Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/2/4/10.1063/1.4935926
1.
1. W. Meiners, K. D. Wissenbach, and A. D. Gasser, “ Shaped body especially prototype or replacement part production,” U.S. patent DE19649849C1 (1998).
2.
2. S. Das and J. J. Beaman, “ Direct selective laser sintering of metals,” U.S. patent US6676892B2 (2004).
3.
3. C. K. Chua and K. F. Leong, 3D Printing and Additive Manufacturing: Principles and Applications, 4th ed. (World Scientific, Singapore, 2014), p. 518.
4.
4. A. T. Clare, P. R. Chalker, S. Davies, C. J. Sutcliffe, and S. Tsopanos, Int. J. Mech. Mater. Des. 4, 181187 (2007).
http://dx.doi.org/10.1007/s10999-007-9032-4
5.
5. R. Acharya, R. Bansal, J. J. Gambone, and S. Das, Metall. Mater. Trans. B 45, 22472261 (2014).
http://dx.doi.org/10.1007/s11663-014-0117-9
6.
6. R. Acharya, R. Bansal, J. J. Gambone, and S. Das, Metall. Mater. Trans. B 45, 22792290 (2014).
http://dx.doi.org/10.1007/s11663-014-0183-z
7.
7. R. Acharya, R. Bansal, J. J. Gambone, M. A. Kaplan, G. E. Fuchs, N. G. Rudawski, and S. Das, Adv. Eng. Mater. 17, 942950 (2015).
http://dx.doi.org/10.1002/adem.201400589
8.
8. R. Acharya and S. Das, Metall. Mater. Trans. A 46, 38643875 (2015).
http://dx.doi.org/10.1007/s11661-015-2912-6
9.
9. R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, Int. J. Adv. Manuf. Technol. 59, 10251035 (2011).
http://dx.doi.org/10.1007/s00170-011-3566-1
10.
10. P. Krakhmalev and I. Yadroitsev, Intermetallics 46, 147155 (2014).
http://dx.doi.org/10.1016/j.intermet.2013.11.012
11.
11. S. Das, Adv. Eng. Mater. 5, 701711 (2003).
http://dx.doi.org/10.1002/adem.200310099
12.
12. N. K. Tolochko, Y. V. Khlopkov, S. E. Mozzharov, M. B. Ignatiev, T. Laoui, and V. I. Titov, Rapid Prototyping J. 6, 155161 (2000).
http://dx.doi.org/10.1108/13552540010337029
13.
13. P. Fischer, V. Romano, H. P. Weber, N. P. Karapatis, E. Boillat, and R. Glardon, Acta Mater. 51, 16511662 (2003).
http://dx.doi.org/10.1016/S1359-6454(02)00567-0
14.
14. X. Wang, T. Laoui, J. Bonse, J.-P. Kruth, B. Lauwers, and L. Froyen, Int. J. Adv. Manuf. Technol. 19, 351357 (2002).
http://dx.doi.org/10.1007/s001700200024
15.
15. A. V. Gusarov and J. P. Kruth, Int. J. Heat Mass Transfer 48, 34233434 (2005).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.01.044
16.
16. L. E. Loh, Z. H. Liu, D. Q. Zhang, M. Mapar, S. L. Sing, C. K. Chua, and W. Y. Yeong, Virtual Phys. Prototyping 9, 1116 (2014).
http://dx.doi.org/10.1080/17452759.2013.869608
17.
17. L.-E. Loh, C.-K. Chua, W.-Y. Yeong, J. Song, M. Mapar, S.-L. Sing, and D.-Q. Zhang, Int. J. Heat Mass Transfer 80, 288300 (2015).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.09.014
18.
18. K. Mumtaz and N. Hopkinson, Rapid Prototyping J. 16, 248257 (2010).
http://dx.doi.org/10.1108/13552541011049261
19.
19. D. Bourell, A. B. Spierings, N. Herres, and G. Levy, Rapid Prototyping J. 17, 195202 (2011).
http://dx.doi.org/10.1108/13552541111124770
20.
20. B. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague, in International Solid Freeform Fabrication Symposium: An Additive Manufacturing Conference ( University of Texas at Austin, Austin, 2011), pp. 227238.
21.
21. N. K. Tolochko, S. E. Mozzharov, I. A. Yadroitsev, T. Laoui, L. Froyen, V. I. Titov, and M. B. Ignatiev, Rapid Prototyping J. 10, 7887 (2004).
http://dx.doi.org/10.1108/13552540410526953
22.
22. J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, J. Mater. Process. Technol. 149, 616622 (2004).
http://dx.doi.org/10.1016/j.jmatprotec.2003.11.051
23.
23. K. Kempen, B. Vrancken, L. Thijs, S. Buls, J. Van Humbeeck, and J.-P. Kruth, in Solid Freeform Fabrication Symposium Proceedings, 2013, Austin, TX, USA (The University of Texas at Austin).
24.
24. I. Yadroitsev and I. Yadroitsava, Virtual Phys. Prototyping 10(2), 6776 (2015).
http://dx.doi.org/10.1080/17452759.2015.1026045
25.
25. M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe, CIRP Ann. 53, 195198 (2004).
http://dx.doi.org/10.1016/S0007-8506(07)60677-5
26.
26. E. Yasa, J. Deckers, J.-P. Kruth, M. Rombouts, and J. Luyten, in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (ASME, 2010), pp. 695703.
27.
27. Y.-C. Hagedorn, J. Wilkes, W. Meiners, K. Wissenbach, and R. Poprawe, Phys. Proc. 5, 587594 (2010).
28.
28. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, J. Mater. Process. Technol. 111, 210213 (2001).
http://dx.doi.org/10.1016/S0924-0136(01)00522-2
29.
29. G. Jandin, J. M. Bertin, L. Dembinski, and C. Coddet, Manufacture of Stainless Steel Parts by Selective Laser Melting Process (CRC Press, 2005), pp. 431434.
