Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. Sando, A. Barthelemy, and M. Bibes, J. Phys.: Condens. Matter 26, 473201 (2014).
F. Matsukura, Y. Tokura, and H. Ohno, Nat. Nanotechnol. 10, 209 (2015).
J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).
J. Narayan, P. Tiwari, X. Chen, R. Chowdhury, and T. Zheleva, Appl. Phys. Lett. 61, 12901292 (1992).
J. Narayan, U.S. patent 5,406,123 (1995);
T. Zheleva, K. Jagannadham, and J. Narayan, J. Appl. Phys. 75, 860 (1994).
J. Narayan, “ Domain epitaxy for thin film growth,” U.S. patent 6,955,985 (18 October 2005).
J. Narayan, Acta Mater. 61, 27032724 (2013).
J. Narayan and B. C. Larson, J. Appl. Phys. 93, 278283 (2003).
R. Hull and E. A. Stach, Curr. Opin. Solid State Mater. Sci. 1, 21 (1996).
F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. A 198, 205216 (1949).
F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. A 200, 125134 (1949).
J. W. Matthews and A. E. Bakeslee, J. Cryst. Growth 27, 118125 (1974).
A. J. Purdes, B. F. T. Bolker, J. D. Bucci, and T. C. Tisone, J. Vac. Sci. Technol. 4, 98 (1977).
R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).
R. Hull and J. C. Bean, J. Vac. Sci. Technol., A 7, 2580 (1989).
J. Narayan and S. Sharan, Mater. Sci. Eng., B 10, 261 (1991).
S. Sharan and J. Narayan, J. Appl. Phys. 66, 2376 (1989).
K. Jagannadham and J. Narayan, Mater. Sci. Eng., A 113, 65 (1989).
H. A. Lu, L. A. Wills, and B. W. Wessels, Appl. Phys. Lett. 64, 2973 (1994).
V. Srikant, E. J. Tarsa, D. R. Clarke, and J. S. Speck, J. Appl. Phys. 77, 1517 (1995).
K. Nashimoto, D. K. Fork, and T. H. Geballe, Appl. Phys. Lett. 60, 1199 (1992).
E. J. Tarsa, M. De Graaf, D. R. Clarke, A. C. Gossard, and J. S. Speck, J. Appl. Phys. 73, 3276 (1993).
B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. Keller, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 68, 643 (1996).
R. F. Davis, T. W. Weeks, Jr., M. D. Bremser, S. Tanaka, R. S. Kern, Z. Sitar, K. S. Ailey, W. G. Perry, and C. Wang, MRS Proc. 395, 3 (1995).
D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 67, 1541 (1995).
M. Kasuga and M. Mochizuki, J. Cryst. Growth 54, 185 (1981).
V. Srikant, V. Sergo, and D. R. Clarke, J. Am. Ceram. Soc. 78, 1931 (1995).
D. K. Fork, F. Armani-Leplingrad, J. J. Kingston, and G. B. Anderson, in Thin Film for Integrated Optics, edited by B. W. Wessels and D. M. Walba ( Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1995), p. 189.
J. Chakhalian, J. W. Freeland, A. J. Millis, C. Panagopoulos, and J. M. Rondinelli, Rev. Mod. Phys. 86, 1189 (2014).
J. T. Heron, D. G. Schlom, and R. Ramesh, Appl. Phys. Rev. 1, 021303 (2014).
S. H. Baek and C. B. Eom, Acta Mater. 61, 2734 (2013).
C. L. Chua, W. Y. Hsu, C. H. Lin, G. Christenson, and Y. H. Lo, Appl. Phys. Lett. 64, 3640 (1994).
Z. Yang, F. Guarin, I. W. Tao, W. I. Wang, and S. S. Iyer, J. Vac. Sci. Technol., B 13, 789 (1995).
R. A. McKee, F. J. Walker, and M. F. Chisholm, Phys. Rev. Lett. 81, 3014 (1998).
C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, Nat. Nanotechnol. 8, 748 (2013).
S. H. Baek, J. Park, D. M. Kim, V. A. Aksyuk, R. R. Das, S. D. Bu, D. A. Felker, J. Lettieri, V. Vaithyanathan, S. S. N. Bharadwaja, N. Bassiri-Gharb, Y. B. Chen, H. P. Sun, C. M. Folkman, H. W. Jang, D. J. Kreft, S. K. Streiffer, R. Ramesh, X. Q. Pan, S. Trolier-McKinstry, D. G. Schlom, M. S. Rzchowski, R. H. Blick, and C. B. Eom, Science 334, 958 (2011).
