Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/4/10.1063/1.4934574
1.
1. K. C. Saraswat, C. O. Chui, T. Krishnamohan, A. Nayfeh, and P. McIntyre, Microelectron. Eng. 80, 15 (2005).
http://dx.doi.org/10.1016/j.mee.2005.04.038
2.
2. D. P. Brunco, B. De Jaeger, G. Eneman, A. Satta, V. Terzieva, L. Souriau, F. E. Leys, G. Pourtois, M. Houssa, K. Opsomer, G. Nicholas, M. Meurius, and M. Heyns, ECS Trans. 11, 479 (2007).
http://dx.doi.org/10.1149/1.2779584
3.
3. Y. Kamata, Mater. Today 11, 30 (2008).
http://dx.doi.org/10.1016/S1369-7021(07)70350-4
4.
4. M. Heyns and W. Tsai, MRS Bull. 34, 485 (2009).
http://dx.doi.org/10.1557/mrs2009.136
5.
5. R. Pillarisetty, Nature 479, 324 (2011).
http://dx.doi.org/10.1038/nature10678
6.
6. S. Gupta, X. Gong, R. Zhang, Y.-C. Yeo, S. Takagi, and K. C. Saraswat, MRS Bull. 39, 678 (2014).
http://dx.doi.org/10.1557/mrs.2014.163
7.
7. A. A. Demkov and A. B. Posadas, Integration of Functional Oxides with Semiconductors ( Springer, 2014).
8.
8. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).
http://dx.doi.org/10.1063/1.2336999
9.
9. R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3014
10.
10. R. A. McKee, F. J. Walker, and M. F. Chisholm, Science 293, 468 (2001).
http://dx.doi.org/10.1126/science.293.5529.468
11.
11. C. S. Hwang, Atomic Layer Deposition for Semiconductors ( Springer, 2014).
12.
12. R. L. Puurunen, Chem. Vap. Deposition 20, 332 (2014).
http://dx.doi.org/10.1002/cvde.201402012
13.
13. S. M. George, Chem. Rev. 110, 111 (2009).
http://dx.doi.org/10.1021/cr900056b
14.
14. M. Leskelä and M. Ritala, Thin Solid Films 409, 138 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00117-7
15.
15. R. W. Johnson, A. Hultqvist, and S. F. Bent, Mater. Today 17, 236 (2014).
http://dx.doi.org/10.1016/j.mattod.2014.04.026
16.
16. J. S. Ponraj, G. Attolini, and M. Bosi, Crit. Rev. Solid State Mater. Sci. 38, 203 (2013).
http://dx.doi.org/10.1080/10408436.2012.736886
17.
17. I. J. Raaijmakers, ECS Trans. 41, 3 (2011).
http://dx.doi.org/10.1149/1.3633649
18.
18. J. A. van Delft, D. Garcia-Alonso, and W. M. M. Kessels, Semicond. Sci. Technol. 27, 074002 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074002
19.
19. A. J. M. Mackus, A. A. Bol, and W. M. M. Kessels, Nanoscale 6, 10941 (2014).
http://dx.doi.org/10.1039/C4NR01954G
20.
20. M. Leskelä, M. Ritala, and O. Nilsen, MRS Bull. 36, 877 (2011).
http://dx.doi.org/10.1557/mrs.2011.240
21.
21. J. G. Cheng, J. S. Zhou, J. B. Goodenough, and C. Q. Jin, Phys. Rev. B 85, 184430 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184430
22.
22. G. H. Jonker and J. H. Van Santen, Physica 19, 120 (1953).
http://dx.doi.org/10.1016/S0031-8914(53)80011-X
23.
23. C. H. Ahn, K. M. Rabe, and J. M. Triscone, Science 303, 488 (2004).
http://dx.doi.org/10.1126/science.1092508
24.
24. N. Nuraje and K. Su, Nanoscale 5, 8752 (2013).
http://dx.doi.org/10.1039/c3nr02543h
25.
25. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
http://dx.doi.org/10.1002/adma.200802849
26.
26. S. Dong and J.-M. Liu, Mod. Phys. Lett. B 26, 1230004 (2012).
http://dx.doi.org/10.1142/S0217984912300049
27.
27. J. G. Bednorz and K. A. Müller, Rev. Mod. Phys. 60, 585 (1988).
http://dx.doi.org/10.1103/RevModPhys.60.585
28.
28. I. Vrejoiu, M. Alexe, D. Hesse, and U. Gösele, Adv. Funct. Mater. 18, 3892 (2008).
http://dx.doi.org/10.1002/adfm.200800560
29.
29. K. Jin, H. Lu, K. Zhao, C. Ge, M. He, and G. Yang, Adv. Mater. 21, 4636 (2009).
http://dx.doi.org/10.1002/adma.200901046
30.
30. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
31.
31. H. Christen, D. Kim, and C. Rouleau, Appl. Phys. A 93, 807 (2008).
http://dx.doi.org/10.1007/s00339-008-4769-7
32.
32. R. Droopad, Z. Yu, H. Li, Y. Liang, C. Overgaard, A. Demkov, X. Zhang, K. Moore, K. Eisenbeiser, M. Hu, J. Curless, and J. Finder, J. Cryst. Growth 251, 638 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02200-5
33.
33. M. Sousa, C. Rossel, C. Marchiori, H. Siegwart, D. Caimi, J.-P. Locquet, D. J. Webb, R. Germann, J. Fompeyrine, K. Babich, J. W. Seo, and C. Dieker, J. Appl. Phys. 102, 104103 (2007).
http://dx.doi.org/10.1063/1.2812425
34.
34. J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, Adv. Mater. 22, 2919 (2010).
http://dx.doi.org/10.1002/adma.200904306
35.
35. A. A. Demkov, A. B. Posadas, H. Seo, M. Choi, K. J. Kormondy, P. Ponath, R. C. Hatch, M. D. McDaniel, T. Q. Ngo, and J. G. Ekerdt, ECS Trans. 54, 255 (2013).
http://dx.doi.org/10.1149/05401.0255ecst
36.
36. M. P. Warusawithana, C. Cen, C. R. Sleasman, J. C. Woicik, Y. Li, L. F. Kourkoutis, J. A. Klug, H. Li, P. Ryan, L.-P. Wang, M. Bedzyk, D. A. Muller, L.-Q. Chen, J. Levy, and D. G. Schlom, Science 324, 367 (2009).
http://dx.doi.org/10.1126/science.1169678
37.