30.
30. I. Tolosa, F. Garciandia, F. Zubiri, F. Zapirain, and A. Esnaola, Int. J. Adv. Manuf. Technol. 51, 639647 (2010).
http://dx.doi.org/10.1007/s00170-010-2631-5
31.
31. T. H. C. Childs, C. Hauser, and M. Badrossamay, CIRP Ann. 53, 191194 (2004).
http://dx.doi.org/10.1016/S0007-8506(07)60676-3
32.
32. T. H. C. Childs, C. Hauser, and M. Badrossamay, Proc. Inst. Mech. Eng., Part B 219, 339357 (2005).
http://dx.doi.org/10.1243/095440505X8109
33.
33. T. H. C. Childs and C. Hauser, Proc. Inst. Mech. Eng., Part B 219, 379384 (2005).
http://dx.doi.org/10.1243/095440505X32201
34.
34. M. Badrossamay and T. H. C. Childs, Int. J. Mach. Tools Manuf. 47, 779784 (2007).
http://dx.doi.org/10.1016/j.ijmachtools.2006.09.013
35.
35. P. G. E. Jerrard, L. Hao, and K. E. Evans, Proc. Inst. Mech. Eng., Part B 223, 14091416 (2009).
http://dx.doi.org/10.1243/09544054JEM1574
36.
36. I. Yadroitsev, P. Bertrand, B. Laget, and I. Smurov, in Annals of DAAAM for 2008 and Proceedings of the 19th International DAAAM Symposium (DAAAM International, Vienna, 2008), pp. 15351536.
37.
37. J. P. Kruth, B. Vandenbroucke, J. Van Vaerenbergh, and I. Naert, Digital Manufacturing of Biocompatible Metal Frameworks for Complex Dental Prostheses by Means of SLS/SLM (Taylor & Francis, 2005), pp. 139145.
38.
38. M. Wehmoller, P. H. Warnke, C. Zilian, and H. Eufinger, CARS: Computer Assisted Radiology and Surgery (Elsevier, 2005), pp. 690695.
39.
39. G. X. Chen, X. Y. Zeng, Z. M. Wang, K. Guan, and C. W. Peng, Equipment Manufacturing Technology and Automation (Trans Tech Publications, 2011), Pts. 1–3, pp. 174178.
40.
40. P. Bertrand and I. Smurov, in International Conference on Lasers, Applications, and Technologies 2007: Laser-Assisted Micro- and Nanotechnologies (International Society for Optics and Photonics, 2007), p. H7320.
41.
41. Y. Q. Yang, J. B. Lu, Z. Y. Luo, and D. Wang, Rapid Prototyping J. 18, 482489 (2012).
http://dx.doi.org/10.1108/13552541211272027
42.
42. R. D. Li, J. H. Liu, Y. S. Shi, M. Z. Du, and Z. Xie, J. Mater. Eng. Perform. 19, 666671 (2010).
http://dx.doi.org/10.1007/s11665-009-9535-2
43.
43. R. Bibb, D. Eggbeer, P. Evans, A. Bocca, and A. Sugar, Rapid Prototyping J. 15, 346354 (2009).
http://dx.doi.org/10.1108/13552540910993879
44.
44. I. Yadroitsev, I. Yadroitsava, and I. Smurov, Laser-Based Micro- and Nanopackaging and Assembly V (International Society for Optics and Photonics, 2011).
45.
45. I. Yadroitsev, P. Bertrand, B. Laget, and I. Smurov, J. Nucl. Mater. 362, 189196 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.01.078
46.
46. M. A. Garcia, C. Garcia-Pando, and C. Marto, Conformal Cooling in Moulds With Special Geometry (CRC Press, 2012), p. 409412.
47.
47. J. J. Brandner, E. Hansjosten, E. Anurjew, W. Pfleging, and K. Schubert, Laser-Based Micro- and Nanopackaging and Assembly (International Society for Optics and Photonics, 2007), p. 45911.
48.
48. M. Wong, S. Tsopanos, C. Sutcliffe, and E. Owen, Rapid Prototyping J. 13, 291297 (2007).
http://dx.doi.org/10.1108/13552540710824797
49.
49. V. E. Beal, P. Erasenthiran, C. H. Ahrens, and P. Dickens, Proc. Inst. Mech. Eng., Part B 221, 945954 (2007).
http://dx.doi.org/10.1243/09544054JEM764
50.
50. L. Wang, Q. S. Wei, Y. S. Shi, and P. J. Xue, Adv. Mater. Res. 502, 6771 (2012).
http://dx.doi.org/10.4028/www.scientific.net/AMR.502.67
51.
51. B. Song, S. J. Dong, H. L. Liao, and C. Coddet, Mater. Res. Innovations 16, 321325 (2012).
http://dx.doi.org/10.1179/1433075X11Y.0000000045
52.
52. M. Santorinaios, W. Brooks, C. J. Sutcliffe, and R. A. W. Mines, High Performance Structures and Materials III (WIT Press, 2006), pp. 481490.
53.
53. M. Smith, W. J. Cantwell, Z. Guan, S. Tsopanos, M. D. Theobald, G. N. Nurick, and G. S. Langdon, J. Sandwich Struct. Mater. 13, 479501 (2011).
http://dx.doi.org/10.1177/1099636210388983
54.
54. K. Ushijima, W. J. Cantwell, R. A. W. Mines, S. Tsopanos, and M. Smith, J. Sandwich Struct. Mater. 13, 303329 (2011).
http://dx.doi.org/10.1177/1099636210380997
55.
55. E. J. Harris, R. E. Winter, M. Cotton, M. Swan, and J. Maw, Shock Compression of Condensed Matter—2011 (AIP, 2012), Pts. 1 and 2.
56.
56. Y. Shen, W. J. Cantwell, R. Mines, and K. Ushijima, Materials and Manufacturing Technologies XIV (Trans Tech Publications, 2012), pp. 386391.
