Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/3/1/10.1063/1.4944491
1.
1. L. W. Swanson and G. A. Schwind, J. Appl. Phys. 49, 5655 (1978).
http://dx.doi.org/10.1063/1.324488
2.
2. J. Orloff and L. W. Swanson, J. Vac. Sci. Technol. 12, 1209 (1975).
http://dx.doi.org/10.1116/1.568497
3.
3. B. W. Ward, J. A. Notte, and N. P. Economou, J. Vac. Sci. Technol., B 24, 2871 (2006).
http://dx.doi.org/10.1116/1.2357967
4.
4. F. H. M. Rahman, S. McVey, L. Farkas, J. A. Notte, S. Tan, and R. H. Livengood, Scanning 34, 129 (2012).
http://dx.doi.org/10.1002/sca.20268
5.
5. W. M. Clark, Jr., R. L. Seliger, M. W. Utlaut, A. E. Bell, L. W. Swanson, G. A. Schwind, and J. B. Jergenson, J. Vac. Sci. Technol., B 5, 197 (1987).
http://dx.doi.org/10.1116/1.583862
6.
6. L. Bischoff, Ultramicroscopy 103, 59 (2005).
http://dx.doi.org/10.1016/j.ultramic.2004.11.020
7.
7. N. S. Smith, W. P. Skoczylas, S. M. Kellogg, D. E. Kinion, P. P. Tesch, O. Sutherland, A. Aanesland, and R. W. Boswell, J. Vac. Sci. Technol., B 24, 2902 (2006).
http://dx.doi.org/10.1116/1.2366617
8.
8. B. G. Freinkman, A. V. Eletskii, and S. I. Zaitsev, J. Exp. Theor. Phys. Lett. 78, 255 (2003).
http://dx.doi.org/10.1134/1.1622042
9.
9. B. Knuffman, A. V. Steele, J. Orloff, and J. J. McClelland, New J. Phys. 13, 103035 (2011).
http://dx.doi.org/10.1088/1367-2630/13/10/103035
10.
10. B. J. Claessens, S. B. van der Geer, G. Taban, E. J. D. Vredenbregt, and O. J. Luiten, Phys. Rev. Lett. 95, 164801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.164801
11.
11. G. Taban, M. P. Reijnders, B. Fleskens, S. B. Van der Geer, O. J. Luiten, and E. J. D. Vredenbregt, Europhys. Lett. 91, 46004 (2010).
http://dx.doi.org/10.1209/0295-5075/91/46004
12.
12. A. J. McCulloch, D. V. Sheludko, S. D. Saliba, S. C. Bell, M. Junker, K. A. Nugent, and R. E. Scholten, Nat. Phys. 7, 785 (2011).
http://dx.doi.org/10.1038/nphys2052
13.
13. W. J. Engelen, M. A. van der Heijden, D. J. Bakker, E. J. D. Vredenbregt, and O. J. Luiten, Nat. Commun. 4, 1693 (2013).
http://dx.doi.org/10.1038/ncomms2700
14.
14. L. Kime, A. Fioretti, Y. Bruneau, N. Porfido, F. Fuso, M. Viteau, G. Khalili, N. Santic, A. Gloter, B. Rasser, P. Sudraud, P. Pillet, and D. Comparat, Phys. Rev. A 88, 033424 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.033424
15.
15. A. J. McCulloch, D. V. Sheludko, M. Junker, and R. E. Scholten, Nat. Commun. 4, 1692 (2013).
http://dx.doi.org/10.1038/ncomms2699
16.
16. J. Melngailis, J. Vac. Sci. Technol., B 5, 469 (1987).
http://dx.doi.org/10.1116/1.583937
17.
17. K. Gamo, Vacuum 42, 89 (1991).
http://dx.doi.org/10.1016/0042-207X(91)90085-W
18.
18. J. Orloff, Rev. Sci. Instrum. 64, 1105 (1993).
http://dx.doi.org/10.1063/1.1144104
19.
19. S. Reyntjens and R. Puers, J. Micromech. Microeng. 11, 287 (2001).
http://dx.doi.org/10.1088/0960-1317/11/4/301
20.