37. G. Niu, B. Vilquin, J. Penuelas, C. Botella, G. Hollinger, and G. Saint-Girons, J. Vac. Sci. Technol., B 29, 041207 (2011).
http://dx.doi.org/10.1116/1.3609813
38.
38. Z. Yu, Y. Liang, C. Overgaard, X. Hu, J. Curless, H. Li, Y. Wei, B. Craigo, D. Jordan, R. Droopad, J. Finder, K. Eisenbeiser, D. Marshall, K. Moore, J. Kulik, and P. Fejes, Thin Solid Films 462–463, 51 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.05.088
39.
39. X. Gu, D. Lubyshev, J. Batzel, J. M. Fastenau, W. K. Liu, R. Pelzel, J. F. Magana, Q. Ma, L. P. Wang, P. Zhang, and V. R. Rao, J. Vac. Sci. Technol., B 27, 1195 (2009).
http://dx.doi.org/10.1116/1.3130165
40.
40. S.-H. Baek and C.-B. Eom, Acta Mater. 61, 2734 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.09.073
41.
41. J. Lettieri, J. H. Haeni, and D. G. Schlom, J. Vac. Sci. Technol., A 20, 1332 (2002).
http://dx.doi.org/10.1116/1.1482710
42.
42. B. S. Lim, A. Rahtu, and R. G. Gordon, Nat. Mater. 2, 749 (2003).
http://dx.doi.org/10.1038/nmat1000
43.
43. B. S. Lim, A. Rahtu, J.-S. Park, and R. G. Gordon, Inorg. Chem. 42, 7951 (2003).
http://dx.doi.org/10.1021/ic0345424
44.
44. T. Hatanpaa, M. Vehkamaki, I. Mutikainen, J. Kansikas, M. Ritala, and M. Leskela, Dalton Trans. 2004, 1181.
http://dx.doi.org/10.1039/b400235k
45.
45. T. P. Holme and F. B. Prinz, J. Phys. Chem. A 111, 8147 (2007).
http://dx.doi.org/10.1021/jp062568l
46.
46. A. Rahtu, T. Hänninen, and M. Ritala, J. Phys. IV 11, 923 (2001).
http://dx.doi.org/10.1051/jp4:20013115
47.
47. G. W. Hwang, H. J. Lee, K. Lee, and C. S. Hwang, J. Electrochem. Soc. 154, G69 (2007).
http://dx.doi.org/10.1149/1.2431317
48.
48. T. Watanabe, S. Hoffmann-Eifert, S. Mi, C. Jia, R. Waser, and C. S. Hwang, J. Appl. Phys. 101, 014114 (2007).
http://dx.doi.org/10.1063/1.2422777
49.
49. T. Watanabe, S. Hoffmann-Eifert, F. Peter, S. Mi, C. Jia, C. S. Hwang, and R. Waser, J. Electrochem. Soc. 154, G262 (2007).
http://dx.doi.org/10.1149/1.2789295
50.
50. M. D. McDaniel, A. Posadas, T. Q. Ngo, A. Dhamdhere, D. J. Smith, A. A. Demkov, and J. G. Ekerdt, J. Vac. Sci. Technol., A 31, 01A136 (2013).
http://dx.doi.org/10.1116/1.4770291
51.
51. O. S. Kwon, S. W. Lee, J. H. Han, and C. S. Hwang, J. Electrochem. Soc. 154, G127 (2007).
http://dx.doi.org/10.1149/1.2720763
52.
52. A. Rahtu and M. Ritala, Chem. Vap. Deposition 8, 21 (2002).
http://dx.doi.org/10.1002/1521-3862(20020116)8:1<21::AID-CVDE21>3.0.CO;2-0
53.
53. V. Longo, N. Leick, F. Roozeboom, and W. M. M. Kessels, ECS J. Solid State Sci. Technol. 2, N15 (2013).
http://dx.doi.org/10.1149/2.024301jss
54.
54. E. Ahvenniemi, M. Matvejeff, and M. Karppinen, Dalton Trans. 44, 8001 (2015).
http://dx.doi.org/10.1039/C5DT00436E
55.
55. T. P. Holme, C. Lee, and F. B. Prinz, Solid State Ionics 179, 1540 (2008).
http://dx.doi.org/10.1016/j.ssi.2007.12.100
56.
56. M. Lie, O. Nilsen, H. Fjellvag, and A. Kjekshus, Dalton Trans. 3, 481 (2009).
http://dx.doi.org/10.1039/B809974J
57.
57. T. Watanabe, S. Hoffmann-Eifert, C. S. Hwang, and R. Waser, J. Electrochem. Soci. 155, D715 (2008).
http://dx.doi.org/10.1149/1.2977717
58.
58. F. Zhang, Y.-C. Perng, J. H. Choi, T. Wu, T.-K. Chung, G. P. Carman, C. Locke, S. Thomas, S. E. Saddow, and J. P. Chang, J. Appl. Phys. 109, 124109 (2011).
http://dx.doi.org/10.1063/1.3596574
59.
59. J. H. Choi, F. Zhang, Y.-C. Perng, and J. P. Chang, J. Vac. Sci. Technol., B 31, 012207 (2013).
http://dx.doi.org/10.1116/1.4775789
60.
60. M. D. McDaniel, A. Posadas, T. Q. Ngo, C. M. Karako, J. Bruley, M. M. Frank, V. Narayanan, A. A. Demkov, and J. G. Ekerdt, J. Appl. Phys. 115, 224108 (2014).
http://dx.doi.org/10.1063/1.4883767
61.
61. T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvag, J. Mater. Chem. 20, 2877 (2010).
http://dx.doi.org/10.1039/b923490j
62.
62. J.-H. Kim, J.-Y. Kim, and S.-W. Kang, J. Appl. Phys. 97, 093505 (2005).
http://dx.doi.org/10.1063/1.1883728
63.
63. J.-Y. Kim, J.-H. Ahn, S.-W. Kang, J.-H. Kim, and J.-S. Roh, Appl. Phys. Lett. 91, 092910 (2007).
http://dx.doi.org/10.1063/1.2775325
64.
64. E. Langereis, R. Roijmans, F. Roozeboom, M. C. M. V. D. Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 158, G34 (2011).
http://dx.doi.org/10.1149/1.3522768
65.
