Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/3/1/10.1063/1.4941675
1.
1. F. Toschi and E. Bodenschatz, Annu. Rev. Fluid Mechan. 41, 375404 (2009).
http://dx.doi.org/10.1146/annurev.fluid.010908.165210
2.
2. Q. Chen, H. Cho, K. Manthiram, M. Yoshida, X. Ye, and A. P. Alivisatos, ACS Cent. Sci. 1, 3339 (2015).
http://dx.doi.org/10.1021/acscentsci.5b00001
3.
3. C. Manzo and M. F. Garcia-Parajo, Rep. Prog. Phys. 78(12), 124601 (2015).
http://dx.doi.org/10.1088/0034-4885/78/12/124601
4.
4. M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, ChemPhysChem 15, 587599 (2014).
http://dx.doi.org/10.1002/cphc.201300880
5.
5. S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, Science 343(6178), 14931496 (2014).
http://dx.doi.org/10.1126/science.1248091
6.
6. T. G. Mason, K. Ganesan, J. H. van Zanten, D. Wirtz, and S. C. Kuo, Phys. Rev. Lett. 79(17), 32823285 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3282
7.
7. A. R. Dunn and J. A. Spudich, Nat. Struct. Mol. Biol. 14(3), 246248 (2007).
http://dx.doi.org/10.1038/nsmb1206
8.
8. T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi, J. Cell Biol. 157(6), 10711081 (2002).
http://dx.doi.org/10.1083/jcb.200202050
9.
9. A. L. Balk, L. O. Mair, P. P. Mathai, P. N. Patrone, W. Wang, S. Ahmed, T. E. Mallouk, J. A. Liddle, and S. M. Stavis, ACS Nano 8(8), 83008309 (2014).
http://dx.doi.org/10.1021/nn502753x
10.
10. S. Bhattacharya, D. K. Sharma, S. Saurabh, S. De, A. Sain, A. Nandi, and A. Chowdhury, J. Phys. Chem. B 117, 77717782 (2013).
http://dx.doi.org/10.1021/jp401704e
11.
11. L. Gu, Y. Sheng, Y. Chen, H. Chang, Y. Zhang, P. Lv, W. Ji, and T. Xu, Biophys. J. 106, 24432449 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.04.021
12.
12. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, Nat. Methods 8(5), 417423 (2011).
http://dx.doi.org/10.1038/nmeth.1586
13.
13. D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers, Science 330, 341346 (2010).
http://dx.doi.org/10.1126/science.1187409
14.
14. S. W. Hell, Science 316, 11531158 (2007).
http://dx.doi.org/10.1126/science.1137395
15.
15. A. Small and S. Stahlheber, Nat. Methods 11(3), 267279 (2014).
http://dx.doi.org/10.1038/nmeth.2844
16.
16. J. W. Goodman, Introduction to Fourier Optics ( Roberts and Company, Englewood, Colorado, 2005).
17.
17. E. Abbe, Arch. Mikroskop. Anat 9, 413418 (1873).
http://dx.doi.org/10.1007/BF02956173
18.
18. G. T. Di Francia, J. Opt. Soc. Am. 45(7), 497501 (1955).
http://dx.doi.org/10.1364/JOSA.45.000497
19.
19. W. Lukosz, J. Opt. Soc. Am. 57(7), 932941 (1967).
http://dx.doi.org/10.1364/JOSA.57.000932
20.
20. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 16421645 (2006).
http://dx.doi.org/10.1126/science.1127344
21.
21. C. E. Shannon, Bell Syst. Tech. J. 27(3), 379423 (1948).
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
22.
22. R. V. L. Hartley, Bell Syst. Techn. J. 7(3), 535563 (1928).
http://dx.doi.org/10.1002/j.1538-7305.1928.tb01236.x
23.
23. W. Lukosz, J. Opt. Soc. Am. 56(11), 14631472 (1966).
http://dx.doi.org/10.1364/JOSA.56.001463
24.