57.
57. Y. Shen, S. McKown, S. Tsopanos, C. J. Sutcliffe, R. A. W. Mines, and W. J. Cantwell, J. Sandwich Struct. Mater. 12, 159180 (2010).
http://dx.doi.org/10.1177/1099636209104536
58.
58. R. A. W. Mines, S. Tsopanos, Y. Shen, R. Hasan, and S. T. McKown, Int. J. Impact Eng. 60, 120132 (2013).
http://dx.doi.org/10.1016/j.ijimpeng.2013.04.007
59.
59. O. Rehme and C. Emmelmann, J. Laser Micro Nanoeng. 4, 128134 (2009).
http://dx.doi.org/10.2961/jlmn.2009.02.0010
60.
60. Y. F. Shen, D. D. Gu, and P. Wu, Mater. Sci. Technol. 24, 15011505 (2008).
http://dx.doi.org/10.1179/174328408X287691
61.
61. Z. Y. Wang, Y. F. Shen, and D. D. Gu, Powder Metall. 54, 225230 (2011).
http://dx.doi.org/10.1179/003258909X12450768326947
62.
62. J. Milovanovic, M. Stojkovic, and M. Trajanovic, J. Sci. Ind. Res. 68, 10381042 (2009).
63.
63. F. Feuerhahn, A. Schulz, T. Seefeld, and F. Vollertsen, Lasers in Manufacturing (Trans Tech Publications, 2013), pp. 836841.
64.
64. I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, Appl. Surf. Sci. 255, 55235527 (2009).
http://dx.doi.org/10.1016/j.apsusc.2008.07.154
65.
65. B. Song, S. Dong, S. Deng, H. Liao, and C. Coddet, Opt. Laser Technol. 56, 451460 (2014).
http://dx.doi.org/10.1016/j.optlastec.2013.09.017
66.
66. M. Rombouts, J. P. Kruth, L. Froyen, and P. Mercelis, CIRP Ann. 55, 187192 (2006).
http://dx.doi.org/10.1016/S0007-8506(07)60395-3
67.
67. B. Song, S. J. Dong, P. Coddet, H. L. Liao, and C. Coddet, Surf. Coat. Technol. 206, 47044709 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.05.072
68.
68. G. Rolink, S. Vogt, L. Senčekova, A. Weisheit, R. Poprawe, and M. Palm, J. Mater. Res. 29, 20362043 (2014).
http://dx.doi.org/10.1557/jmr.2014.131
69.
69. B. Sustarsic, S. Dolinsek, M. Jenko, and V. Leskovšek, Mater. Manuf. Process. 24, 837841 (2009).
http://dx.doi.org/10.1080/10426910902841837
70.
70. Y. Wang, J. Bergstrom, and C. Burman, Mater. Sci. Eng., A 513–514, 6471 (2009).
http://dx.doi.org/10.1016/j.msea.2009.01.053
71.
71. K. Abd-Elghany and D. L. Bourell, Rapid Prototyping J. 18, 420428 (2012).
http://dx.doi.org/10.1108/13552541211250418
72.
72. E. Yasa, J. Deckers, and J.-P. Kruth, Rapid Prototyping J. 17, 312327 (2011).
http://dx.doi.org/10.1108/13552541111156450
73.
73. C. S. Wright, M. Youseffi, S. P. Akhtar, T. H. C. Childs, C. Hauser, P. Fox, and J. Xie, Advanced Materials Forum III (Trans Tech Publications, 2006), Pts. 1 and 2, pp. 516523.
74.
74. Z. H. Liu, D. Q. Zhang, C. K. Chua, and K. F. Leong, Mater. Charact. 84, 7280 (2013).
http://dx.doi.org/10.1016/j.matchar.2013.07.010
75.
75. C. Casavola, S. L. Carnpanelli, and C. Pappalettere, J. Strain Anal. Eng. Des. 44, 93104 (2009).
http://dx.doi.org/10.1243/03093247JSA464
76.
76. M. A. Taha, A. F. Yousef, K. A. Gany, and H. A. Sabour, Materialwiss. Werkstofftech. 43, 913923 (2012).
http://dx.doi.org/10.1002/mawe.201200030
77.
77. T. Wohlers, Wohlers Report (Wohlers Associates, 2015).
78.
78. K. Guan, Z. M. Wang, M. Gao, X. Y. Li, and X. Y. Zeng, Mater. Des. 50, 581586 (2013).
http://dx.doi.org/10.1016/j.matdes.2013.03.056
79.
79. H. K. Rafi, T. L. Starr, and B. E. Stucker, Int. J. Adv. Manuf. Technol. 69, 12991309 (2013).
http://dx.doi.org/10.1007/s00170-013-5106-7
80.
80. A. B. Spierings, T. L. Starr, and K. Wegener, Rapid Prototyping J. 19, 8894 (2013).
http://dx.doi.org/10.1108/13552541311302932
81.
81. K. Kempen, E. Yasa, L. Thijs, J. P. Kruth, and J. Van Humbeeck, in Lasers in Manufacturing 2011: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing (Elsevier, 2011), Vol. 12, Pt. A, pp. 255263.
82.
82. J. Delgado, J. Ciurana, and C. A. Rodriguez, Int. J. Adv. Manuf. Technol. 60, 601610 (2012).
http://dx.doi.org/10.1007/s00170-011-3643-5
83.
83. B. Song, S. J. Dong, H. L. Liao, and C. Coddet, Int. J. Adv. Manuf. Technol. 69, 13231330 (2013).
http://dx.doi.org/10.1007/s00170-013-5121-8
84.
84. A. Amanov, S. Sasaki, I. S. Cho, Y. Suzuki, H. J. Kim, and D. E. Kim, Mater. Des. 47, 386394 (2013).
http://dx.doi.org/10.1016/j.matdes.2012.11.062
85.