65. M. Popovici, S. Van Elshocht, N. Menou, P. Favia, H. Bender, E. Rosseel, J. Swerts, C. Adelmann, C. Vrancken, A. Moussa, H. Tielens, K. Tomida, M. Pawlak, B. Kaczer, G. Schoofs, W. Vandervorst, D. J. Wouters, and J. A. Kittl, J. Vac. Sci. Technol., B 29, 01A304 (2011).
http://dx.doi.org/10.1116/1.3534018
66.
66. O. S. Kwon, S. W. Lee, J. H. Han, and C. S. Hwang, J. Electrochem. Soc. 154, G127 (2007).
http://dx.doi.org/10.1149/1.2720763
67.
67. S. W. Lee, O. S. Kwon, J. H. Han, and C. S. Hwang, Appl. Phys. Lett. 92, 222903 (2008).
http://dx.doi.org/10.1063/1.2939102
68.
68. S. W. Lee, J. H. Han, O. S. Kwon, and C. S. Hwang, J. Electrochem. Soc. 155, G253 (2008).
http://dx.doi.org/10.1149/1.2976211
69.
69. S. W. Lee, J. H. Han, S. Han, W. Lee, J. H. Jang, M. Seo, S. K. Kim, C. Dussarrat, J. Gatineau, Y.-S. Min, and C. S. Hwang, Chem. Mater. 23, 2227 (2011).
http://dx.doi.org/10.1021/cm2002572
70.
70. O. Nilsen, E. Rauwel, H. Fjellvag, and A. Kjekshus, J. Mater. Chem. 17, 1466 (2007).
http://dx.doi.org/10.1039/b616982a
71.
71. K. Kukli, M. Ritala, T. Sajavaara, T. Hänninen, and M. Leskelä, Thin Solid Films 500, 322 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.10.082
72.
72. M. Vehkamäki, T. Hatanpää, T. Hänninen, M. Ritala, and M. Leskelä, Electrochem. Solid-State Lett. 2, 504 (1999).
http://dx.doi.org/10.1149/1.1390884
73.
73. M. Vehkamäki, T. Hänninen, M. Ritala, M. Leskelä, T. Sajavaara, E. Rauhala, and J. Keinonen, Chem. Vap. Deposition 7, 75 (2001).
http://dx.doi.org/10.1002/1521-3862(200103)7:2<75::AID-CVDE75>3.0.CO;2-B
74.
74. M. D. McDaniel, T. Q. Ngo, A. Posadas, C. Hu, S. Lu, D. J. Smith, E. T. Yu, A. A. Demkov, and J. G. Ekerdt, Adv. Mater. Interfaces 1, 1400081 (2014).
http://dx.doi.org/10.1002/admi.201400081
75.
75. S. Riedel, J. Neidhardt, S. Jansen, L. Wilde, J. Sundqvist, E. Erben, S. Teichert, and A. Michaelis, J. Appl. Phys. 109, 094101 (2011).
http://dx.doi.org/10.1063/1.3573513
76.
76. R. Katamreddy, V. Omarjee, B. Feist, C. Dussarrat, M. Singh, and C. Takoudis, ECS Trans. 16, 487 (2008).
http://dx.doi.org/10.1149/1.2981630
77.
77. R. Katamreddy, Z. Wang, V. Omarjee, P. V. Rao, C. Dussarrat, and N. Blasco, ECS Trans. 25, 217 (2009).
http://dx.doi.org/10.1149/1.3205057
78.
78. W. Lee, J. H. Han, W. Jeon, Y. W. Yoo, S. W. Lee, S. K. Kim, C.-H. Ko, C. Lansalot-Matras, and C. S. Hwang, Chem. Mater. 25, 953 (2013).
http://dx.doi.org/10.1021/cm304125e
79.
79. H. García, H. Castán, A. Gómez, S. Dueñas, L. Bailón, K. Kukli, M. Kariniemi, M. Kemell, J. Niinistö, M. Ritala, and M. Leskelä, J. Vac. Sci. Technol., B 29, 01AC04 (2011).
http://dx.doi.org/10.1116/1.3525280
80.
80. V. Longo, N. Leick, F. Roozeboom, and W. M. M. Kessels, ECS Trans. 41, 63 (2011).
http://dx.doi.org/10.1149/1.3633655
81.
81. M. A. Pawlak, B. Kaczer, M.-S. Kim, M. Popovici, K. Tomida, J. Swerts, K. Opsomer, W. Polspoel, P. Favia, C. Vrancken, C. Demeurisse, W.-C. Wang, V. V. Afanas'ev, W. Vandervorst, H. Bender, I. Debusschere, L. Altimime, and J. A. Kittl, Appl. Phys. Lett. 97, 162906 (2010).
http://dx.doi.org/10.1063/1.3505323
82.
82. M. A. Pawlak, B. Kaczer, M.-S. Kim, M. Popovici, J. Swerts, W.-C. Wang, K. Opsomer, P. Favia, K. Tomida, A. Belmonte, B. Govoreanu, C. Vrancken, C. Demeurisse, H. Bender, V. V. Afanas'ev, I. Debusschere, L. Altimime, and J. A. Kittl, Appl. Phys. Lett. 98, 182902 (2011).
http://dx.doi.org/10.1063/1.3584022
83.
83. M. Lukosius, C. Wenger, T. Blomberg, A. Abrutis, G. Lupina, P. K. Baumann, and G. Ruhl, ECS J. Solid State Sci. Technol. 1, N1 (2012).
http://dx.doi.org/10.1149/2.023201jss
84.
84. T. Blomberg, J. Anttila, S. Haukka, M. Tuominen, M. Lukosius, C. Wenger, and T. Saukkonen, Thin Solid Films 520, 6535 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.06.059
85.
85. M. Popovici, S. V. Elshocht, N. Menou, J. Swerts, D. Pierreux, A. Delabie, B. Brijs, T. Conard, K. Opsomer, J. W. Maes, D. J. Wouters, and J. A. Kittl, J. Electrochem. Soc. 157, G1 (2010).
http://dx.doi.org/10.1149/1.3244213
86.
86. D. S. Kil, J. M. Lee, and J. S. Roh, Chem. Vap. Deposition 8, 195 (2002).
http://dx.doi.org/10.1002/1521-3862(20020903)8:5<195::AID-CVDE195>3.0.CO;2-9
87.