20. M. Sugiyama and G. Sigesato, J. Electron Microsc. (Tokyo) 53, 527 (2004).
http://dx.doi.org/10.1093/jmicro/dfh071
21.
21. A. A. Tseng, Small 1, 924 (2005).
http://dx.doi.org/10.1002/smll.200500113
22.
22. J. Gierak, Semicond. Sci. Technol. 24, 043001 (2009).
http://dx.doi.org/10.1088/0268-1242/24/4/043001
23.
23. J. E. E. Baglin, Appl. Surf. Sci. 258, 4103 (2012).
http://dx.doi.org/10.1016/j.apsusc.2011.11.074
24.
24. C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, Vacuum 86, 1014 (2012).
http://dx.doi.org/10.1016/j.vacuum.2011.11.004
25.
25. N. Bassim, K. Scott, and L. A. Giannuzzi, MRS Bull. 39, 317 (2014).
http://dx.doi.org/10.1557/mrs.2014.52
26.
26. J. Orloff, L. Swanson, and M. W. Utlaut, High Resolution Focused Ion Beams: FIB and Its Applications ( Kluwer Academic/Plenum Publishers, New York, 2003).
27.
27. L. A. Giannuzzi and F. A. Stevie, Introduction to Focused Ion Beams ( Springer Science + Business Media, Inc., New York, 2005).
28.
28. N. Yao, Focused Ion Beam Systems: Basics and Applications ( Cambridge University Press, Cambridge, UK; New York, 2007).
29.
29. I. Utke, S. Moshkalev, and P. Russell, Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications ( Oxford University Press, Oxford; New York, 2012).
30.
30. P. D. Prewett and G. L. R. Mair, Focused Ion Beams from Liquid Metal Ion Sources, 1st ed. ( Wiley, Taunton, Somerset, England; New York, 1991).
31.
31. A. A. Tseng, J. Micromech. Microeng. 14, R15 (2004).
http://dx.doi.org/10.1088/0960-1317/14/4/R01
32.
32. T. Ishitani and T. Yaguchi, Microsc. Res. Tech. 35, 320 (1996).
http://dx.doi.org/10.1002/(SICI)1097-0029(19961101)35:4<320::AID-JEMT3>3.0.CO;2-Q
33.
33. L. A. Giannuzzi and F. A. Stevie, Micron 30, 197 (1999).
http://dx.doi.org/10.1016/S0968-4328(99)00005-0
34.
34. J. W. Coburn and H. F. Winters, J. Appl. Phys. 50, 3189 (1979).
http://dx.doi.org/10.1063/1.326355
35.
35. S. Reyntjens and R. Puers, J. Micromech. Microeng. 10, 181 (2000).
http://dx.doi.org/10.1088/0960-1317/10/2/314
36.
36. P. Heard, J. Cleaver, and H. Ahmed, J. Vac. Sci. Technol., B 3, 87 (1985).
http://dx.doi.org/10.1116/1.583297
37.
37. R. H. Livengood, P. Winer, and V. R. Rao, J. Vac. Sci. Technol., B 17, 40 (1999).
http://dx.doi.org/10.1116/1.590514
38.
38. Y. Hirayama, S. Tarucha, Y. Suzuki, and H. Okamoto, Phys. Rev. B 37, 2774 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2774
39.
39. J. Fassbender and J. McCord, J. Magn. Magn. Mater. 320, 579 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.07.032
40.
40. A. Karmous, A. Cuenat, A. Ronda, I. Berbezier, S. Atha, and R. Hull, Appl. Phys. Lett. 85, 6401 (2004).
http://dx.doi.org/10.1063/1.1828597
41.
41. N. Ocelic and R. Hillenbrand, Nat. Mater. 3, 606 (2004).
http://dx.doi.org/10.1038/nmat1194
42.
42. W. Brown, T. Venkatesan, and A. Wagner, Nucl. Instrum. Methods Phys. Res. 191, 157 (1981).
http://dx.doi.org/10.1016/0029-554X(81)90999-X
43.