85. D. Wang, Y. Q. Yang, X. B. Su, and Y. H. Chen, Int. J. Adv. Manuf. Technol. 58, 11891199 (2012).
http://dx.doi.org/10.1007/s00170-011-3443-y
86.
86. Z. H. Liu, C. K. Chua, K. F. Leong, K. Kempen, L. Thijs, E. Yasa, and J. P. Kruth, in 5th International Conference on Advanced Research in Virtual and Rapid Prototyping, 2011, Leiria, Portugal (CRC Press).
87.
87. F. Abe, E. C. Santos, Y. Kitamura, K. Osakada, and M. Shiomi, Proc. Inst. Mech. Eng., Part C 217, 119126 (2003).
http://dx.doi.org/10.1243/095440603762554668
88.
88. T. Laoui, E. Santos, K. Osakada, M. Shiomi, M. Morita, S. K. Shaik, and M. Takahashi, Proc. Inst. Mech. Eng., Part C 220, 857863 (2006).
http://dx.doi.org/10.1243/09544062JMES133
89.
89. L. Mullen, R. C. Stamp, W. K. Brooks, E. Jones, and C. J. Sutcliffe, J. Biomed. Mater. Res., Part B 89B, 325334 (2009).
http://dx.doi.org/10.1002/jbm.b.31219
90.
90. R. Stamp, P. Fox, W. O'Neill, E. Jones, and C. Sutcliffe, J. Mater. Sci. Mater. Med. 20, 18391848 (2009).
http://dx.doi.org/10.1007/s10856-009-3763-8
91.
91. C. Y. Lin, T. Wirtz, F. LaMarca, and S. J. Hollister, J. Biomed. Mater. Res., Part A 83A, 272279 (2007).
http://dx.doi.org/10.1002/jbm.a.31231
92.
92. L. E. Murr, S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela, E. Y. Martinez, and R. B. Wicker, J. Mech. Behav. Biomed. Mater. 2, 2032 (2009).
http://dx.doi.org/10.1016/j.jmbbm.2008.05.004
93.
93. P. H. Warnke, T. Douglas, P. Wollny, E. Sherry, M. Steiner, S. Galonska, and S. Sivananthan, Tissue Eng., Part C 15, 115124 (2009).
http://dx.doi.org/10.1089/ten.tec.2008.0288
94.
94. B. Vandenbroucke and J. P. Kruth, Rapid Prototyping J. 13, 196203 (2007).
http://dx.doi.org/10.1108/13552540710776142
95.
95. J. E. Biemond, G. Hannink, N. Verdonschot, and P. Buma, J. Mater. Sci. Mater. Med. 24, 745753 (2013).
http://dx.doi.org/10.1007/s10856-012-4836-7
96.
96. A. L. Jardini, M. A. Larosa, C. A. de Carvalho Zavaglia, L. F. Bernardes, C. S. Lambert, P. Kharmandayan, and R. Maciel Filho, Virtual Phys. Prototyping 9, 115125 (2014).
http://dx.doi.org/10.1080/17452759.2014.900857
97.
97. E. Chlebus, B. Kuznicka, T. Kurzynowski, and B. Dybala, Mater. Charact. 62, 488495 (2011).
http://dx.doi.org/10.1016/j.matchar.2011.03.006
98.
98. T. Marcu, M. Todea, L. Maines, D. Leordean, P. Berce, and C. Popa, Powder Metall. 55, 309314 (2012).
http://dx.doi.org/10.1179/1743290112Y.0000000007
99.
99. B. Dybala and E. Chlebus, Titanium Scaffolds for Custom CMF Restorations ( ASME, 2013), pp. 517520.
100.
100. P. Szymczyk, A. Junka, G. Ziolkowski, D. Smutnicka, M. Bartoszewicz, and E. Chlebus, Acta Bioeng. Biomech. 15, 6976 (2013).
http://dx.doi.org/10.5277/abb130109
101.
101. L. C. Zhang and T. B. Sercombe, Powder Metallurgy of Titanium: Powder Processing, Consolidation and Metallurgy of Titanium (Trans Tech Publications, 2012), pp. 226233.
102.
102. A. Zielinski, S. Sobieszczyk, W. Serbinski, T. Seramak, and A. Ossowska, Environmental Degradation of Engineering & Materials Engineering and Technologies (Trans Tech Publications, 2012), pp. 225232.
103.
103. M. Speirs, J. Van Humbeeck, J. Schrooten, J. Luyten, and J. P. Kruth, in First CIRP Conference on Biomanufacturing (Elsevier, 2013), pp. 7982.
104.
104. Y. Wang, Y. F. Shen, Z. Y. Wang, J. L. Yang, N. Liu, and W. R. Huang, Mater. Lett. 64, 674676 (2010).
http://dx.doi.org/10.1016/j.matlet.2009.12.035
105.
105. J. F. Sun, Y. Q. Yang, and D. Wang, Mater. Des. 49, 545552 (2013).
http://dx.doi.org/10.1016/j.matdes.2013.01.038
106.
106. B. Gorny, T. Niendorf, J. Lackmann, M. Thoene, T. Troester, and H. J. Maier, Mater. Sci. Eng., A 528, 79627967 (2011).
http://dx.doi.org/10.1016/j.msea.2011.07.026
107.
107. F. Brenne, T. Niendorf, and H. J. Maier, J. Mater. Process. Technol. 213, 15581564 (2013).
http://dx.doi.org/10.1016/j.jmatprotec.2013.03.013
108.
108. D. M. Xiao, Y. Q. Yang, X. B. Su, D. Wang, and J. F. Sun, Biomed. Mater. Eng. 23, 433445 (2013).
http://dx.doi.org/10.3233/BME-130765
109.
109. R. Hasan, R. Mines, and P. Fox, in 11th International Conference on the Mechanical Behavior of Materials, 2011, Villa Erba, Como, Italy (Elsevier).
110.