87. A. Kosola, M. Putkonen, L.-S. Johansson, and L. Niinistö, Appl. Surf. Sci. 211, 102 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00175-2
88.
88. O. S. Kwon, S. K. Kim, M. Cho, C. S. Hwang, and J. Jeong, J. Electrochem. Soc. 152, C229 (2005).
http://dx.doi.org/10.1149/1.1869292
89.
89. J.-H. Ahn, S.-W. Kang, J.-Y. Kim, J.-H. Kim, and J.-S. Roh, J. Electrochem. Soc. 155, G185 (2008).
http://dx.doi.org/10.1149/1.2960898
90.
90. J. H. Han, W. Lee, W. Jeon, S. W. Lee, C. S. Hwang, C. Ko, and J. Gatineau, Chem. Mater. 24, 4686 (2012).
http://dx.doi.org/10.1021/cm302470k
91.
91. J. Niinistö, K. Kukli, M. Heikkilä, M. Ritala, and M. Leskelä, Adv. Eng. Mater. 11, 223 (2009).
http://dx.doi.org/10.1002/adem.200800316
92.
92. K. Black, M. Werner, R. Rowlands–Jones, P. R. Chalker, and M. J. Rosseinsky, Chem. Mater. 23, 2518 (2011).
http://dx.doi.org/10.1021/cm200315u
93.
93. M. D. McDaniel, C. Hu, S. Lu, T. Q. Ngo, A. Posadas, A. Jiang, D. J. Smith, E. T. Yu, A. A. Demkov, and J. G. Ekerdt, J. Appl. Phys. 117, 054101 (2015).
http://dx.doi.org/10.1063/1.4906953
94.
94. T. Q. Ngo, A. B. Posadas, M. D. McDaniel, C. Hu, J. Bruley, E. T. Yu, A. A. Demkov, and J. G. Ekerdt, Appl. Phys. Lett. 104, 082910 (2014).
http://dx.doi.org/10.1063/1.4867469
95.
95. R. Matero, A. Rahtu, S. Haukka, M. Tuominen, M. Vehkamäki, T. Hatanpää, M. Ritala, and M. Leskelä, ECS Trans. 1, 137 (2006).
http://dx.doi.org/10.1149/1.2209339
96.
96. M. Vehkamäki, T. Hatanpää, M. Ritala, M. Leskelä, S. Väyrynen, and E. Rauhala, Chem. Vap. Deposition 13, 239 (2007).
http://dx.doi.org/10.1002/cvde.200606538
97.
97. J. An, Y. B. Kim, J. S. Park, J. H. Shim, T. M. Gür, and F. B. Prinz, J. Vac. Sci. Technol., A 30, 01A161 (2012).
http://dx.doi.org/10.1116/1.3670750
98.
98. J. Harjuoja, A. Kosola, M. Putkonen, and L. Niinistö, Thin Solid Films 496, 346 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.09.026
99.
99. H. J. Lee, G. W. Hwang, K. Lee, G. H. Kim, and C. S. Hwang, “ Atomic layer deposition of PbTiO3 and its component oxide films,” in Proceedings of the Sixteenth IEEE International Symposium on Applications of Ferroelectrics, ISAF (2007), p. 152.
100.
100. G. W. Hwang, H. J. Lee, K. Lee, and C. S. Hwang, J. Electrochem. Soc. 154, G69 (2007).
http://dx.doi.org/10.1149/1.2431317
101.
101. J. Harjuoja, S. Väyrynen, M. Putkonen, L. Niinistö, and E. Rauhala, Appl. Surf. Sci. 253, 5228 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.11.041
102.
102. Y. Liu, H. Kim, J.-J. Wang, H. Li, and R. G. Gordon, ECS Trans. 16, 471 (2008).
http://dx.doi.org/10.1149/1.2981628
103.
103. T. Q. Ngo, A. Posadas, M. D. McDaniel, D. A. Ferrer, J. Bruley, C. Breslin, A. A. Demkov, and J. G. Ekerdt, J. Cryst. Growth 363, 150 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.10.032
104.
104. H. Li, D. V. Shenai, R. Pugh, and J. Kim, Mater. Res. Soc. Symp. Proc. 1036, 41 (2007).
http://dx.doi.org/10.1557/PROC-1036-M04-18
105.
105. B. S. Lim, A. Rahtu, P. de Rouffignac, and R. G. Gordon, Appl. Phys. Lett. 84, 3957 (2004).
http://dx.doi.org/10.1063/1.1739272
106.
106. N. Sbrockey, M. Luong, E. Gallo, J. Sloppy, G. Chen, C. Winkler, S. Johnson, M. Taheri, G. Tompa, and J. Spanier, J. Electron. Mater. 41, 819 (2012).
http://dx.doi.org/10.1007/s11664-012-1960-6
107.
107. D. Eom, C. S. Hwang, H. J. Kim, M.-H. Cho, and K. B. Chung, Electrochem. Solid-State Lett. 11, G33 (2008).
http://dx.doi.org/10.1149/1.2916437
108.
108. G. Congedo, S. Spiga, L. Lamagna, A. Lamperti, Y. Lebedinskii, Y. Matveyev, A. Zenkevich, P. Chernykh, and M. Fanciulli, Microelectron. Eng. 86, 1696 (2009).
http://dx.doi.org/10.1016/j.mee.2009.03.072
109.
109. H. H. Sønsteby, E. Østreng, H. Fjellvåg, and O. Nilsen, Thin Solid Films 550, 90 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.10.139
110.
110. M. Nieminen, T. Sajavaara, E. Rauhala, M. Putkonen, and L. Niinisto, J. Mater. Chem. 11, 2340 (2001).
http://dx.doi.org/10.1039/b102677c
111.
111. D. H. Triyoso, H. Li, R. I. Hegde, Z. Yu, K. Moore, J. Grant, B. E. White, and P. J. Tobin, J. Vac. Sci. Technol., B 23, 2480 (2005).
http://dx.doi.org/10.1116/1.2131077
112.
112. K. Kukli, M. Ritala, V. Pore, M. Leskelä, T. Sajavaara, R. I. Hegde, D. C. Gilmer, P. J. Tobin, A. C. Jones, and H. C. Aspinall, Chem. Vap. Deposition 12, 158 (2006).
http://dx.doi.org/10.1002/cvde.200506388
113.