24. I. J. Cox and C. J. R. Sheppard, J. Opt. Soc. Am. A 3(8), 11521158 (1986).
http://dx.doi.org/10.1364/JOSAA.3.001152
25.
25. A. J. Berro, A. J. Berglund, P. T. Carmichael, J. S. Kim, and J. A. Liddle, ACS Nano 6(11), 94969502 (2012).
http://dx.doi.org/10.1021/nn304285m
26.
26. S. Zacks, Theory of Statistical Inference ( John Wiley and Sons, 1971).
27.
27. K. A. Winick, J. Opt. Soc. Am. A 3(11), 18091815 (1986).
http://dx.doi.org/10.1364/JOSAA.3.001809
28.
28. R. J. Ober, S. Ram, and E. S. Ward, Biophys. J. 86, 11851200 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74193-4
29.
29. P. J. S. G. Ferreira and A. Kempf, IEEE Trans. Signal Process. 54(10), 37323740 (2006).
30.
30. V. N. Mahajan, Aberration Theory Made Simple ( SPIE, 1991).
31.
31. M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, Opt. Express 17(10), 82648277 (2009).
http://dx.doi.org/10.1364/OE.17.008264
32.
32. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, Appl. Opt. 46(3), 421427 (2007).
http://dx.doi.org/10.1364/AO.46.000421
33.
33. R. Haitz and J. Y. Tsao, Phys. Status Solidi A 208(1), 1729 (2011).
http://dx.doi.org/10.1002/pssa.201026349
34.
34. A. Rogalski, Prog. Quantum Electron. 36, 342473 (2012).
http://dx.doi.org/10.1016/j.pquantelec.2012.07.001
35.
35. P. Seitz and A. J. P. Theuwissen, Springer Series In Optical Sciences ( Springer, 2011), Vol. 160.
36.
36. J. Hynecek and T. Nishiwaki, IEEE Trans. Electron Devices 50(1), 239245 (2003).
http://dx.doi.org/10.1109/TED.2002.806962
37.
37. T. Quan, S. Zeng, and Z.-L. Huang, J. Biomed. Opt. 15, 066005 (2010).
http://dx.doi.org/10.1117/1.3505017
38.
38. B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, Proc. SPIE 7536, 753607 (2010).
http://dx.doi.org/10.1117/12.846975
39.
39. F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, U. Lin, W. C. Duim, J. J. Long, P. D. Uchil, J. R. Myers, M. A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and J. Bewersdorf, Nat. Methods 10(7), 653658 (2013).
http://dx.doi.org/10.1038/nmeth.2488
40.
40. F. Long, S. Zeng, and Z.-L. Huanf, Opt. Express 20(16), 1774117759 (2012).
http://dx.doi.org/10.1364/OE.20.017741
41.
41. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, T. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and B. W., J. Mod. Opt. 61(2), 102115 (2014).
http://dx.doi.org/10.1080/09500340.2013.864425
42.
42. Y. Painchaud, M. Poulin, M. Morin, and M. Tetu, Opt. Express 17(5), 36593672 (2009).
http://dx.doi.org/10.1364/OE.17.003659
43.
43. Y. K. Yong, S. O. R. Moheimani, B. J. Kenton, and K. K. Leang, Rev. Sci. Instrum. 83, 121101121122 (2012).
http://dx.doi.org/10.1063/1.4765048
44.
44. R. Sjoback, J. Nygren, and M. Kubista, Spectrochim. Acta Part A 51, L7L21 (1995).
http://dx.doi.org/10.1016/0584-8539(95)01421-P
45.
45. J.-D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, and G. S. Waldo, Nat. Biotechnol. 24(1), 7988 (2006).
http://dx.doi.org/10.1038/nbt1172
46.
46. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nat. Methods 5(9), 763775 (2008).
http://dx.doi.org/10.1038/nmeth.1248
47.
47. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev. Phys. Chem. 65, 83105 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040513-103659
48.
48. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, J. Phys. Chem. B. 110, 72387248 (2006).
http://dx.doi.org/10.1021/jp057170o
49.
49. X. Liu, M. Atwater, J. Wang, and Q. Huo, Colloids Surf. B 58, 37 (2007).
http://dx.doi.org/10.1016/j.colsurfb.2006.08.005
50.
50. M. G. Moffitt, J. Phys. Chem. Lett. 4, 36543666 (2013).
http://dx.doi.org/10.1021/jz401814s
51.
51. J. R. Lackowicz, Principles of Fluorescence Spectroscopy, 3 ed. ( Springer, 2006).
52.
52. C. Eggeling, A. Volkmer, and C. A. M. Seidel, ChemPhysChem 6, 791804 (2005).
http://dx.doi.org/10.1002/cphc.200400509
53.
53. Q. Zheng, M. F. Juette, S. Jockusch, M. R. Wasserman, Z. Zhou, R. B. Altman, and S. C. Blanchard, Chem. Soc. Rev. 43, 10441056 (2014).
http://dx.doi.org/10.1039/C3CS60237K
54.
54. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, Lab Chip 5, 13481354 (2005).
http://dx.doi.org/10.1039/b508288a
55.
55.Editorial, Nat. Methods 10(12), 1135 (2013).
http://dx.doi.org/10.1038/nmeth.2760
56.
56.Handbook of Biological Confocal Microscopy, 3 ed., edited by J. B. Pawley ( Springer, 2006).
57.
57. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Science 300, 20612065 (2003).
http://dx.doi.org/10.1126/science.1084398
58.
58. T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, M. R. Moossa, and R. M. Hoffman, Cancer Res. 57, 20422047 (1997).
59.
59. F. Aguet, S. Geissbuhler, I. Marki, T. Lasser, and M. Unser, Opt. Express 17(8), 68296848 (2009).
http://dx.doi.org/10.1364/OE.17.006829
60.
60. H. Risken, The Fokker-Planck Equation, 2 ed. ( Springer, 1989).
61.
61. C. M. Tyrakowski and P. T. Snee, PhysChemChemPhys 16, 837855 (2014).
http://dx.doi.org/10.1039/C3CP53502A
62.
62. C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, Nat. Commun. 4, 1447 (2013).
http://dx.doi.org/10.1038/ncomms2477
63.
63. K. Lim, C. Ropp, B. Shapiro, J. M. Taylor, and E. Waks, Nano Lett. 15, 14811486 (2015).
http://dx.doi.org/10.1021/nl503280u
64.
64. A. Bumb, S. A. Sarkar, N. Billington, M. W. Brechbiel, and K. C. Neuman, J. Am. Chem. Soc. 135, 78157818 (2013).
http://dx.doi.org/10.1021/ja4016815
65.
65. S.-W. Chu, T.-Y. Su, R. Oketani, Y.-T. Huang, H.-Y. Wu, Y. Yonemaru, M. Yamanaka, H. Lee, G.-Y. Zhuo, M.-Y. Lee, S. Kawata, and K. Fujita, Phys. Rev. Lett. 112, 017402 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.017402
66.
66. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, Phys. Rev. Lett. 107, 037401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.037401
67.
67. O. Schwartz and D. Oron, Phys. Rev. A 85, 033812 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.033812
68.
68. O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, Nano Lett. 13(12), 58325836 (2013).
http://dx.doi.org/10.1021/nl402552m
69.
69. D. G. Monticone, K. Katamadze, P. Traina, E. Moreva, J. Forneris, I. Ruo-Berchera, P. Olivero, I. P. Degiovanni, G. Brida, and M. Genovese, Phys. Rev. Lett. 113, 143602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.143602
70.
70. K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists and Engineers ( Princeton University Press, Princeton, New Jersey, USA, 2008).
71.
71. M. Minsky, “ Microscopy apparatus,” U.S. patent 3,013,467 (19 Dec. 1961).
72.