43. N. Economou, D. Flanders, and J. Donnelly, J. Vac. Sci. Technol. 19, 1172 (1981).
http://dx.doi.org/10.1116/1.571237
44.
44. I. Adesida, E. Kratschmer, E. Wolf, A. Muray, and M. Isaacson, J. Vac. Sci. Technol., B 3, 45 (1985).
http://dx.doi.org/10.1116/1.583288
45.
45. U. Tandon, Vacuum 43, 241 (1992).
http://dx.doi.org/10.1016/0042-207X(92)90270-7
46.
46. R. Levisetti, Scanning Electron Microscopy ( SEM Inc, Chicago, 1983).
47.
47. R. Levisetti, Y. Wang, and G. Crow, Appl. Surf. Sci. 26, 249 (1986).
http://dx.doi.org/10.1016/0169-4332(86)90067-X
48.
48. M. W. Phaneuf, Micron 30, 277 (1999).
http://dx.doi.org/10.1016/S0968-4328(99)00012-8
49.
49. L. Scipioni, L. A. Stern, J. Notte, S. Sijbrandij, and B. Griffin, Adv. Mater. Process. 166, 27 (2008).
50.
50. G. Hlawacek, V. Veligura, R. van Gastel, and B. Poelsema, J. Vac. Sci. Technol., B 32, 020801 (2014).
http://dx.doi.org/10.1116/1.4863676
51.
51. J. Orloff, L. W. Swanson, and M. Utlaut, J. Vac. Sci. Technol., B 14, 3759 (1996).
http://dx.doi.org/10.1116/1.588663
52.
52. J. C. Vickerman, A. Brown, and N. M. Reed, Secondary Ion Mass Spectrometry: Principles and Applications ( Oxford University Press, Oxford; New York, 1990).
53.
53. A. Bayly, A. Waugh, and K. Anderson, Nucl. Instrum. Methods Phys. Res. 218, 375 (1983).
http://dx.doi.org/10.1016/0167-5087(83)91009-8
54.
54. R. Levisetti, Y. L. Wang, and G. Crow, J. Phys. Colloques 45, C9197 (1984).
http://dx.doi.org/10.1051/jphyscol:1984933
55.
55. D. Schuetzle, T. Prater, S. Kaberline, J. Devries, A. Bayly, and P. Vohralik, Rev. Sci. Instrum. 60, 53 (1989).
http://dx.doi.org/10.1063/1.1140579
56.
56. B. Tomiyasu, I. Fukuju, H. Komatsubara, M. Owari, and Y. Nihei, Nucl. Instrum. Methods Phys. Res., Sect. B 136–138, 1028 (1998).
http://dx.doi.org/10.1016/S0168-583X(97)00790-8
57.
57. L. A. Giannuzzi and M. Utlaut, Surf. Interface Anal. 43, 475 (2011).
http://dx.doi.org/10.1002/sia.3454
58.
58. J.-L. Guerquin-Kern, T.-D. Wu, C. Quintana, and A. Croisy, Biochim. Biophys. Acta, Gen. Subj. 1724, 228 (2005).
http://dx.doi.org/10.1016/j.bbagen.2005.05.013
59.
59. C. Floss, F. J. Stadermann, J. P. Bradley, Z. R. Dai, S. Bajt, G. Graham, and A. S. Lea, Geochim. Cosmochim. Acta 70, 2371 (2006).
http://dx.doi.org/10.1016/j.gca.2006.01.023
60.
60. E. Taglauer and W. Heiland, Appl. Phys. 9, 261 (1976).
http://dx.doi.org/10.1007/BF00900452
61.
61. H. Niehus, W. Heiland, and E. Taglauer, Surf. Sci. Rep. 17, 213 (1993).
http://dx.doi.org/10.1016/0167-5729(93)90024-J
62.
62. H. H. Brongersma, M. Draxler, M. de Ridder, and P. Bauer, Surf. Sci. Rep. 62, 63 (2007).
http://dx.doi.org/10.1016/j.surfrep.2006.12.002
63.