113. D. H. Triyoso, R. I. Hegde, J. M. Grant, J. K. Schaeffer, D. Roan, B. E. White, and P. J. Tobin, J. Vac. Sci. Technol., B 23, 288 (2005).
http://dx.doi.org/10.1116/1.1849217
114.
114. H. Wang, J.-J. Wang, R. Gordon, J.-S. M. Lehn, H. Li, D. Hong, and D. V. Shenai, Electrochem. Solid-State Lett. 12, G13 (2009).
http://dx.doi.org/10.1149/1.3074314
115.
115. P. Myllymaki, M. Roeckerath, J. M. Lopes, J. Schubert, K. Mizohata, M. Putkonen, and L. Niinisto, J. Mater. Chem. 20, 4207 (2010).
http://dx.doi.org/10.1039/c0jm00363h
116.
116. O. Nilsen, M. Peussa, H. Fjellvag, L. Niinisto, and A. Kjekshus, J. Mater. Chem. 9, 1781 (1999).
http://dx.doi.org/10.1039/a902957e
117.
117. H. Seim, M. Nieminen, L. Niinistö, H. Fjellvåg, and L.-S. Johansson, Appl. Surf. Sci. 112, 243 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)01001-X
118.
118. H. Seim, H. Molsa, M. Nieminen, H. Fjellvag, and L. Niinisto, J. Mater. Chem. 7, 449 (1997).
http://dx.doi.org/10.1039/a606316k
119.
119. M. Nieminen, S. Lehto, and L. Niinisto, J. Mater. Chem. 11, 3148 (2001).
http://dx.doi.org/10.1039/b105978p
120.
120. X. Wang, L. Dong, J. Zhang, Y. Liu, P. D. Ye, and R. G. Gordon, Nano Lett. 13, 594 (2013).
http://dx.doi.org/10.1021/nl3041349
121.
121. Y. Liu, M. Xu, J. Heo, P. D. Ye, and R. G. Gordon, Appl. Phys. Lett. 97, 162910 (2010).
http://dx.doi.org/10.1063/1.3504254
122.
122. J. J. Gu, Y. Q. Liu, M. Xu, G. K. Celler, R. G. Gordon, and P. D. Ye, Appl. Phys. Lett. 97, 012106 (2010).
http://dx.doi.org/10.1063/1.3462303
123.
123. M. Roeckerath, T. Heeg, J. M. J. Lopes, J. Schubert, S. Mantl, A. Besmehn, P. Myllymäki, and L. Niinistö, Thin Solid Films 517, 201 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.08.064
124.
124. A. Kosola, J. Päiväsaari, M. Putkonen, and L. Niinistö, Thin Solid Films 479, 152 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.12.004
125.
125. K. H. Kim, D. B. Farmer, J.-S. M. Lehn, P. V. Rao, and R. G. Gordon, Appl. Phys. Lett. 89, 133512 (2006).
http://dx.doi.org/10.1063/1.2354423
126.
126. P. Myllymäki, M. Roeckerath, M. Putkonen, S. Lenk, J. Schubert, L. Niinistö, and S. Mantl, Appl. Phys. A 88, 633 (2007).
http://dx.doi.org/10.1007/s00339-007-4069-7
127.
127. P. Myllymaki, M. Nieminen, J. Niinisto, M. Putkonen, K. Kukli, and L. Niinisto, J. Mater. Chem. 16, 563 (2006).
http://dx.doi.org/10.1039/B514083H
128.
128. K. Uusi-Esko, J. Malm, and M. Karppinen, Chem. Mater. 21, 5691 (2009).
http://dx.doi.org/10.1021/cm9020172
129.
129. A. R. Akbashev, G. Chen, and J. E. Spanier, Nano Lett. 14, 44 (2013).
http://dx.doi.org/10.1021/nl4030038
130.
130. F. Zhang, G. Sun, W. Zhao, L. Wang, L. Zheng, S. Liu, B. Liu, L. Dong, X. Liu, G. Yan, L. Tian, and Y. Zeng, J. Phys. Chem. C 117, 24579 (2013).
http://dx.doi.org/10.1021/jp4080652
131.
131. Y.-T. Liu, C.-S. Ku, S.-J. Chiu, H.-Y. Lee, and S.-Y. Chen, ACS Appl. Mater. Interfaces 6, 443 (2014).
http://dx.doi.org/10.1021/am404498y
132.
132. P. Jalkanen, V. Tuboltsev, B. Marchand, A. Savin, M. Puttaswamy, M. Vehkamäki, K. Mizohata, M. Kemell, T. Hatanpää, V. Rogozin, J. Räisänen, M. Ritala, and M. Leskelä, J. Phys. Chem. Lett. 5, 4319 (2014).
http://dx.doi.org/10.1021/jz502285f
133.
133. A. Lin, X. Hong, V. Wood, A. A. Verevkin, C. H. Ahn, R. A. McKee, F. J. Walker, and E. D. Specht, Appl. Phys. Lett. 78, 2034 (2001).
http://dx.doi.org/10.1063/1.1358848
134.
134. B. T. Liu, K. Maki, Y. So, V. Nagarajan, R. Ramesh, J. Lettieri, J. H. Haeni, D. G. Schlom, W. Tian, X. Q. Pan, F. J. Walker, and R. A. McKee, Appl. Phys. Lett. 80, 4801 (2002).
http://dx.doi.org/10.1063/1.1484552
135.
135. J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, and R. Ramesh, Appl. Phys. Lett. 85, 2574 (2004).
http://dx.doi.org/10.1063/1.1799234
136.
136. V. Vaithyanathan, J. Lettieri, W. Tian, A. Sharan, A. Vasudevarao, Y. L. Li, A. Kochhar, H. Ma, J. Levy, P. Zschack, J. C. Woicik, L. Q. Chen, V. Gopalan, and D. G. Schlom, J. Appl. Phys. 100, 024108 (2006).
http://dx.doi.org/10.1063/1.2203208
137.