72. E. J. Ambrose, Nature 178, 1194 (1956).
http://dx.doi.org/10.1038/1781194a0
73.
73. D. McGloin and K. Dholakia, Contemp. Phys. 46(1), 1528 (2005).
http://dx.doi.org/10.1080/0010751042000275259
74.
74. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 7376 (1990).
http://dx.doi.org/10.1126/science.2321027
75.
75. G. T. Boyd, Z. H. Yu, and Y. R. Shen, Phys. Rev. B 33(12), 79237936 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.7923
76.
76. B. van den Broek, B. Ashcroft, T. H. Oosterkamp, and J. van Noort, Nano Lett. 13(3), 980986 (2013).
http://dx.doi.org/10.1021/nl3040509
77.
77. Y. Shechtman, S. J. Sahl, A. S. Backer, and W. E. Moerner, Phys. Rev. Lett. 113(13), 133902 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.133902
78.
78. H. W. Babcock, Science 249, 253257 (1990).
http://dx.doi.org/10.1126/science.249.4966.253
79.
79. N. Ji, D. E. Milkie, and E. Betzig, Nat. Methods 7(2), 141147 (2010).
http://dx.doi.org/10.1038/nmeth.1411
80.
80. C. J. R. Sheppard and M. Gu, Optik 86(3), 104106 (1990).
81.
81. M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, Opt. Lett. 22(7), 436438 (1997).
http://dx.doi.org/10.1364/OL.22.000436
82.
82. S. Abrahamsson, J. Chen, B. Hajj, S. Stallinga, A. Y. Katsov, J. Wisniewski, G. Mizuguchi, P. Soule, F. Mueller, C. Dugast Darzacq, X. Darzacq, C. Wu, C. I. Bargmann, D. A. Agard, M. Dahan, and M. G. Gustafsson, Nat. Methods 10(1), 6063 (2013).
http://dx.doi.org/10.1038/nmeth.2277
83.
83. H. P. Kao and A. S. Verkman, Biophys. J. 67, 12911300 (1994).
http://dx.doi.org/10.1016/S0006-3495(94)80601-0
84.
84. D. Baddeley, M. B. Cannell, and C. Soeller, Nano Res. 4(6), 589598 (2011).
http://dx.doi.org/10.1007/s12274-011-0115-z
85.
85. M. Speidel, A. Jonas, and E.-L. Florin, Opt. Lett. 28(2), 6971 (2003).
http://dx.doi.org/10.1364/OL.28.000069
86.
86. G. Grover, K. DeLuca, S. Quirin, J. DeLuca, and R. Piestun, Opt. Express 20(24), 2668126695 (2012).
http://dx.doi.org/10.1364/OE.20.026681
87.
87. M. Badieirostami, M. D. Lew, M. A. Thompson, and W. E. Moerner, Appl. Phys. Lett. 97(16), 161103 (2010).
http://dx.doi.org/10.1063/1.3499652
88.
88. B. Huang, W. Wang, M. Bates, and X. Zhuang, Science 319, 810813 (2008).
http://dx.doi.org/10.1126/science.1153529
89.
89. C. V. Middendorff, A. Egner, C. Geisler, S. W. Hell, and A. Schonle, Opt. Express 16(25), 2077420788 (2008).
http://dx.doi.org/10.1364/OE.16.020774
90.
90. S. W. Hell and E. H. K. Stelzer, J. Opt. Soc. Am. 9(12), 21592166 (1992).
http://dx.doi.org/10.1364/JOSAA.9.002159
91.
91. M. G. L. Gustaffson, D. A. Agard, and J. W. Sedat, J. Microsc. 195, 1016 (1999).
http://dx.doi.org/10.1046/j.1365-2818.1999.00576.x
92.
92. S. W. Hell, R. Schmidt, and A. Egner, Nat. Photon. 3, 381387 (2009).
http://dx.doi.org/10.1038/nphoton.2009.112
93.
93. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, Proc. Natl. Acad. Sci. U. S. A. 106(9), 31253130 (2009).
http://dx.doi.org/10.1073/pnas.0813131106
94.
94. J. Schnitzbauer, R. McGorty, and B. Huang, Opt. Express 21(17), 1970119708 (2013).
http://dx.doi.org/10.1364/OE.21.019701
95.
95. K. Xu, H. P. Babcock, and X. Zhuang, Nat. Methods 9(2), 185188 (2012).
http://dx.doi.org/10.1038/nmeth.1841
96.
96. J. Tang, J. Akerboom, A. Vaziri, L. L. Looger, and C. V. Shank, Proc. Natl. Acad. Sci. U. S. A. 107(22), 1006810073 (2010).
http://dx.doi.org/10.1073/pnas.1004899107
97.
97. M. D. McMahon, A. J. Berglund, P. Carmichael, J. J. McClelland, and J. A. Liddle, ACS Nano 3(3), 609614 (2009).
http://dx.doi.org/10.1021/nn8008036
98.
98. M. F. Juette and J. Bewersdorf, Nano Lett. 10, 46574663 (2010).
http://dx.doi.org/10.1021/nl1028792
99.
99. A. J. Berglund, K. McHale, and H. Mabuchi, Opt. Lett. 32(2), 145147 (2007).
http://dx.doi.org/10.1364/OL.32.000145
100.
100. M. F. Juette, F. E. Rivera-Molina, D. K. Toomre, and J. Bewersdorf, Appl. Phys. Lett. 102, 173702 (2013).
http://dx.doi.org/10.1063/1.4803538
101.
101. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, Opt. Lett. 32(14), 20072009 (2007).
http://dx.doi.org/10.1364/OL.32.002007
102.
102. T. Li and M. G. Raizen, Ann. Phys. 525(4), 281295 (2013).
http://dx.doi.org/10.1002/andp.201200232
103.
103. C. H. Reccius, S. M. Stavis, J. T. Mannion, L. P. Walker, and H. G. Craighead, Biophysical Journal 95, 273286 (2008).
http://dx.doi.org/10.1529/biophysj.107.121020
104.
104. E. J. Candes and M. B. Wakin, IEEE Signal Process. Mag. 25(2), 2130 (2008).
http://dx.doi.org/10.1109/MSP.2007.914731
105.
105. E. J. Candes, J. Romberg, and T. Tao, IEEE Trans. Inf. Theory 52(2), 489509 (2006).
http://dx.doi.org/10.1109/TIT.2005.862083
106.
106. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, Nat. Methods 9(7), 721723 (2012).
http://dx.doi.org/10.1038/nmeth.1978
107.
107. L. Gao, J. Liang, C. Li, and L. V. Wang, Nature 516, 7477 (2014).
http://dx.doi.org/10.1038/nature14005
108.
108. J. A. Gallego-Urrea, J. Tuoriniemi, and M. Hassellov, Trends Anal. Chem. 30(3), 473483 (2011).
http://dx.doi.org/10.1016/j.trac.2011.01.005
109.
109. X. Michalet and A. J. Berglund, Phys. Rev. E 85, 061916 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.061916
110.
110. B. J. West, Rev. Mod. Phys. 86, 11691184 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.1169
111.
111. M. Magdziarz, A. Weron, and K. Burnecki, Phys. Rev. Lett. 103, 180602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.180602
112.
112. S. C. Weber, M. A. Thompson, W. E. Moerner, A. J. Spakowitz, and J. A. Theriot, Biophys. J. 102, 24432450 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.03.062
113.
113. T. Turiv, I. Lazo, A. Brodin, B. I. Lev, V. Reiffenrath, V. G. Nazarenko, and O. D. Lavrentovich, Science 342(6164), 13511354 (2013).
http://dx.doi.org/10.1126/science.1240591
114.
114. R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, Nat. Phys. 7(7), 576580 (2011).
http://dx.doi.org/10.1038/nphys1953
115.
115. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2 ed. ( Pergamon Press, 1987).
116.
116. D. A. Beard and T. Schlick, J. Chem. Phys. 112(17), 73237338 (2000).
http://dx.doi.org/10.1063/1.481371
117.
117. M. Grimm, S. Jeney, and T. Franosch, Soft Matter 7, 20762084 (2011).
http://dx.doi.org/10.1039/c0sm00636j
118.
118. K. Du, J. A. Liddle, and A. J. Berglund, Langmuir 28, 91819188 (2012).
http://dx.doi.org/10.1021/la300292r
119.
119. D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, Phys. Rev. Lett. 105, 090604 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.090604
120.
120. S. Merabia, S. Shenogin, L. Joly, P. Keblinski, and J.-L. Barrat, Proc. Natl. Acad. Sci. U.S.A. 106(36), 1511315118 (2009).
http://dx.doi.org/10.1073/pnas.0901372106
121.
121. M. C. Leake, Philos. Trans. R. Soc. London, Ser. B 368(1611), 20120248 (2013).
http://dx.doi.org/10.1098/rstb.2012.0248
122.
122. N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, Nat. Phys. 9(1), 1018 (2012).
http://dx.doi.org/10.1038/nphys2474
123.
123. A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, and T. K. Fujiwara, Nat. Chem. Biol. 10(7), 524532 (2014).
http://dx.doi.org/10.1038/nchembio.1558
124.
124. P. D. Howes, R. Chandrawati, and M. M. Stevens, Science 346(6205), 1247390 (2014).
http://dx.doi.org/10.1126/science.1247390
125.
125. Q. Wang and W. E. Moerner, Nat. Methods 11(5), 555558 (2014).
http://dx.doi.org/10.1038/nmeth.2882
126.
126. C. Bustamante, Z. Bryant, and S. B. Smith, Nature 421, 423427 (2003).
http://dx.doi.org/10.1038/nature01405
127.
127. Y. M. Umemura, M. Vrljic, S. Y. Nishimura, T. K. Fujiwara, K. G. Suzuki, and A. Kusumi, Biophys. J. 95(1), 435450 (2008).
http://dx.doi.org/10.1529/biophysj.107.123018
128.
128. S. M. Tabei, S. Burov, H. Y. Kim, A. Kuznetsov, T. Huynh, J. Jureller, L. H. Philipson, A. R. Dinner, and N. F. Scherer, Proc. Natl. Acad. Sci. U. S. A. 110(13), 49114916 (2013).
http://dx.doi.org/10.1073/pnas.1221962110
129.
129. S. Semrau and T. Schmidt, Soft Matter 5(17), 31743186 (2009).
http://dx.doi.org/10.1039/b901587f
130.
130. E. Klotzsch and G. J. Schutz, Philos. Trans. R. Soc. London, Ser. B 368(1611), 20120033 (2013).
http://dx.doi.org/10.1098/rstb.2012.0033
131.
131. K. Jacobson, O. G. Mouritsen, and R. G. W. Anderson, Nat. Cell Biol. 9(1), 714 (2007).
http://dx.doi.org/10.1038/ncb0107-7
132.
132. S. Semrau, A. Pezzarossa, and T. Schmidt, Biophys. J. 100(4), L19L21 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.12.3721
133.
133. D. Aquino, A. Schönle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, Nat. Methods 8(4), 353359 (2011).
http://dx.doi.org/10.1038/nmeth.1583
134.
134. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell, Nat. Methods 5(6), 539544 (2008).
http://dx.doi.org/10.1038/nmeth.1214
135.
135. R. J. Adrian and J. Westerweel, Particle Image Velocimetry ( Cambridge University Press, 2011).
136.
136. A. Germaneau, P. Doumalin, and J.-C. Dupre, NDT&E Int. 41, 407415 (2008).
http://dx.doi.org/10.1016/j.ndteint.2008.04.001
137.