J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010).
Y. H. Chu, Q. Zhan, C.-H. Yang, M. P. Cruz, L. W. Martin, T. Zhao, P. Yu, R. Ramesh, P. T. Joseph, I. N. Lin, W. Tian, and D. G. Schlom, Appl. Phys. Lett. 92, 102909 (2008).
H. Funakubo, M. Dekkers, A. Sambri, S. Gariglio, I. Shklyarevskiy, and G. Rijnders, MRS Bull. 37, 1030 (2012).
R. Ramesh, S. Aggarwal, and O. Auciello, Mater. Sci. Eng. 32, 191236 (2001).
K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish, and R. G. Elliman, J. Appl. Phys. 75, 232 (1994).
A. Z. Simões, M. A. Ramirez, C. S. Riccardi, E. Longo, and J. A. Varela, Mater. Lett. 60, 20202023 (2006).
J. Deng, W. Zhu, O. K. Fan, and X. Yao, Sens. Actuators 77, 416420 (2001).
S. Aggarwal and R. Ramesh, U.S. patent 6,194,754 B1 (February 2001).
S. Aggarwal, A. M. Dhote, and R. Ramesh, U.S. patent 6,274,388 B1 (August 2001).
R. Ramesh and D. G. Schlom, U.S. patent 2003/0062553 A1 (April 2003).
L. Dong, J. Schnitker, R. W. Smith, and D. J. Srolovitz, J. Appl. Phys. 83, 217 (1998).
L. B. Freund, MRS Bull. 17, 52 (1992).
V. I. Vdovin, Phys. Status Solidi A 171, 239 (1999).<239::AID-PSSA239>3.0.CO;2-M
F. K. LeGoues, M. C. Reuter, J. Tersoff, M. Hammar, and R. M. Tromp, Phys. Rev. Lett. 73, 300 (1994).
P. Pant, J. D. Budai, and J. Narayan, Acta Mater. 58, 1097 (2010).
J. M. Chauveau, P. Venneguès, M. Laugt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 104, 073535 (2008).
P. Pant, J. D. Budai, R. Aggarwal, R. J. Narayan, and J. Narayan, Acta Mater. 57, 4426 (2009).
S. J. Pennycook, H. Zhou, M. F. Chisholm, A. Y. Borisevich, M. Varela, J. Gazquez, T. J. Pennycook, and J. Narayan, Acta Mater. 61, 2725 (2013).
J. W. Lee, S. K. Han, S.-K. Hong, J. Y. Lee, and T. Yao, J. Cryst. Growth 310, 4102 (2008).
C. M. Wang, L. V. Saraf, and Y. Qiang, Thin Solid Films 516, 8337 (2008).
H. Zhou, M. F. Chisholm, P. Pant, H. J. Chang, J. Gazquez, S. J. Pennycook, and J. Narayan, Appl. Phys. Lett. 97, 121914 (2010).
V. Nagarajan, C. L. Jia, H. Kohlstedt, R. Waser, I. B. Misirlioglu, S. P. Alpay, and R. Ramesh, Appl. Phys. Lett. 86, 192910 (2005).
H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J. Headley, D. Dimos, J. A. Voigt, and R. D. Nasby, J. Appl. Phys. 79, 1013 (1996).
K. H. Lee, K. B. Lee, and S. B. Desu, J. Korean Phys. Soc. 42, 538542 (2003).
T. Watanabe, K. Ito, S. Tsukimoto, Y. Ushida, M. Moriyama, N. Shibata, and M. Murakami, Mater. Trans. 46, 19751978 (2005).
U. Kumar, K. R. Summerfelt, S. R. Moise, S. Ted, and M. K. Jain, U.S. patent 8,778,700 B2 (15 July 2014).
R. Molaei, M. R. Bayati, and J. Narayan, J. Mater. Res. 27, 31033109 (2012).
J. F. Scott, Ferroelectric Memories ( Springer-Verlag, Berlin, 2000).
J. Hoffman, X. Pan, J. W. Reiner, F. J. Walker, J. P. Han, C. H. Ahn, and T. P. Ma, Adv. Mater. 22, 29572961 (2010).
T. Hidaka, T. Mayurama, M. Saitoh, N. Mikoshiba, M. Shimizu, T. Shiosaki, L. A. Wills, R. Hiskes, S. A. Dicarolis, and J. Amano, Appl. Phys. Lett. 68, 2358 (1996).