137. A. K. Pradhan, J. B. Dadson, D. Hunter, K. Zhang, S. Mohanty, E. M. Jackson, B. Lasley-Hunter, K. Lord, T. M. Williams, R. R. Rakhimov, J. Zhang, D. J. Sellmyer, K. Inaba, T. Hasegawa, S. Mathews, B. Joseph, B. R. Sekhar, U. N. Roy, Y. Cui, and A. Burger, J. Appl. Phys. 100, 033903 (2006).
http://dx.doi.org/10.1063/1.2222402
138.
138. J. W. Reiner, A. Posadas, M. Wang, M. Sidorov, Z. Krivokapic, F. J. Walker, T. P. Ma, and C. H. Ahn, J. Appl. Phys. 105, 124501 (2009).
http://dx.doi.org/10.1063/1.3148243
139.
139. A. Posadas, M. Berg, H. Seo, A. de Lozanne, A. A. Demkov, D. J. Smith, A. P. Kirk, D. Zhernokletov, and R. M. Wallace, Appl. Phys. Lett. 98, 053104 (2011).
http://dx.doi.org/10.1063/1.3549301
140.
140. H. Seo, A. B. Posadas, C. Mitra, A. V. Kvit, J. Ramdani, and A. A. Demkov, Phys. Rev. B 86, 075301 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075301
141.
141. K. D. Fredrickson, P. Ponath, A. B. Posadas, M. R. McCartney, T. Aoki, D. J. Smith, and A. A. Demkov, Appl. Phys. Lett. 104, 242908 (2014).
http://dx.doi.org/10.1063/1.4883883
142.
142. F. Niu and B. W. Wessels, J. Vac. Sci. Technol., B 25, 1053 (2007).
http://dx.doi.org/10.1116/1.2539503
143.
143. G. Niu, S. Yin, G. Saint-Girons, B. Gautier, P. Lecoeur, V. Pillard, G. Hollinger, and B. Vilquin, Microelectron. Eng. 88, 1232 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.028
144.
144. S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, and J. Fompeyrine, Nat. Commun. 4, 1671 (2013).
http://dx.doi.org/10.1038/ncomms2695
145.
145. C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, Nat. Nano 8, 748 (2013).
http://dx.doi.org/10.1038/nnano.2013.192
146.
146. P. Ponath, K. Fredrickson, A. B. Posadas, Y. Ren, X. Wu, R. K. Vasudevan, M. Baris Okatan, S. Jesse, T. Aoki, M. R. McCartney, D. J. Smith, S. V. Kalinin, K. Lai, and A. A. Demkov, Nat. Commun. 6, 6067 (2015).
http://dx.doi.org/10.1038/ncomms7067
147.
147. S. B. Turnipseed, R. M. Barkley, and R. E. Sievers, Inorg. Chem. 30, 1164 (1991).
http://dx.doi.org/10.1021/ic00006a003
148.
148. R. Huang and A. H. Kitai, Appl. Phys. Lett. 61, 1450 (1992).
http://dx.doi.org/10.1063/1.107514
149.
149. R. Huang and A. Kitai, J. Electron. Mater. 22, 215 (1993).
http://dx.doi.org/10.1007/BF02665029
150.
150.Manufactured and supplied by Air Liquide ALOHA Electronics Performance Materials, Air Liquide Electronics U.S. LP, Houston, TX.
151.
151. O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 450, 240 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.10.152
152.
152. R. Matero, A. Rahtu, S. Haukka, M. Tuominen, M. Vehkamäki, T. Hatanpää, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 1, 137 (2006).
http://dx.doi.org/10.1149/1.2209339
153.
153. N. Menou, M. Popovici, S. Clima, K. Opsomer, W. Polspoel, B. Kaczer, G. Rampelberg, K. Tomida, M. A. Pawlak, C. Detavernier, D. Pierreux, J. Swerts, J. W. Maes, D. Manger, M. Badylevich, V. Afanasiev, T. Conard, P. Favia, H. Bender, B. Brijs, W. Vandervorst, S. Van Elshocht, G. Pourtois, D. J. Wouters, S. Biesemans, and J. A. Kittl, J. Appl. Phys. 106, 094101 (2009).
http://dx.doi.org/10.1063/1.3246835
154.
154. A. Zydor and S. D. Elliott, J. Nanosci. Nanotechnol. 11, 8089 (2011).
http://dx.doi.org/10.1166/jnn.2011.5108
155.
155. S. K. Kim, W.-D. Kim, K.-M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett. 85, 4112 (2004).
http://dx.doi.org/10.1063/1.1812832
156.
156. S. K. Kim and C. S. Hwang, Electrochem. Solid-State Lett. 11, G9 (2008).
http://dx.doi.org/10.1149/1.2825763
157.
157. T. Watanabe, S. Hoffmann-Eifert, C. S. Hwang, and R. Waser, Mater. Res. Soc. Symp. Proc. 902E, 0902-T04-07.1 (2006).
158.
158. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).
http://dx.doi.org/10.1088/0034-4885/69/2/R02
159.
159. X.-B. Lu, Z.-G. Liu, Y.-P. Wang, Y. Yang, X.-P. Wang, H.-W. Zhou, and B.-Y. Nguyen, J. Appl. Phys. 94, 1229 (2003).
http://dx.doi.org/10.1063/1.1586976
160.
160. A. Li, C. Ge, P. , and N. Ming, Appl. Phys. Lett. 68, 1347 (1996).
http://dx.doi.org/10.1063/1.115930
161.
161. L. Sun, T. Yu, Y.-F. Chen, J. Zhou, and N.-B. Ming, J. Mater. Res. 12, 931 (1997).
http://dx.doi.org/10.1557/JMR.1997.0133
162.
162. N. Wakiya, T. Azuma, K. Shinozaki, and N. Mizutani, Thin Solid Films 410, 114 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00238-9
163.
163. K. Kumagai, A. Iwai, Y. Tomioka, H. Kuwahara, Y. Tokura, and A. Yakubovskii, Phys. Rev. B 59, 97 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.97
164.
164. A. Posadas, M. Berg, H. Seo, D. J. Smith, A. P. Kirk, D. Zhernokletov, R. M. Wallace, A. de Lozanne, and A. A. Demkov, Microelectron. Eng. 88, 1444 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.108
165.
165. W. He, S. Schuetz, R. Solanki, J. Belot, and J. McAndrew, Electrochem. Solid-State Lett. 7, G131 (2004).
http://dx.doi.org/10.1149/1.1724824
166.
