl. Phys. Lett. 82(19), 32633265 (2003).
http://dx.doi.org/10.1063/1.1576506
134.
134. E. Monroy, F. Calle, R. Ranchal, T. Palacios, M. Verdu, F. J. Sanchez, M. T. Montojo, M. Eickhoff, F. Omnes, Z. Bougrioua, and I. Moerman, Semicond. Sci. Technol. 17(9), L47L54 (2002).
http://dx.doi.org/10.1088/0268-1242/17/9/103
135.
135. N. Yildirim, K. Ejderha, and A. Turut, J. Appl. Phys. 108(11), 114506 (2010).
http://dx.doi.org/10.1063/1.3517810
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/3/10.1063/1.4929913
Loading
/content/aip/journal/apr2/2/3/10.1063/1.4929913
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/3/10.1063/1.4929913
2015-09-03
2016-09-25

Abstract

With the largest band gap energy of all commercial semiconductors,GaN has found wide application in the making of optoelectronic devices. It has also been used for photodetection such as solar blind imaging as well as ultraviolet and even X-ray detection. Unsurprisingly, the appreciable advantages of GaN over Si, amorphous silicon (a-Si:H), SiC, amorphous SiC (a-SiC), and GaAs, particularly for its radiation hardness, have drawn prompt attention from the physics, astronomy, and nuclear science and engineering communities alike, where semiconductors have traditionally been used for nuclear particle detection. Several investigations have established the usefulness of GaN for alpha detection, suggesting that when properly doped or coated with neutron sensitive materials, GaN could be turned into a neutrondetection device. Work in this area is still early in its development, but GaN-based devices have already been shown to detect alpha particles, ultraviolet light, X-rays, electrons, and neutrons. Furthermore, the nuclear reaction presented by 14N(n,p)14C and various other threshold reactions indicates that GaN is intrinsically sensitive to neutrons. This review summarizes the state-of-the-art development of GaNdetectors for detecting directly and indirectly ionizing radiation. Particular emphasis is given to GaN'sradiation hardness under high-radiation fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/3/1.4929913.html;jsessionid=zL_1vqefnLzlPhaupe9JP3vB.x-aip-live-06?itemId=/content/aip/journal/apr2/2/3/10.1063/1.4929913&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/3/10.1063/1.4929913&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/3/10.1063/1.4929913'
Right1,Right2,Right3,