T. Tybell, P. Paruch, T. Giamarchi, and J. M. Triscone, Phys. Rev. Lett. 89, 097601 (2002).
S. Salahuddin and S. Datta, Nano Lett. 8, 405 (2008).
H. J. A. Molegraaf, J. Hoffman, C. A. F. Vaz, S. Gariglio, D. van der Marel, C. H. Ahn, and J.-M. Triscone, Adv. Mater. 21, 3470 (2009).
P. M. Leufke, R. Kruk, R. A. Brand, and H. Hahn, Phys. Rev. B 87, 094416 (2013).
Z. Li, J. Hu, L. Shu, Y. Gao, Y. Shen, Y. Lin, and C. W. Nan, J. Appl. Phys. 111, 033918 (2012).
C. Wang, D. E. Laughlin, and M. H. Kryder, Appl. Phys. Lett. 90, 172903 (2007).
C. Wang and M. H. Kryder, J. Electron. Mater. 38, 1921 (2009).
R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759765 (2006).
S. Fusil, V. Garcia, A. Barthélémy, and M. Bibes, Annu. Rev. Mater. Res. 44, 91116 (2014).
Y.-H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodr′iguez, A. Scholl, S. X. Wang, and R. Ramesh, Nat. Mater. 7, 478 (2008).
D. Lebeugle, A. Mougin, M. Viret, D. Colson, and L. Ranno, Phys. Rev. Lett. 103, 257601 (2009).
S. M. Wu, S. A. Cybart, D. Yi, J. M. Parker, R. Ramesh, and R. C. Dynes, Phys. Rev. Lett. 110, 067202 (2013).
S. S. Rao, J. T. Prater, F. Wu, C. T. Shelton, J.-P. Maria, and J. Narayan, Nano Lett. 13, 5814 (2013).
S. R. Singamaneni, J. T. Prater, S. Nori, D. Kumar, B. Lee, V. Misra, and J. Narayan, J. Appl. Phys. 117, 17D908 (2015).
J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, and R. Ramesh, Appl. Phys. Lett. 85, 2574 (2004).
P. Yu, J.-S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C.-H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y.-H. Chu, D. A. Arena, C.-C. Kao, L. W. Martin, and R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).
D. A. Tenne, P. Turner, J. D. Schmidt, M. Biegalski, Y. L. Li, L. Q. Chen, A. Soukiassian, S. Trolier-McKinstry, D. G. Schlom, X. X. Xi, D. D. Fong, P. H. Fuoss, J. A. Eastman, G. B. Stephenson, C. Thompson, and S. K. Streiffer, Phys. Rev. Lett. 103, 177601 (2009).
C. Li, Z. Chen, D. Cui, Y. Zhou, H. Lu, C. Dong, F. Wu, and H. Chen, J. Appl. Phys. 86, 4555 (1999).
T. Shimizu, D. Suwama, H. Taniguchi, T. Taniyama, and M. Itoh, J. Phys.: Condens. Matter 25, 132001 (2013).
M. El Marssi, F. Le Marrec, I. A. Lukyanchuk, and M. G. Karkut, J. Appl. Phys. 94, 3307 (2003).
D. L. Kaiser, M. D. Vaudin, L. D. Rotter, Z. L. Wang, J. P. Cline, C. S. Hwang, R. B. Marinenko, and J. G. Gillen, Appl. Phys. Lett. 66, 2801 (1995).
K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science 306, 1005 (2004).
S. R. Singamaneni, S. Punugupati, J. T. Prater, F. Hunte, and J. Narayan, J. Appl. Phys. 116, 094103 (2014).
S. R. Singamaneni, W. Fan, J. T. Prater, and J. Narayan, J. Appl. Phys. 116, 224104 (2014).
S. R. Singamaneni, J. T. Prater, and J. Narayan, Emerging Mater. Res. 4, 50 (2015).
L. Huang, Z. Chen, J. D. Wilson, S. Banerjee, R. D. Robinson, I. P. Herman, R. Laibowitz, and S. O'Brien, J. Appl. Phys. 100, 034316 (2006).
R. Thomas, V. K. Varadan, S. Komarneni, and D. C. Dube, J. Appl. Phys. 90, 1480 (2001).
B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics ( Academic, New York, 1971), p. 78.