63. J. Druce, N. Simrick, T. Ishihara, and J. Kilner, Nucl. Instrum. Methods Phys. Res. B 332, 261 (2014).
http://dx.doi.org/10.1016/j.nimb.2014.02.074
64.
64. H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd ed. ( Addison-Wesley, San Francisco, 2001).
65.
65. M. Reiser, Theory and Design of Charged Particle Beams, 2nd ed. ( Wiley-VCH, Weinheim, 2008).
66.
66. H. Wiedemann, Particle Accelerator Physics, 3rd ed. ( Springer, Berlin; New York, 2007).
67.
67. P. W. Hawkes and E. Kasper, Principles of Electron Optics, Volume 1: Basic Geometrical Optics ( Academic Press, London; San Diego, 1989).
68.
68. J. E. Barth and P. Kruit, Optik 101, 101 (1996).
69.
69. Y. Wang and Z. Shao, Adv. Electron. Electron Phys. 81, 177 (1991).
http://dx.doi.org/10.1016/S0065-2539(08)60865-3
70.
70. G. H. Jansen, Adv. Electron. Electron Phys. 21, 1 (1990).
71.
71. M. M. Mkrtchyan, J. A. Liddle, S. D. Berger, L. R. Harriott, J. M. Gibson, and A. M. Schwartz, J. Appl. Phys. 78, 6888 (1995).
http://dx.doi.org/10.1063/1.360455
72.
72. P. Kruit and X. R. Jiang, J. Vac. Sci. Technol., B 14, 1635 (1996).
http://dx.doi.org/10.1116/1.589203
73.
73. J. Orloff, Handbook of Charged Particle Optics, 2nd ed. ( CRC Press, New York, 2009).
74.
74. T. Radlicka and B. Lencova, Ultramicroscopy 108, 445 (2008).
http://dx.doi.org/10.1016/j.ultramic.2007.07.004
75.
75. P. Dayan and G. Jones, J. Vac. Sci. Technol. 19, 1094 (1981).
http://dx.doi.org/10.1116/1.571175
76.
76. T. Sasaki, J. Vac. Sci. Technol. 21, 695 (1982).
http://dx.doi.org/10.1116/1.571816
77.
77. Y. W. Yau, T. R. Groves, and R. F. W. Pease, J. Vac. Sci. Technol., B 1, 1141 (1983).
http://dx.doi.org/10.1116/1.582652
78.
78. E. Munro, Nucl. Instrum. Methods Phys. Res. A 258, 443 (1987).
http://dx.doi.org/10.1016/0168-9002(87)90929-6
79.
79. S. B. van der Geer, M. P. Reijnders, M. J. de Loos, E. J. D. Vredenbregt, P. H. A. Mutsaers, and O. J. Luiten, J. Appl. Phys. 102, 094312 (2007).
http://dx.doi.org/10.1063/1.2804287
80.
80. A. V. Steele, B. Knuffman, and J. J. McClelland, J. Appl. Phys. 109, 104308 (2011).
http://dx.doi.org/10.1063/1.3585783
81.
81. R. G. Forbes, Vacuum 48, 85 (1997).
http://dx.doi.org/10.1016/S0042-207X(96)00227-8
82.
82. G. Taylor, Proc. R. Soc. London A 280, 383 (1964).
http://dx.doi.org/10.1098/rspa.1964.0151
83.
83. J. W. Ward, J. Vac. Sci. Technol., B 3, 207 (1985).
http://dx.doi.org/10.1116/1.583228
84.
84. C. W. Hagen, E. Fokkema, and P. Kruit, J. Vac. Sci. Technol., B 26, 2091 (2008).
http://dx.doi.org/10.1116/1.2987958
85.
85. N. P. Economou, J. A. Notte, and W. B. Thompson, Scanning 34, 83 (2012).
http://dx.doi.org/10.1002/sca.20239
86.
86. R. Hill, J. Notte, and B. Ward, in Proceedings of the Seventh International Conference on Charged Particle Optics [Phys. Procedia 1, 135 (2008)].
87.