110. S. Das, M. Wohlert, J. J. Beaman, and D. L. Bourell, Mater. Des. 20, 115121 (1999).
http://dx.doi.org/10.1016/S0261-3069(99)00017-5
111.
111. J. A. Lorente, M. M. Mendoza, A. Z. Petersson, L. Pambaguian, A. A. Melcon, and C. Ernst, Single Part Microwave Filters Made From Selective Laser Melting ( IEEE, 2009), pp. 14211424.
112.
112. F. Caiazzo, F. Cardaropoli, V. Alfieri, V. Sergi, and L. Cuccaro, in 2012 XIX International Symposium on High-Power Laser Systems and Applications, 2013, Istanbul, Turkey (SPIE).
113.
113. D. E. Cooper, M. Stanford, K. A. Kibble, and G. J. Gibbons, Mater. Des. 41, 226230 (2012).
http://dx.doi.org/10.1016/j.matdes.2012.05.017
114.
114. E. C. Santos, K. Osakada, M. Shiomi, Y. Kitamura, and F. Abe, Proc. Inst. Mech. Eng., Part C 218, 711719 (2004).
http://dx.doi.org/10.1243/0954406041319545
115.
115. D. D. Gu, Y. C. Hagedorn, W. Meiners, G. B. Meng, R. J. S. Batista, K. Wissenbach, and R. Poprawe, Acta Mater. 60, 38493860 (2012).
http://dx.doi.org/10.1016/j.actamat.2012.04.006
116.
116. B. C. Zhang, H. L. Liao, and C. Coddet, Vacuum 95, 2529 (2013).
http://dx.doi.org/10.1016/j.vacuum.2013.02.003
117.
117. L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe, Scr. Mater. 65, 2124 (2011).
http://dx.doi.org/10.1016/j.scriptamat.2011.03.024
118.
118. Y. Kok, X. Tan, S. B. Tor, and C. K. Chua, Virtual Phys. Prototyping 10, 1321 (2015).
http://dx.doi.org/10.1080/17452759.2015.1008643
119.
119. A. Barbas, A. S. Bonnet, P. Lipinski, R. Pesci, and G. Dubois, J. Mech. Behav. Biomed. Mater. 9, 3444 (2012).
http://dx.doi.org/10.1016/j.jmbbm.2012.01.008
120.
120. L. S. Bertol, W. Kindlein, F. P. da Silva, and C. Aumund-Kopp, Mater. Des. 31, 39823988 (2010).
http://dx.doi.org/10.1016/j.matdes.2010.02.050
121.
121. H. Meier, C. Haberland, J. Frenzel, and R. Zarnetta, Selective Laser Melting of NiTi Shape Memory Components (CRC Press, 2010), pp. 233238.
122.
122. H. Meier, C. Haberland, and J. Frenzel, Structural and Functional Properties of NiTi Shape Memory Alloys Produced by Selective Laser Melting (CRC Press, 2012), pp. 291296.
123.
123. I. Kelbassa, P. Albus, J. Dietrich, and J. Wilkes, in Proceedings of the 3rd Pacific International Conference on Application of Lasers and Optics, 2008, Beijing, China (Laser Institute of America).
124.
124. K. N. Amato, S. M. Gaytan, L. E. Murr, E. Martinez, P. W. Shindo, J. Hernandez, and F. Medina, Acta Mater. 60, 22292239 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.12.032
125.
125. Z. Wang, K. Guan, M. Gao, X. Li, X. Chen, and X. Zeng, J. Alloys Compd. 513, 518523 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.10.107
126.
126. Z. L. Lu, J. W. Cao, H. Jing, T. Liu, F. Lu, D. X. Wang, and D. C. Li, Virtual Phys. Prototyping 8, 8795 (2013).
http://dx.doi.org/10.1080/17452759.2013.790600
127.
127. F. Wang, X. Wu, and D. Clark, Mater. Sci. Technol. 27, 344356 (2011).
http://dx.doi.org/10.1179/026708309X12578491814591
128.
128. T. Vilaro, C. Colin, J. D. Bartout, L. Nazé, and M. Sennour, Mater. Sci. Eng., A 534, 446451 (2012).
http://dx.doi.org/10.1016/j.msea.2011.11.092
129.
129. L. Rickenbacher, T. Etter, S. Hövel, and K. Wegener, Rapid Prototyping J. 19, 282290 (2013).
http://dx.doi.org/10.1108/13552541311323281
130.
130. K. Osakada and M. Shiomi, Int. J. Mach. Tools Manuf. 46, 11881193 (2006).
http://dx.doi.org/10.1016/j.ijmachtools.2006.01.024
131.
131. T. Habijan, C. Haberland, H. Meier, J. Frenzel, J. Wittsiepe, C. Wuwer, and M. Köller, Mater. Sci. Eng.,: C 33, 419426 (2013).
http://dx.doi.org/10.1016/j.msec.2012.09.008
132.
132. S. Das, M. Wohlert, J. Beaman, and D. Bourell, in Proceedings to the Solid Freeform Fabrication Symposium, 1997, Austin, TX, USA (University of Texas at Austin).
133.
133. S. Das, J. J. Beama, M. Wohlert, and D. L. Bourell, Rapid Prototyping J. 4, 112117 (1998).
http://dx.doi.org/10.1108/13552549810222939
134.
134. S. Das, M. Wohlert, J. J. Beaman, and D. L. Bourell, J. Miner. Met. Mater. Soc. 50, 1720 (1998).
http://dx.doi.org/10.1007/s11837-998-0299-1
135.
135. C. Sanz and V. G. Navas, J. Mater. Process. Technol. 213, 21262136 (2013).
http://dx.doi.org/10.1016/j.jmatprotec.2013.06.013
136.
136. F. Wang, Int. J. Adv. Manuf. Technol. 58, 545551 (2011).
http://dx.doi.org/10.1007/s00170-011-3423-2
137.
137. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov, J. Mater. Process. Technol. 210, 16241631 (2010).
http://dx.doi.org/10.1016/j.jmatprotec.2010.05.010
138.