A. P. Chen, F. Khatkhatay, W. Zhang, C. Jacob, L. Jiao, and H. Wang, J. Appl. Phys. 114, 124101 (2013).
G. Robert, D. Damjanovic, and N. Setter, Appl. Phys. Lett. 77, 4413 (2000).
M. K. Lee, T. K. Nath, C. B. Eom, M. C. Smoak, and F. Tsui, Appl. Phys. Lett. 77, 3547 (2000).
H. Lu, T. A. George, Y. Wang, I. Ketsman, J. D. Burton, C.-W. Bark, S. Ryu, D. J. Kim, J. Wang, C. Binek, P. A. Dowben, A. Sokolov, C.-B. Eom, E. Y. Tsymbal, and A. Gruverman, Appl. Phys. Lett. 100, 232904 (2012).
Y.-L. Zhao, Y. Sun, L.-Q. Pan, K.-S. Li, and D.-B. Yu, Appl. Phys. Lett. 102, 042404 (2013).
C. Wang and M. H. Kryder, J. Phys. D: Appl. Phys. 41, 245301 (2008).
M. Scigaj, N. Dix, I. Fina, R. Bachelet, B. Warot-Fonrose, J. Fontcuberta, and F. Sanchez, Appl. Phys. Lett. 102, 112905 (2013).
T. Nagamiya, K. Yosida, and R. Kubo, Adv. Phys. 4, 1 (1955).
T. R. McGuire, E. J. Scott, and F. H. Grannis, Phys. Rev. 102(4), 1000 (1956).
I. E. Dzyaloshinskii, J. Exp. Theor. Phys. (U.S.S.R.) 37, 881 (1959)
I. E. Dzyaloshinskii, [Sov. Phys. -JETP 10, 628 (1960)].
D. N. Astrov, J. Exp. Theor. Phys. (U.S.S.R.) 38, 984 (1960)
D. N. Astrov, [Sov. Phys. -JETP 11, 708 (1960)].
A. Iyama and T. Kimura, Phys. Rev. B 87, 180408(R) (2013).
J. Wang, A. Gupta, and T. M. Klein, Thin Solid Films 516, 7366 (2008).
S.-Y. Jeong, J.-B. Lee, H. Na, and T.-Y. Seong, Thin Solid Films 518, 4813 (2010).
H. Mandar, T. Uustare, J. Aarik, A. Tarre, and A. Rosenthal, Thin Solid Films 515, 4570 (2007).
T. Kosaka, S. Suzuki, M. Saito, Y. Waseda, E. Matsubara, K. Sadamori, and E. Aoyagi, Thin Solid Films 289, 74 (1996).
M. Shima, T. Tepper, and C. A. Ross, J. Appl. Phys. 91, 7920 (2002).
A. Ghosh, K. Dey, S. Sabyasachi, A. Karmakar, S. Majumdar, and S. Giri, Appl. Phys. Lett. 103, 052412 (2013).
S. Punugupati, J. Narayan, and F. Hunte, Appl. Phys. Lett. 105, 132401 (2014).
S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
J. McCord and J. Westwood, IEEE Trans. Magn. 37, 1755 (2001).
H. Aurich, A. Baumgartner, F. Freitag, A. Eichler, J. Trbovic, and C. Schönenberger, Appl. Phys. Lett. 97, 153116 (2010).
V. Skumryev, V. Laukhin, I. Fina, X. Martı′, F. Sa′nchez, M. Gospodinov, and J. Fontcuberta, Phys. Rev. Lett. 106, 057206 (2011).
G. Raatz and J. Woltersdorf, Phys. Status Solidi A 113, 131141 (1989).
J. P. McCaffrey, E. B. Svedberg, J. R. Phillips, and L. D. Madsen, J. Cryst. Growth 200, 498504 (1999).
E. B. Svedberg, P. Sandstrom, J. Sundgren, J. E. Greene, and L. D. Madsen, Surf. Sci. 429, 206216 (1999).
F. Reniers, M. P. Delplancke, A. Asskali, V. Rooryck, and O. VanSinay, Appl. Surf. Sci. 92, 3542 (1996).
H. Qiu, H. Nakai, M. Hashimoto, G. Safran, M. Adamik, P. B. Barna et al., J. Vac. Sci. Technol., A 12, 2855 (1994).
R. A. Lukaszew, Z. D. Zhang, V. Stoica, and R. Clarke, Appl. Surf. Sci. 219, 74 (2003).
S. S. Rao, J. T. Prater, F. Wu, S. Nori, D. Kumar, and J. Narayan, Curr. Opin. Solid State Mater. Sci. 18, 15 (2014).
S. S. Rao, J. T. Prater, F. Wu, S. Nori, D. Kumar, L. Yue, S.-H. Liou, and J. Narayan, Curr. Opin. Solid State Mater. Sci. 18, 140146 (2014).