87. R. Hill and F. H. M. Faridur Rahman, Nucl. Instrum. Methods Phys. Res., Sect. A 645, 96 (2011).
http://dx.doi.org/10.1016/j.nima.2010.12.123
88.
88. R. Hill, J. A. Notte, and L. Scipioni, Adv. Imaging Electron Phys. 170, 65148 (2012).
http://dx.doi.org/10.1016/B978-0-12-394396-5.00002-6
89.
89. S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, Microelectron. Eng. 88, 2452 (2011).
http://dx.doi.org/10.1016/j.mee.2010.11.041
90.
90. J. Yang, D. C. Ferranti, L. A. Stern, C. A. Sanford, J. Huang, Z. Ren, L.-C. Qin, and A. R. Hall, Nanotechnology 22, 285310 (2011).
http://dx.doi.org/10.1088/0957-4484/22/28/285310
91.
91. O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, Nanotechnology 24, 395301 (2013).
http://dx.doi.org/10.1088/0957-4484/24/39/395301
92.
92. N. S. Smith, P. P. Tesch, N. P. Martin, and R. W. Boswell, Microsc. Microanal. 15, 312 (2009).
http://dx.doi.org/10.1017/S1431927609095300
93.
93. N. S. Smith, P. P. Tesch, N. P. Martin, and D. E. Kinion, Appl. Surf. Sci. 255, 1606 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.05.141
94.
94. R. J. Day, S. E. Unger, and R. G. Cooks, Anal. Chem. 52, 557A (1980).
http://dx.doi.org/10.1021/ac50054a002
95.
95. G. Alton and P. Read, J. Appl. Phys. 66, 1018 (1989).
http://dx.doi.org/10.1063/1.343487
96.
96. M. Aymar, C. H. Greene, and E. LucKoenig, Rev. Mod. Phys. 68, 1015 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.1015
97.
97. F. H. Read and N. J. Bowring, Rev. Sci. Instrum. 74, 2280 (2003).
http://dx.doi.org/10.1063/1.1544422
98.
98. M. P. Reijnders, N. Debernardi, S. B. van der Geer, P. H. A. Mutsaers, E. J. D. Vredenbregt, and O. J. Luiten, Phys. Rev. Lett. 105, 034802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.034802
99.
99. D. Murphy, R. W. Speirs, D. V. Sheludko, C. T. Putkunz, A. J. McCulloch, B. M. Sparkes, and R. E. Scholten, Nat. Commun. 5, 4489 (2014).
http://dx.doi.org/10.1038/ncomms5489
100.
100. C. Foot, Contemp. Phys. 32, 369 (1991).
http://dx.doi.org/10.1080/00107519108223712
101.
101. H. Metcalf and P. Vanderstraten, Phys. Rep. 244, 203 (1994).
http://dx.doi.org/10.1016/0370-1573(94)90035-3
102.
102. V. Letokhov, M. Olshanii, and Y. Ovchinnikov, Quantum Semiclassical Opt. 7, 5 (1995).
http://dx.doi.org/10.1088/1355-5111/7/1/002
103.
103. C. S. Adams and E. Riis, Prog. Quantum Electron. 21, 1 (1997).
http://dx.doi.org/10.1016/S0079-6727(96)00006-7
104.
104. W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.721
105.
105. V. I. Balykin, V. G. Minogin, and V. S. Letokhov, Rep. Prog. Phys. 63, 1429 (2000).
http://dx.doi.org/10.1088/0034-4885/63/9/202
106.
106. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping ( Springer, New York, 1999).
107.
107. T. P. Heavner, E. A. Donley, F. Levi, G. Costanzo, T. E. Parker, J. H. Shirley, N. Ashby, S. Barlow, and S. R. Jefferts, Metrologia 51, 174 (2014).
http://dx.doi.org/10.1088/0026-1394/51/3/174
108.
108. B. Bloom, T. Nicholson, J. Williams, S. Campbell, M. Bishof, X. Zhang, W. Zhang, S. Bromley, and J. Ye, Nature 506, 71 (2014).
http://dx.doi.org/10.1038/nature12941
109.
109. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
http://dx.doi.org/10.1126/science.269.5221.198
110.