138. K. Mumtaz and N. Hopkinson, Rapid Prototyping J. 15, 96103 (2009).
http://dx.doi.org/10.1108/13552540910943397
139.
139. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J. Kruth, “ Process optimization and microstructural analysis for selective laser melting of AlSi10Mg,” in Solid Freeform Fabrication Symposium, 2011, University of Texas at Austin, Austin, TX, USA, pp. 484495.
140.
140. S. Pogson, P. Fox, and W. O'Neill, “ The effect of varying laser scanning speed on DMLR processed metal parts,” in Fourth National Conference on Rapid and Virtual Prototyping and Applications (Professional Engineering Publications, Lancaster, UK, 2003), pp. 4350.
141.
141. D. D. Gu and Y. F. Shen, Powder Metall. 49, 258264 (2006).
http://dx.doi.org/10.1179/174329006X95662
142.
142. C. C. Ng, M. M. Savalani, H. C. Man, and I. Gibson, Virtual Phys. Prototyping 5, 1319 (2010).
http://dx.doi.org/10.1080/17452751003718629
143.
143. D. Zhang, Q. Cai, and J. Liu, Mater. Manuf. Process. 27, 12671270 (2012).
http://dx.doi.org/10.1080/10426914.2012.663119
144.
144. D. Q. Zhang, Z. H. Liu, Q. Z. Cai, J. H. Liu, and C. K. Chua, Int. J. Refract. Met. Hard Mater. 45, 1522 (2014).
http://dx.doi.org/10.1016/j.ijrmhm.2014.02.007
145.
145. S. Pauly, L. Löber, R. Petters, M. Stoica, S. Scudino, U. Kühn, and J. Eckert, Mater. Today 16, 3741 (2013).
http://dx.doi.org/10.1016/j.mattod.2013.01.018
146.
146. S. P. Faure, L. Mercier, P. Didier, R. Roux, J. F. Coulon, and S. Garel, Laser Sintering Process Analysis: Application to Chromium-Cobalt Alloys For Dental Prosthesis Production ( ASME, 2012), pp. 915.
147.
147. M. Averyanova, P. Bertrand, and B. Verquin, Virtual Phys. Prototyping 6, 179185 (2011).
http://dx.doi.org/10.1080/17452759.2011.619083
148.
148. R. C. Oyague, A. Sanchez-Turrion, J. F. Lopez-Lozano, J. Montero, A. Albaladejo, and M. J. Suarez-Garcia, Odontology 100, 249253 (2012).
http://dx.doi.org/10.1007/s10266-011-0050-1
149.
149. K. B. Kim, W. C. Kim, H. Y. Kim, and J. H. Kim, Dental Mater. 29, E91E96 (2013).
http://dx.doi.org/10.1016/j.dental.2013.04.007
150.
150. S. Ayyildiz, E. H. Soylu, S. Ide, S. Kilic, C. Sipahi, B. Piskin, and H. S. Gokce, J. Adv. Prosthodontics 5, 471478 (2013).
http://dx.doi.org/10.4047/jap.2013.5.4.471
151.
151. C. C. Ng, M. Savalani, and H. C. Man, Rapid Prototyping J. 17, 479490 (2011).
http://dx.doi.org/10.1108/13552541111184206
152.
152. S. Pogson, P. Fox, C. Sutcliffe, and W. O'Neill, Rapid Prototyping J. 9, 334343 (2003).
http://dx.doi.org/10.1108/13552540310502239
153.
153. D. Becker, “ SLM components made from copper alloy powder open up new opportunities” (March 9, 2011).
154.
154. M. Ameli, B. Agnew, P. S. Leung, B. Ng, C. J. Sutcliffe, J. Singh, and R. McGlen, Appl. Therm. Eng. 52, 498504 (2013).
http://dx.doi.org/10.1016/j.applthermaleng.2012.12.011
155.
155. T. Vilaro, S. Abed, and W. Knapp, in Proceedings of the 12th European Forum on Rapid Prototyping, 2008.
156.
156. D. Manfredi, F. Calignano, E. P. Ambrosio, M. Krishnan, R. Canali, S. Biamino, and C. Badini, Metall. Italiana 10, 1524 (2013).
157.
157. D. Zhang, Q. Cai, J. Liu, and R. Li, J. Mater. Eng. Perform. 20, 10491054 (2010).
http://dx.doi.org/10.1007/s11665-010-9720-3
158.
158. K. Deprez, S. Vandenberghe, K. Van Audenhaege, J. Van Vaerenbergh, and R. Van Holen, Med. Phys. 40, 012501 (2013).
http://dx.doi.org/10.1118/1.4769122
159.
159. M. Khan and P. Dickens, Rapid Prototyping J. 18, 8194 (2012).
http://dx.doi.org/10.1108/13552541211193520
160.
160. J. Jhabvala, E. Boillat, and R. Glardon, Gold Bull. 44, 113118 (2011).
http://dx.doi.org/10.1007/s13404-011-0017-6
161.
161. P. Jerrard, L. Hao, S. Dadbakhsh, and K. Evans, in Proceedings of the 36th International MATADOR Conference (Springer, 2010), pp. 487490.
162.
162. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bultmann, in Lasers in Manufacturing 2011: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing (Elsevier, 2011), Vol. 12, Pt. A, pp. 271278.
163.
163. D. Gu and Y. Shen, J. Mater. Process. Technol. 182, 564573 (2007).
http://dx.doi.org/10.1016/j.jmatprotec.2006.09.026
164.
164. W. H. Wu, Y. Q. Yang, and Y. L. Huang, Chin. Opt. Lett. 5, 3740 (2007).
165.
165. D. D. Gu, Y. F. Shen, and Z. J. Lu, Mater. Des. 30, 20992107 (2009).
http://dx.doi.org/10.1016/j.matdes.2008.08.036
166.