Y. Sun, M. B. Salamon, K. Garnier, and R. S. Averback, Phys. Rev. Lett. 91, 167206 (2003).
T. Tanaka, M. Ohtake, F. Kirino, and M. Futamoto, IEEE Trans. Magn. 46, 345 (2010);
T. Tanaka, M. Ohtake, F. Kirino, and M. Futamoto, IEEE Trans. Magn., 45, 2515 (2009).
T. Trunk, M. Redjdal, A. Ka′kay, M. F. Ruane, and F. B. Humphrey, J. Appl. Phys. 89, 7606 (2001).
Y. C. Chen, D.-S. Hung, Y.-D. Yao, S.-F. Lee, H.-P. Ji, and C. Yu, J. Appl. Phys. 101, 09C104 (2007).
F. Wu, S. S. Rao, J. T. Prater, Y. T. Zhu, and J. Narayan, Curr. Opin. Solid State Mater. Sci. 18, 263268 (2014).
U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J. P. Contour, J. F. Bobo, J. Fontcuberta, and A. Fert, Adv. Mater. 18, 1733 (2006).
V. G. Harris, A. Geilera, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. Hea, P. V. Parimia, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, J. Magn. Magn. Mater. 321, 2035 (2009).
A. V. Ramos, M. J. Guittet, J. B. Moussy, R. Mattana, C. Deranlot, F. Petroff, and C. Gatel, Appl. Phys. Lett. 91, 122107 (2007).
F. Sa′nchez, R. Bachelet, P. de Coux, B. Warot-Fonrose, V. Skumryev, L. Tarnawska, P. Zaumseil, T. Schroeder, and J. Fontcuberta, Appl. Phys. Lett. 99, 211910 (2011).
X. Ke et al., Appl. Phys. Lett. 84, 5458 (2004).
X. Ke, L. J. Belenky, C. B. Eom, and M. S. Rzchowski, J. Appl. Phys. 97, 10K115 (2005).
A. Solignac, R. Guerrero, P. Gogol, T. Maroutian, F. Ott, L. Largeau, Ph. Lecoeur, and M. Pannetier-Lecoeur, Phys. Rev. Lett. 109, 027201 (2012).
X. Ke, L. J. Belenky, V. Lauter, H. Ambaye, C. W. Bark, C. B. Eom, and M. S. Rzchowski, Phys. Rev. Lett. 110, 237201 (2013).
M. Ziese, I. Vrejoiu, E. Pippel, P. Esquinazi, D. Hesse, C. Etz, J. Henk, A. Ernst, I. V. Maznichenko, W. Hergert, and I. Mertig, Phys. Rev. Lett. 104, 167203 (2010).
M. Ziese, F. Bern, E. Pippel, D. Hesse, and I. Vrejoiu, Nano Lett. 12, 4276 (2012).
M. Ziese, F. Bern, and I. Vrejoiu, J. Appl. Phys. 113, 063911 (2013).
M. Ziese, E. Pippel, E. Nikulina, M. Arredondo, and I. Vrejoiu, Nanotechnology 22, 254025 (2011).
S. R. Singamaneni, J. T. Prater, and J. Narayan, Appl. Phys. Lett. (submitted).
S. R. Singamaneni, W. Fan, J. T. Prater, and J. Narayan, J. Appl. Phys. 117, 17B711 (2015).
S. R. Singamaneni, J. T. Prater, F. Wu, and J. Narayan, MRS Commun. (to be published).
S. R. Singamaneni, J. T. Prater, and J. Narayan, Curr. Opin. Solid State Mater. Sci. 19, 301 (2015).
J.-S. Lee, D. A. Arena, P. Yu, C. S. Nelson, R. Fan, C. J. Kinane, S. Langridge, M. D. Rossell, R. Ramesh, and C.-C. Kao, Phys. Rev. Lett. 105, 257204 (2010).
S. Kolesnik, Y. Z. Yoo, O. Chmaissem, B. Dabrowski, T. Maxwell, C. W. Kimball, and A. Genis, J. Appl. Phys. 99, 08F501 (2006).