110. B. DeMarco and D. S. Jin, Science 285, 1703 (1999).
http://dx.doi.org/10.1126/science.285.5434.1703
111.
111. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen De, and U. Sen, Adv. Phys. 56, 243 (2007).
http://dx.doi.org/10.1080/00018730701223200
112.
112. J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
http://dx.doi.org/10.1126/science.262.5135.877
113.
113. T. C. Killian, S. Kulin, S. D. Bergeson, L. A. Orozco, C. Orzel, and S. L. Rolston, Phys. Rev. Lett. 83, 4776 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4776
114.
114. D. J. Wineland, Rev. Mod. Phys. 85, 1103 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.1103
115.
115. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989).
http://dx.doi.org/10.1364/JOSAB.6.002084
116.
116. W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.596
117.
117. W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.996
118.
118.Springer Handbook of Atomic, Molecular, and Optical Physics, 2nd ed., edited by G. W. F. Drake ( Springer, 2005).
119.
119. J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989).
http://dx.doi.org/10.1364/JOSAB.6.002023
120.
120. A. Steane and C. Foot, Europhys. Lett. 14, 231 (1991).
http://dx.doi.org/10.1209/0295-5075/14/3/008
121.
121. D. J. Wineland, J. Dalibard, and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 9, 32 (1992).
http://dx.doi.org/10.1364/JOSAB.9.000032
122.
122. M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1741
123.
123. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.826
124.
124. D. Boiron, A. Michaud, P. Lemonde, Y. Castin, C. Salomon, S. Weyers, K. Szymaniec, L. Cognet, and A. Clairon, Phys. Rev. A 53, R3734 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.R3734
125.
125. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, Nature 428, 50 (2004).
http://dx.doi.org/10.1038/nature02387
126.
126. T. Takekoshi, B. M. Patterson, and R. J. Knize, Phys. Rev. Lett. 81, 5105 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5105
127.
127. W. Petrich, M. Anderson, J. Ensher, and E. Cornell, Phys. Rev. Lett. 74, 3352 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3352
128.
128. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.314
129.
129. A. Steane, M. Chowdhury, and C. Foot, J. Opt. Soc. Am. B 9, 2142 (1992).
http://dx.doi.org/10.1364/JOSAB.9.002142
130.
130. D. Sesko, T. Walker, and C. Wieman, J. Opt. Soc. Am. B 8, 946 (1991).
http://dx.doi.org/10.1364/JOSAB.8.000946
131.
131. G. L. Gattobigio, T. Pohl, G. Labeyrie, and R. Kaiser, Phys. Scr. 81, 025301 (2010).
http://dx.doi.org/10.1088/0031-8949/81/02/025301
132.
132. J. Y. Kim and D. Cho, J. Korean Phys. Soc. 39, 864 (2001).
133.
133. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, Opt. Express 17, 13601 (2009).
http://dx.doi.org/10.1364/OE.17.013601
134.
134. M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, J. Mod. Opt. 48, 1123 (2001).
http://dx.doi.org/10.1080/09500340108230979
135.
135. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, Opt. Lett. 21, 1177 (1996).
http://dx.doi.org/10.1364/OL.21.001177
136.
136. J. Lee, J. A. Grover, L. A. Orozco, and S. L. Rolston, J. Opt. Soc. Am. B 30, 2869 (2013).
http://dx.doi.org/10.1364/JOSAB.30.002869
137.
137. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3331
138.
138. J. Nellessen, J. Werner, and W. Ertmer, Opt. Commun. 78, 300 (1990).
http://dx.doi.org/10.1016/0030-4018(90)90365-Z
139.
139. C. Bradley, J. McClelland, W. Anderson, and R. Celotta, Phys. Rev. A 61, 053407 (2000).
http://dx.doi.org/10.1103/PhysRevA.61.053407
140.
140. J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, Nature 512, 286 (2014).
http://dx.doi.org/10.1038/nature13634
141.
141. V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, Phys. Rev. A 89, 053416 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.053416
142.