137. J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179, 298310 (1996).
http://dx.doi.org/10.1006/jcis.1996.0217
138.
138. S. L. Eichmann, B. Smith, G. Meric, D. H. Fairbrother, and M. A. Bevan, ACS Nano 5(7), 59095919 (2011).
http://dx.doi.org/10.1021/nn2017149
139.
139. T. D. Edwards and M. A. Bevan, Langmuir 28(39), 1381613823 (2012).
http://dx.doi.org/10.1021/la302805n
140.
140. J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, ACS Nano 5(1), 217226 (2011).
http://dx.doi.org/10.1021/nn102383s
141.
141. M. T. Sheldon, J. van de Groep, A. M. Brown, A. Polman, and H. A. Atwater, Science 346, 828831 (2014).
http://dx.doi.org/10.1126/science.1258405
142.
142. M. S. Paoletti, M. E. Fisher, K. R. Sreenivasan, and D. P. Lathrop, Phys. Rev. Lett. 101, 154501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.154501
143.
143. D. P. Meichle and D. P. Lathrop, Rev. Sci. Instrum. 85, 073705 (2014).
http://dx.doi.org/10.1063/1.4886811
144.
144. S. Sinha and R. D. Sorkin, Phys. Rev. B 45(14), 81238126 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8123
145.
145. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, Science 328, 16731675 (2010).
http://dx.doi.org/10.1126/science.1189403
146.
146. R. W. Style, R. Boltyanskiy, G. K. German, C. Hyland, C. W. MacMinn, A. F. Mertz, L. A. Wilen, Y. Xu, and E. R. Dufresne, Soft Matter 10, 40474055 (2014).
http://dx.doi.org/10.1039/c4sm00264d
147.
147. A. Sonn-Segev, A. Bernheim-Groswasser, H. Diamant, and Y. Roichman, Phys. Rev. Lett. 112, 088301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.088301
148.
148. H. Qian, Biophys. J. 79, 137143 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76278-3
149.
149. F. Ye, M. M. Collinson, and D. A. Higgins, Phys. Chem. Chem. Phys. 11, 6682 (2009).
http://dx.doi.org/10.1039/B812924J
150.
150. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics ( Clarendon Press, Oxford, 1986).
151.
151. H. Aoki, K. Mori, and S. Ito, Soft Matter 8(16), 4390 (2012).
http://dx.doi.org/10.1039/c2sm07227k
152.
152. K. Du, S. H. Ko, G. M. Gallatin, H. P. Yoon, J. A. Liddle, and A. J. Berglund, Chem. Commun. (Cambridge, U. K.) 49(9), 907909 (2013).
http://dx.doi.org/10.1039/C2CC37517F
153.
153. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389(23), 827829 (1997).
http://dx.doi.org/10.1038/39827
154.
154. X. Shen, C.-M. Ho, and T.-S. Wong, J. Phys. Chem. B 114, 52695274 (2010).
http://dx.doi.org/10.1021/jp912190v
155.
155. P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, Nature 476, 308311 (2011).
http://dx.doi.org/10.1038/nature10344
156.
156. H. B. Eral, D. M. Augustine, M. H. G. Duits, and F. Mugele, Soft Matter 7, 49544958 (2011).
http://dx.doi.org/10.1039/c1sm05183k
157.
157. J. R. Trantum, Z. E. Eagleton, C. A. Patil, J. M. Tucker-Schwartz, M. L. Baglia, M. C. Skala, and F. R. Haselton, Langmuir 29, 62216231 (2013).
http://dx.doi.org/10.1021/la400542x
158.
158. C. Haiden, T. Wopelka, M. Jech, F. Keplinger, and M. J. Vellekoop, Langmuir 30, 96079615 (2014).
http://dx.doi.org/10.1021/la5016675
159.
159. K. He, F. B. Khorasani, S. T. Retterer, D. K. Thomas, J. C. Conrad, and R. Krishnamoorti, ACS Nano 7(6), 51225130 (2013).
http://dx.doi.org/10.1021/nn4007303
160.