166. L. F. Edge, D. G. Schlom, R. T. Brewer, Y. J. Chabal, J. R. Williams, S. A. Chambers, C. Hinkle, G. Lucovsky, Y. Yang, S. Stemmer, M. Copel, B. Holländer, and J. Schubert, Appl. Phys. Lett. 84, 4629 (2004).
http://dx.doi.org/10.1063/1.1759065
167.
167. R. Sandstrom, E. A. Giess, W. J. Gallagher, A. Segmüller, E. Cooper, M. Chisholm, A. Gupta, S. Shinde, and R. Laibowitz, Appl. Phys. Lett. 53, 1874 (1988).
http://dx.doi.org/10.1063/1.100485
168.
168. H. J. Scheel, M. Berkowski, and B. Chabot, Physica C 185–189(3), 2095 (1991).
http://dx.doi.org/10.1016/0921-4534(91)91172-Z
169.
169. H. Li and D. V. Shenai, Mater. Res. Soc. Symp. Proc. 1155, 1155-C04-04.2 (2009).
http://dx.doi.org/10.1557/PROC-1155-C04-04
170.
170. W. F. Xiang, H. B. Lu, Z. H. Chen, X. B. Lu, M. He, H. Tian, Y. L. Zhou, C. R. Li, and X. L. Ma, J. Cryst. Growth 271, 165 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.07.057
171.
171. L. F. Edge, D. G. Schlom, P. Sivasubramani, R. M. Wallace, B. Holländer, and J. Schubert, Appl. Phys. Lett. 88, 112907 (2006).
http://dx.doi.org/10.1063/1.2182019
172.
172. H. Ling, X. Lu, A. Li, D. Wu, Q. Shao, J. Sheng, Z. Liu, N. Ming, X. Wang, B. Y. Nguyen, and H. Zhou, Appl. Phys. A 80, 641 (2005).
http://dx.doi.org/10.1007/s00339-003-2266-6
173.
173. K.-C. Liu, W.-H. Tzeng, K.-M. Chang, J.-J. Huang, Y.-J. Lee, P.-H. Yeh, P.-S. Chen, H.-Y. Lee, F. Chen, and M.-J. Tsai, Thin Solid Films 520, 1246 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.04.205
174.
174. M. Golalikhani, Q. Y. Lei, G. Chen, J. E. Spanier, H. Ghassemi, C. L. Johnson, M. L. Taheri, and X. X. Xi, J. Appl. Phys. 114, 027008 (2013).
http://dx.doi.org/10.1063/1.4811821
175.
175. A. E. Lee, C. E. Platt, J. F. Burch, R. W. Simon, J. P. Goral, and M. M. Al-Jassim, Appl. Phys. Lett. 57, 2019 (1990).
http://dx.doi.org/10.1063/1.104153
176.
176. P. Sivasubramani, J. Kim, M. J. Kim, B. E. Gnade, and R. M. Wallace, Appl. Phys. Lett. 89, 152903 (2006).
http://dx.doi.org/10.1063/1.2361170
177.
177. G. Malandrino, I. L. Fragalà, and P. Scardi, Chem. Mater. 10, 3765 (1998).
http://dx.doi.org/10.1021/cm9804970
178.
178. A. A. Molodyk, I. Korsakov, M. Novojilov, I. Graboy, A. Kaul, and G. Wahl, Chem. Vap. Deposition 6, 133 (2000).
http://dx.doi.org/10.1002/(SICI)1521-3862(200006)6:3<133::AID-CVDE133>3.0.CO;2-G
179.
179. J. H. Jun, J. Jun, and D. J. Choi, Electrochem. Solid-State Lett. 6, F37 (2003).
http://dx.doi.org/10.1149/1.1614453
180.
180. A. D. Li, J. B. Cheng, Q. Y. Shao, H. Q. Ling, D. Wu, Y. Wang, M. Wang, Z. G. Liu, N. B. Ming, C. Wang, H. W. Zhou, and B. Y. Nguyen, Ferroelectrics 329, 73 (2005).
http://dx.doi.org/10.1080/00150190500315558
181.
181. D. H. Triyoso, H. Li, R. I. Hegde, Z. Yu, K. Moore, J. Grant, B. E. White, and P. J. Tobin, J. Vac. Sci. Technol., B 23, 2480 (2005).
http://dx.doi.org/10.1116/1.2131077
182.
182. T. Q. Ngo, M. D. McDaniel, A. Posadas, A. A. Demkov, and J. G. Ekerdt, in “Growth of crystalline LaAlO3 by atomic layer deposition,” Proc. SPIE. 8987, 898712 (2014).
http://dx.doi.org/10.1117/12.2045532
183.
183. Q. Huang, A. Santoro, J. Lynn, R. Erwin, J. Borchers, J. Peng, and R. Greene, Phys. Rev. B 55, 14987 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.14987
184.
184. E. L. Nagaev, Phys.-Usp. 39, 781 (1996).
http://dx.doi.org/10.1070/PU1996v039n08ABEH000161
185.
185. P. N. Huang and A. Petric, J. Electrochem. Soc. 143, 1644 (1996).
http://dx.doi.org/10.1149/1.1836692
186.
186. S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle, and J. W. Stevenson, J. Power Sources 113, 1 (2003).
http://dx.doi.org/10.1016/S0378-7753(02)00455-X
187.
187. W. G. Wang and M. Mogensen, Solid State Ionics 176, 457 (2005).
http://dx.doi.org/10.1016/j.ssi.2004.09.007
188.
188. J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, Nat. Commun. 1, 89 (2010).
http://dx.doi.org/10.1038/ncomms1084
189.
189. J. Biscaras, N. Bergeal, S. Hurand, C. Grossetête, A. Rastogi, R. C. Budhani, D. LeBoeuf, C. Proust, and J. Lesueur, Phys. Rev. Lett. 108, 247004 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.247004
190.
190. P. Kumar, A. Dogra, and V. Toutam, Appl. Phys. Lett. 103, 211601 (2013).
http://dx.doi.org/10.1063/1.4831685
191.
191. S. Stramare, V. Thangadurai, and W. Weppner, Chem. Mater. 15, 3974 (2003).
http://dx.doi.org/10.1021/cm0300516
192.
192. T. Heeg, M. Wagner, J. Schubert, C. Buchal, M. Boese, M. Luysberg, E. Cicerrella, and J. L. Freeouf, Microelectron. Eng. 80, 150 (2005).
http://dx.doi.org/10.1016/j.mee.2005.04.058
193.