142. J. L. Hanssen, J. J. McClelland, E. A. Dakin, and M. Jacka, Phys. Rev. A 74, 063416 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.063416
143.
143. B. J. Claessens, M. P. Reijnders, G. Taban, O. J. Luiten, and E. J. D. Vredenbregt, Phys. Plasmas 14, 093101 (2007).
http://dx.doi.org/10.1063/1.2771518
144.
144. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications ( Wiley-VCH, New York, 1998).
145.
145. N. Debernardi, R. W. L. van Vliembergen, W. J. Engelen, K. H. M. Hermans, M. P. Reijnders, S. B. van der Geer, P. H. A. Mutsaers, O. J. Luiten, and E. J. D. Vredenbregt, New J. Phys. 14, 083011 (2012).
http://dx.doi.org/10.1088/1367-2630/14/8/083011
146.
146. P. Leo, E. Tiesinga, P. Julienne, D. Walter, S. Kadlecek, and T. Walker, Phys. Rev. Lett. 81, 1389 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.1389
147.
147. T. W. Hodapp, C. Gerz, C. Furtlehner, C. I. Westbrook, W. D. Phillips, and J. Dalibard, Appl. Phys. B 60, 135 (1995).
http://dx.doi.org/10.1007/BF01135855
148.
148. U. Schünemann, H. Engler, M. Zielonkowski, M. Weidemüller, and R. Grimm, Opt. Commun. 158, 263 (1998).
http://dx.doi.org/10.1016/S0030-4018(98)00517-3
149.
149. F. Reif, Fundamentals of Statistical and Thermal Physics ( Waveland, Long Grove, Illinois., 2008).
150.
150. G. Taban, M. P. Reijnders, S. C. Bell, S. B. van der Geer, O. J. Luiten, and E. J. D. Vredenbregt, Phys. Rev. Spec. Top.—Accel. Beams 11, 050102 (2008).
http://dx.doi.org/10.1103/PhysRevSTAB.11.050102
151.
151. M. P. Reijnders, P. A. van Kruisbergen, G. Taban, S. B. van der Geer, P. H. A. Mutsaers, E. J. D. Vredenbregt, and O. J. Luiten, Phys. Rev. Lett. 102, 034802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.034802
152.
152. S. B. van der Geer, O. J. Luiten, M. J. de Loos, G. Poplau, and U. van Rienen, in Computational Accelerator Physics 2002, Institute of Physics Conference Series 175, edited by M. Berz and K. Makino ( IoP Publishing Ltd., Bristol, 2005), pp. 101110.
153.
153. M. P. Reijnders, N. Debernardi, S. B. van der Geer, P. H. A. Mutsaers, E. J. D. Vredenbregt, and O. J. Luiten, J. Appl. Phys. 109, 033302 (2011).
http://dx.doi.org/10.1063/1.3544009
154.
154. N. Debernardi, M. P. Reijnders, W. J. Engelen, T. T. J. Clevis, P. H. A. Mutsaers, O. J. Luiten, and E. J. D. Vredenbregt, J. Appl. Phys. 110, 024501 (2011).
http://dx.doi.org/10.1063/1.3605555
155.
155. S. B. Hill and J. J. McClelland, Appl. Phys. Lett. 82, 3128 (2003).
http://dx.doi.org/10.1063/1.1572539
156.
156. J. L. Hanssen, S. B. Hill, J. Orloff, and J. J. McClelland, Nano Lett. 8, 2844 (2008).
http://dx.doi.org/10.1021/nl801472n
157.
157. J. L. Hanssen, E. A. Dakin, J. J. McClelland, and M. Jacka, J. Vac. Sci. Technol., B 24, 2907 (2006).
http://dx.doi.org/10.1116/1.2363406
158.
158. C. J. Davisson and C. J. Calbick, Phys. Rev. 42, 580 (1932).
http://dx.doi.org/10.1103/PhysRev.42.580
159.
159. A. V. Steele, B. Knuffman, J. J. McClelland, and J. Orloff, J. Vac. Sci. Technol., B 28, C6F1 (2010).
http://dx.doi.org/10.1116/1.3502668
160.