166. D. Zhang, Z. Liu, and C. Chua, in High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–5 October 2013 (CRC Press, 2013), p. 285.
167.
167. D. Q. Zhang, Z. H. Liu, S. Li, M. Muzzammil, C. H. Wong, and C. K. Chua, Selective Laser Melting: On The Study of Microstructure of K220 (Research Publishing, 2014), pp. 176184.
168.
168. B. Zhang, H. Liao, and C. Coddet, Mater. Des. 34, 753758 (2012).
http://dx.doi.org/10.1016/j.matdes.2011.06.061
169.
169. M. Khan and P. Dickens, Gold Bull. 43, 8 (2010).
http://dx.doi.org/10.1007/bf03214976
170.
170. F. Calignano, D. Manfredi, E. P. Ambrosio, L. Iuliano, and P. Fino, Int. J. Adv. Manuf. Technol. 67, 27432751 (2013).
http://dx.doi.org/10.1007/s00170-012-4688-9
171.
171. M. M. Savalani, C. C. Ng, and H. C. Man, Selective Laser Melting of Magnesium for Future Applications in Medicine ( IEEE, 2010).
172.
172. C. Yap, C. Chua, Z. Dong, Z. Liu, and D. Zhang, in High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–5 October 2013 (CRC Press, 2013), p. 261.
173.
173. M. Mapar, D. Zhang, Z. Liu, W. Yeong, C. Chua, B. Tay, and F. Wiria, in High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–5 October 2013 (CRC Press, 2013), p. 267.
174.
174. J. Wilkes, Y. C. Hagedorn, W. Meiners, and K. Wissenbach, Rapid Prototyping J. 19, 5157 (2013).
http://dx.doi.org/10.1108/13552541311292736
175.
175. Y. C. Hagedorn, N. Balachandron, W. Meiners, K. Wissenbach, and R. Poprawe, in SFF Symposium, 2011, Austin, TX, USA (University of Texas at Austin).
176.
176. F.-H. Liu, J. Sol-Gel Sci. Technol. 64, 704710 (2012).
http://dx.doi.org/10.1007/s10971-012-2905-5
177.
177. X. H. Wang, J. Y. H. Fuh, Y. S. Wong, and Y. X. Yang, Int. J. Adv. Manuf. Technol. 21, 10151020 (2003).
http://dx.doi.org/10.1007/s00170-002-1424-x
178.
178. P. Bertrand, F. Bayle, C. Combe, P. Goeuriot, and I. Smurov, Appl. Surf. Sci. 254, 989992 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.08.085
179.
179. I. Shishkovsky, I. Yadroitsev, P. Bertrand, and I. Smurov, Appl. Surf. Sci. 254, 966970 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.09.001
180.
180. P. Regenfuss, A. Streek, F. Ullmann, C. Kühn, L. Hartwig, M. Horn, and H. Exner, Interceramics 56, 420422 (2007).
181.
181. Y. Tang, J. Y. H. Fuh, H. T. Loh, Y. S. Wong, and L. Lu, Mater. Des. 24, 623629 (2003).
http://dx.doi.org/10.1016/S0261-3069(03)00126-2
182.
182. J. Wilkes and K. Wissenbach, “ Rapid manufacturing of ceramic components for medical and technical applications via selective laser melting,” in Euro-uRapid 2007 International User's Conference on Rapid Prototyping & Rapid Tooling & Rapid Manufacturing (Fraunhofer, Frankfurt, Germany, 2007).
183.
183. X. Tian, B. Sun, J. G. Heinrich, and D. Li, Int. J. Adv. Manuf. Technol. 64, 239246 (2012).
http://dx.doi.org/10.1007/s00170-012-3994-6
184.
184. S. Das, N. Harlan, G. Lee, J. J. Beaman, D. L. Bourell, J. W. Barlow, and K. Sargent, Mater. Manuf. Process. 13, 241261 (1998).
http://dx.doi.org/10.1080/10426919808935239
185.
185. D. Gu, Y. Shen, and Z. Lu, Mater. Lett. 63, 15771579 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.04.010
186.
186. K. A. Mumtaz and N. Hopkinson, J. Mater. Sci. 42, 76477656 (2007).
http://dx.doi.org/10.1007/s10853-007-1661-3
187.
187. L. Hao, S. Dadbakhsh, O. Seaman, and M. Felstead, J. Mater. Process. Technol. 209, 57935801 (2009).
http://dx.doi.org/10.1016/j.jmatprotec.2009.06.012
188.
188. M. Lindner, S. Hoeges, W. Meiners, K. Wissenbach, R. Smeets, R. Telle, and H. Fischer, J. Biomed. Mater. Res., Part A 97, 466471 (2011).
http://dx.doi.org/10.1002/jbm.a.33058
189.
189. D. Gu, Y.-C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Surf. Coat. Technol. 205, 32853292 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2010.11.051
190.
190. I. V. Shishkovskii, I. A. Yadroitsev, and I. Y. Smurov, Powder Metall. Metal Ceram. 50, 275283 (2011).
http://dx.doi.org/10.1007/s11106-011-9329-6
191.
191. G. V. Salmoria, P. Klauss, K. Zepon, L. A. Kanis, C. R. M. Roesler, and L. F. Vieira, Virtual Phys. Prototyping 7, 107115 (2012).
http://dx.doi.org/10.1080/17452759.2012.687911
192.
192. S. Das, T. P. Fuesting, G. Danyo, L. E. Brown, J. J. Beaman, and D. L. Bourell, Mater. Des. 21, 6373 (2000).
http://dx.doi.org/10.1016/S0261-3069(99)00057-6
193.
193. S. Dadbakhsh, L. Hao, P. G. E. Jerrard, and D. Z. Zhang, Powder Technol. 231, 112121 (2012).
http://dx.doi.org/10.1016/j.powtec.2012.07.061
194.
194. D. Gu, Y. Shen, and G. Meng, Mater. Lett. 63, 25362538 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.08.043
195.