193. M. Leskelä and M. Ritala, J. Solid State Chem. 171, 170 (2003).
http://dx.doi.org/10.1016/S0022-4596(02)00204-9
194.
194. C. Zhao, T. Witters, B. Brijs, H. Bender, O. Richard, M. Caymax, T. Heeg, J. Schubert, V. V. Afanas'ev, A. Stesmans, and D. G. Schlom, Appl. Phys. Lett. 86, 132903 (2005).
http://dx.doi.org/10.1063/1.1886249
195.
195. M. D. Biegalski, J. H. Haeni, S. Trolier-McKinstry, D. G. Schlom, C. D. Brandle, and A. J. V. Graitis, J. Mater. Res. 20, 952 (2005).
http://dx.doi.org/10.1557/JMR.2005.0126
196.
196. R. Uecker, B. Velickov, D. Klimm, R. Bertram, M. Bernhagen, M. Rabe, M. Albrecht, R. Fornari, and D. G. Schlom, J. Cryst. Growth 310, 2649 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.01.019
197.
197. S. A. Kutolin, V. I. Kotyukov, S. N. Komarova, and D. I. Chernobrovkin, Inorg. Mater. 15, 615 (1979).
198.
198. P. M. Rasulov, K. R. Tulyaganov, Z. A. Iskanderova, T. D. Radjabov, M. A. Alimova, L. P. Kovarski, and V. A. Krakhmalyov, Mater. Sci. Eng. A 139, 372 (1991).
http://dx.doi.org/10.1016/0921-5093(91)90644-3
199.
199. R. Thomas, P. Ehrhart, M. Luysberg, M. Boese, R. Waser, M. Roeckerath, E. Rije, J. Schubert, S. Van Elshocht, and M. Caymax, Appl. Phys. Lett. 89, 232902 (2006).
http://dx.doi.org/10.1063/1.2402121
200.
200. K. Fröhlich, J. Fedor, I. Kostič, J. Maňka, and P. Ballo, J. Electr. Eng. 62, 54 (2011).
http://dx.doi.org/10.2478/v10187-011-0009-z
201.
201. L. Manchanda, M. D. Morris, M. L. Green, R. B. van Dover, F. Klemens, T. W. Sorsch, P. J. Silverman, G. Wilk, B. Busch, and S. Aravamudhan, Microelectron. Eng. 59, 351 (2001).
http://dx.doi.org/10.1016/S0167-9317(01)00668-2
202.
202. A. Munoz, J. A. Alonso, M. T. Casais, M. J. Martínez-Lope, J. L. Martínez, and M. T. Fernández-Díaz, J. Phys.: Condens. Matter 14, 3285 (2002).
203.
203. F. Zavaliche, S. Yang, T. Zhao, Y. Chu, M. Cruz, C. Eom, and R. Ramesh, Phase Trans. 79, 991 (2006).
http://dx.doi.org/10.1080/01411590601067144
204.
204. C. B. Zhang, L. Wielunski, and B. G. Willis, Appl. Surf. Sci. 257, 4826 (2011).
http://dx.doi.org/10.1016/j.apsusc.2010.12.098
205.
205. M. D. McDaniel, A. Posadas, T. Q. Ngo, A. Dhamdhere, D. J. Smith, A. A. Demkov, and J. G. Ekerdt, J. Vac. Sci. Technol., B 30, 04E111 (2012).
http://dx.doi.org/10.1116/1.4734311
206.
206. S. Abel, M. Sousa, C. Rossel, D. Caimi, M. D. Rossell, R. Erni, J. Fompeyrine, and C. Marchiori, Nanotechnology 24, 285701 (2013).
http://dx.doi.org/10.1088/0957-4484/24/28/285701
207.
207. D. J. Frank, P. M. Solomon, C. Dubourdieu, M. M. Frank, V. Narayanan, and T. N. Theis, IEEE Trans. Electron Devices 61, 2145 (2014).
http://dx.doi.org/10.1109/TED.2014.2314652
208.
208. J. S. Hovis, R. J. Hamers, and C. M. Greenlief, Surf. Sci. 440, L815 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00866-3
209.
209. P. Ponath, A. B. Posadas, R. C. Hatch, and A. A. Demkov, J. Vac. Sci. Technol., B 31, 031201 (2013).
http://dx.doi.org/10.1116/1.4798390
210.
210. A. Meldrum, L. A. Boatner, W. J. Weber, and R. C. Ewing, J. Nucl. Mater. 300, 242 (2002).
http://dx.doi.org/10.1016/S0022-3115(01)00733-4
211.
211. G. Lupina, O. Seifarth, P. Dudek, G. Kozlowski, J. Dabrowski, H.-J. Thieme, G. Lippert, T. Schroeder, and H.-J. Müssig, Phys. Status Solidi B 248, 323 (2011).
http://dx.doi.org/10.1002/pssb.201046456
212.
212. S. Gaudet, C. Detavernier, A. J. Kellock, P. Desjardins, and C. Lavoie, J. Vac. Sci. Technol., A 24, 474 (2006).
http://dx.doi.org/10.1116/1.2191861
213.
213. S. Van Elshocht, M. Caymax, T. Conard, S. De Gendt, I. Hoflijk, M. Houssa, B. De Jaeger, J. Van Steenbergen, M. Heyns, and M. Meuris, Appl. Phys. Lett. 88, 141904 (2006).
http://dx.doi.org/10.1063/1.2192576
214.
214. T. Q. Ngo, Ph.D. thesis, University of Texas at Austin, 2015.
215.
215. M. D. McDaniel, Ph.D. thesis, University of Texas at Austin, 2015.
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/4/10.1063/1.4934574
Loading
/content/aip/journal/apr2/2/4/10.1063/1.4934574
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/4/10.1063/1.4934574
2015-11-04
2016-12-09

Abstract

Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as AlO and HfO. However, there has been much effort to deposit ternary oxides, such as perovskites (O), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/4/1.4934574.html;jsessionid=3IGXys53wHBN0sOA4fejffTo.x-aip-live-06?itemId=/content/aip/journal/apr2/2/4/10.1063/1.4934574&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/4/10.1063/1.4934574&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/4/10.1063/1.4934574'
Right1,Right2,Right3,