160. B. Knuffman, A. V. Steele, J. Orloff, M. Maazouz, and J. J. McClelland, AIP Conf. Proc. 1395, 8589 (2011).
http://dx.doi.org/10.1063/1.3657870
161.
161. C. J. Long, N. D. Orloff, K. A. Twedt, T. Lam, F. Vargas Lara, M. Zhao, B. Natarajan, K. C. Scott, E. Marksz, T. Nguyen, J. F. Douglas, J. J. McClelland, E. J. Garboczi, J. Obrzut, and J. A. Liddle, “ Giant surface conductivity enhancement in a carbon nanotube composite by ultraviolet light exposure” (to be published).
162.
162. R. Ramachandra, B. Griffin, and D. Joy, Ultramicroscopy 109, 748 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.01.013
163.
163. K. A. Twedt, L. Chen, and J. J. McClelland, Ultramicroscopy 142, 24 (2014).
http://dx.doi.org/10.1016/j.ultramic.2014.03.014
164.
164. J. Ziegler, J. Biersack, and M. Ziegler, See www.srim.org for calculation description and software download.
165.
165. S. Sijbrandij, B. Thompson, J. Notte, B. W. Ward, and N. P. Economou, J. Vac. Sci. Technol., B 26, 2103 (2008).
166.
166. S. H. W. Wouters, G. ten Haaf, R. P. M. J. W. Notermans, N. Debernardi, P. H. A. Mutsaers, O. J. Luiten, and E. J. D. Vredenbregt, Phys. Rev. A 90, 063817 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.063817
167.
167. G. ten Haaf, S. H. W. Wouters, S. B. van der Geer, E. J. D. Vredenbregt, and P. H. A. Mutsaers, J. Appl. Phys. 116, 244301 (2014).
http://dx.doi.org/10.1063/1.4905022
168.
168. M. Viteau, M. Reveilland, L. Kime, B. Rasser, P. Sudraud, Y. Bruneau, G. Khalili, P. Pillet, D. Comparat, I. Guerri, A. Fioretti, D. Ciampini, M. Allegrini, and F. Fuso, “ Ion microscopy based on laser-cooled cesium atoms,” Ultramicroscopy (in press).
http://dx.doi.org/10.1016/j.ultramic.2015.12.007
169.
169. B. Knuffman, A. V. Steele, and J. J. McClelland, J. Appl. Phys. 114, 044303 (2013).
http://dx.doi.org/10.1063/1.4816248
170.
170. K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998).
http://dx.doi.org/10.1103/PhysRevA.58.3891
171.
171. A. V. Steele, B. Knuffman, and J. J. McClelland, in ISTFA 2014 Conference Proceeding of the 40th International Symposium For Testing and Failure Analysis (2014), p. 293.
172.
172. K. A. Twedt, J. Zou, M. Davanco, K. Srinivasan, J. J. McClelland, and V. A. Aksyuk, Nat. Photonics 10, 35 (2016).
http://dx.doi.org/10.1038/nphoton.2015.248
173.
173. D. Murphy, R. E. Scholten, and B. M. Sparkes, Phys. Rev. Lett. 115, 214802 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.214802
174.
174. C. Ates, I. Lesanovsky, C. S. Adams, and K. J. Weatherill, Phys. Rev. Lett. 110, 213003 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.213003
http://aip.metastore.ingenta.com/content/aip/journal/apr2/3/1/10.1063/1.4944491
Loading
/content/aip/journal/apr2/3/1/10.1063/1.4944491
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/3/1/10.1063/1.4944491
2016-03-24
2016-09-26

Abstract

Nanoscale focused ion beams(FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIBsource has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 K or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beamtechnology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/3/1/1.4944491.html;jsessionid=yf7eE5IAJUY3isBFMg1HD9qc.x-aip-live-02?itemId=/content/aip/journal/apr2/3/1/10.1063/1.4944491&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/3/1/10.1063/1.4944491&pageURL=http://scitation.aip.org/content/aip/journal/apr2/3/1/10.1063/1.4944491'
Right1,Right2,Right3,