195. D. D. Gu and Y. F. Shen, Acta Metall. Sin. 46, 761768 (2010).
http://dx.doi.org/10.3724/SP.J.1037.2010.00761
196.
196. D. Gu, Z. Wang, Y. Shen, Q. Li, and Y. Li, Appl. Surf. Sci. 255, 92309240 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.07.008
197.
197. D. Gu, Y.-C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Compos. Sci. Technol. 71, 16121620 (2011).
http://dx.doi.org/10.1016/j.compscitech.2011.07.010
198.
198. D. Gu and W. Meiners, Mater. Sci. Eng., A 527, 75857592 (2010).
http://dx.doi.org/10.1016/j.msea.2010.08.075
199.
199. R. Li, Y. Shi, J. Liu, Z. Xie, and Z. Wang, Int. J. Adv. Manuf. Technol. 48, 597605 (2009).
http://dx.doi.org/10.1007/s00170-009-2304-4
200.
200. A. Gåård, P. Krakhmalev, and J. Bergström, J. Alloys Compd. 421, 166171 (2006).
http://dx.doi.org/10.1016/j.jallcom.2005.09.084
201.
201. J. S. Chen, Y. H. Huang, X. S. Gao, B. Qiao, J. M. Yang, and Y. Q. He, Adv. Compos. Mater. 20, 277287 (2011).
http://dx.doi.org/10.1163/092430410X547092
202.
202. D. Gu and Y. Shen, Appl. Surf. Sci. 254, 39713978 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.12.028
203.
203. D. D. Gu and Y. F. Shen, J. Mater. Res. 24, 33973406 (2009).
http://dx.doi.org/10.1557/jmr.2009.0419
204.
204. S. Dadbakhsh and L. Hao, J. Alloys Compd. 541, 328334 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.06.097
205.
205. D. Gu, G. Meng, C. Li, W. Meiners, and R. Poprawe, Scr. Mater. 67, 185188 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.04.013
206.
206. D. D. Gu, C. Hong, and G. B. Meng, Metall. Mater. Trans. A 43A, 697708 (2012).
http://dx.doi.org/10.1007/s11661-011-0876-8
207.
207. B. Song, S. J. Dong, P. Coddet, G. S. Zhou, S. Ouyang, H. L. Liao, and C. Coddet, J. Alloys Compd. 579, 415421 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.06.087
208.
208. J. H. Kim and T. S. Creasy, in Solid Freeform Fabrication Symposium (University of Texas at Austin, 2002), p. 224.
209.
209. K. K. B. Hon and T. J. Gill, CIRP Ann. 52, 173176 (2003).
http://dx.doi.org/10.1016/S0007-8506(07)60558-7
210.
210. D. Gu and Y. Shen, Mater. Sci. Eng., A 435–436, 5461 (2006).
http://dx.doi.org/10.1016/j.msea.2006.07.105
211.
211. D. Gu and G. Zhang, Virtual Phys. Prototyping 8, 1118 (2013).
http://dx.doi.org/10.1080/17452759.2013.772319
212.
212. D. Gu, Y. Shen, L. Zhao, J. Xiao, P. Wu, and Y. Zhu, Mater. Sci. Eng., A 445–446, 316322 (2007).
http://dx.doi.org/10.1016/j.msea.2006.09.057
213.
213. C. K. Srinivasa, C. S. Ramesh, and S. K. Prabhakar, Rapid Prototyping J. 16, 258267 (2010).
http://dx.doi.org/10.1108/13552541011049270
214.
214. S. K. Ghosh and P. Saha, Mater. Des. 32, 139145 (2011).
http://dx.doi.org/10.1016/j.matdes.2010.06.020
215.
215. M. Vaezi, S. Chianrabutra, B. Mellor, and S. Yang, Virtual Phys. Prototyping 8, 1950 (2013).
http://dx.doi.org/10.1080/17452759.2013.778175
216.
216. Z. H. Liu, D. Q. Zhang, S. L. Sing, C. K. Chua, and L. E. Loh, Mater. Charact. 94, 116125 (2014).
http://dx.doi.org/10.1016/j.matchar.2014.05.001
217.
217. A. Hussein, L. Hao, C. Z. Yan, R. Everson, and P. Young, J. Mater. Process. Technol. 213, 10191026 (2013).
http://dx.doi.org/10.1016/j.jmatprotec.2013.01.020
218.
218. S. F. Wen, C. Z. Yan, Q. S. Wei, L. C. Zhang, X. Zhao, W. Zhu, and Y. S. Shi, Virtual Phys. Prototyping 9, 213223 (2014).
http://dx.doi.org/10.1080/17452759.2014.949406
219.
219.Airbus. Printing the future: Airbus expands its applications of the revolutionary additive layer manufacturing process, 2014.
220.
220. N. Burns, Filtration + Separation 51, 4243 (2014).
http://dx.doi.org/10.1016/S0015-1882(14)70073-4
221.
221. L. Nickels, “Meeting the mainstream,” Metal Powder Report, Special Feature (2015).
222.
222. R. W. Esmond and G. C. Phero, Virtual Phys. Prototyping 10, 912 (2014).
http://dx.doi.org/10.1080/17452759.2014.972661
http://aip.metastore.ingenta.com/content/aip/journal/apr2/2/4/10.1063/1.4935926
Loading
/content/aip/journal/apr2/2/4/10.1063/1.4935926
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/2/4/10.1063/1.4935926
2015-12-09
2016-12-05

Abstract

Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper,aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/2/4/1.4935926.html;jsessionid=-QE_eJ1R36JaDlizxEbzfVTK.x-aip-live-06?itemId=/content/aip/journal/apr2/2/4/10.1063/1.4935926&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/2/4/10.1063/1.4935926&pageURL=http://scitation.aip.org/content/aip/journal/apr2/2/4/10.1063/1.4935926'
Right1,Right2,Right3,