160. S. L. Eichmann, S. G. Anekal, and M. A. Bevan, Langmuir 24, 714721 (2008).
http://dx.doi.org/10.1021/la702571z
161.
161. M. Krishnan, N. Mojarad, P. Kukura, and V. Sandoghar, Nature 467, 692695 (2010).
http://dx.doi.org/10.1038/nature09404
162.
162. N. Mojarad and M. Krishnan, Nat. Nanotechnol. 7, 448452 (2012).
http://dx.doi.org/10.1038/nnano.2012.99
163.
163. T. M. Wynne, A. H. Dixon, and S. Pennathur, Microfluid. Nanofluid. 12, 411421 (2012).
http://dx.doi.org/10.1007/s10404-011-0884-4
164.
164. L. D. Menard and J. M. Ramsey, Anal. Chem. 85(2), 11461153 (2013).
http://dx.doi.org/10.1021/ac303074f133
165.
165. A. L. Balk, L. O. Mair, F. Guo, C. Hangarter, P. P. Mathai, R. D. McMichael, S. M. Stavis, and J. Unguris, J. Appl. Phys. 118(9), 093904 (2015).
http://dx.doi.org/10.1063/1.4929573
166.
166. R. Attota, T. A. Germer, and R. M. Silver, Optics Letters 33, 19901992 (2008).
http://dx.doi.org/10.1364/OL.33.001990
167.
167. S. M. Stavis, J. Geist, and M. Gaitan, Lab Chip 10, 26182621 (2010).
http://dx.doi.org/10.1039/c0lc00029a
168.
168. S. M. Stavis, J. Geist, M. Gaitan, L. E. Locascio, and E. A. Strychalski, Lab Chip 12, 11741182 (2012).
http://dx.doi.org/10.1039/c2lc21152a
169.
169. S. R. Leslie, A. P. Fields, and A. E. Cohen, Anal. Chem. 82(14), 62246229 (2010).
http://dx.doi.org/10.1021/ac101041s
170.
170. H. Bruus, J. Dual, J. Hawkes, M. Hill, T. Laurell, J. Nilsson, S. Radel, S. Sadhal, and M. Wiklund, Lab Chip 11, 35793580 (2011).
http://dx.doi.org/10.1039/c1lc90058g
171.
171. H. Bruus, Lab Chip 12, 10141021 (2012).
http://dx.doi.org/10.1039/c2lc21068a
172.
172. C. D. McGray, S. M. Stavis, J. Giltinan, E. Eastman, S. Firebaugh, J. Piepmeier, J. Geist, and M. Gaitan, J. Microelectromech. Syst. 22(1), 115123 (2013).
http://dx.doi.org/10.1109/JMEMS.2012.2216506
173.
173. C. Q. Davis and D. M. Freeman, Opt. Eng. 37(4), 12991304 (1998).
http://dx.doi.org/10.1117/1.601967
174.
174. C. D. McGray, C. R. Copeland, S. M. Stavis, and J. Geist, Journal of Microscopy (2016).
175.
175. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, and N. Engheta, Science 343, 160163 (2014).
http://dx.doi.org/10.1126/science.1242818
http://aip.metastore.ingenta.com/content/aip/journal/apr2/3/1/10.1063/1.4941675
Loading
/content/aip/journal/apr2/3/1/10.1063/1.4941675
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/3/1/10.1063/1.4941675
2016-03-10
2016-09-25

Abstract

The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/3/1/1.4941675.html;jsessionid=SIt0K6GBhEfIjcPhpolRerW6.x-aip-live-02?itemId=/content/aip/journal/apr2/3/1/10.1063/1.4941675&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/3/1/10.1063/1.4941675&pageURL=http://scitation.aip.org/content/aip/journal/apr2/3/1/10.1063/1.4941675'
Right1,Right2,Right3,