Q. Gan, R. A. Rao, C. B. Eom, L. Wu, and F. Tsui, J. Appl. Phys. 85, 5297 (1999).
X. Qi and S. Zhang, Phys. Today 63(1), 3338 (2010).
H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. Qi, S. Zhang, Z. Shen, and Y. Cui, Nat. Mater. 9, 225229 (2010).
C. Brune, A. Roth, E. Novik, M. Konig, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova, and L. W. Molenkamp, Nat. Phys. 6, 448454 (2010).
K. Kuroda, G. Eguchi, K. Shirai, M. Shiraishi, M. Ye, K. Miyamoto, T. Okuda, S. Ueda, M. Arita, H. Namatame, M. Taniguchi, Y. Ueda, and A. Kimura, Phys. Rev. B 91, 205306 (2015).
A. A. Sukhanov and V. A. Sablikov, J. Phys.: Condens. Matter 24, 405301 (2012).
M. Klintenberg, “ The search for strong topological insulators,” preprint arXiv:1007.4838v1 (2010).
A. Widera and H. Schäfer, Mater. Res. Bull. 15, 18051809 (1980).
Y. F. Lee, F. Wu, R. Kumar, F. Hunte, J. Schwartz, and J. Narayan, Appl. Phys. Lett. 103, 112101 (2013).
Y. F. Lee, J. Narayan, and J. Schwartz, J. Appl. Phys. 116, 164903 (2014).
Y. F. Lee, F. Wu, J. Narayan, and J. Schwartz, MRS Commun. 4, 713 (2014).
S. Nori, T. H. Yang, and J. Narayan, JOM 63, 2933 (2011).
M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, Adv. Funct. Mater. 22, 4557 (2012).
A. Klein, C. K€orber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, Materials 3, 4892 (2010).
M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M. Wang, J. Appl. Phys. 86, 1688 (1999).
P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr., Appl. Phys. Lett. 82, 1117 (2003).
C. Ronning, P. X. Gao, Y. Ding, Z. L. Wang, and D. Schwen, Appl. Phys. Lett. 84, 783 (2004).
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004).
Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009).
M. V. Ponomarev, M. A. Verheijen, W. Keuning, M. C. M. van de Sanden, and M. Creatore, J. Appl. Phys. 112, 043708 (2012).
R. Groenen, J. Loffler, J. L. Linden, R. E. I. Schropp, and M. C. M. van de Sanden, Thin Solid Films 492, 298306 (2005).
S. Mal, S. Nori, J. Narayan, and J. T. Prater, J. Mater. Res. 26, 1298 (2011).
X. H. Wei, Y. R. Li, J. Zhu, A. W. Huang, Y. Zhang, W. B. Luo, and H. Ji, Appl. Phys. Lett. 90, 151918 (2007).
S.-B. Mi, Thin Solid Films 558, 237240 (2014).
J.-S. Tian, M.-H. Liang, Y.-T. Ho, Y.-A. Liu, and L. Chang, J. Cryst. Growth 310, 777782 (2008).
R. Molaei, M. R. Bayati, H. M. Alipour, and J. Narayan, Appl. Phys. Lett. 102, 101602 (2013).
P. Gupta and J. Narayan, J. Appl. Phys. 115, 043513 (2014).
R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J. Jimenez, B. G. Wang, and M. J. Callahan, Phys. Rev. B 75, 165202 (2007).
R. Aggarwal, H. Zhou, C. Jin, J. Narayan, and R. J. Narayan, J. Appl. Phys. 107, 113530 (2010).
K. Vanheusden, W. L. Warren, C. H. Seage, D. R. Tallent, J. A. Voigtang, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).
S.-H. Jeong, B.-S. Kim, and B.-T. Lee, Appl. Phys. Lett. 82, 2625 (2003).
W.-R. Liu, Y.-H. Li, W. F. Hsieh, C.-H. Hsu, W. C. Lee, Y. J. Lee, M. Hong, and J. Kwo, Cryst. Growth Des. 9, 239 (2009).
T. I. Wong, H. R. Tan, D. Sentosa, L. M. Wong, S. J. Wang, and Y. P. Feng, J. Phys. D: Appl. Phys. 45, 415306 (2012).
X. N. Wang, Y. Wang, Z. X. Mei, J. Dong, Z. Q. Zeng, H. T. Yuan, T. C. Zhang, X. L. Du, J. F. Jia, Q. K. Xue, X. N. Zhang, Z. Zhang, Z. F. Li, and W. Lu, Appl. Phys. Lett. 90, 151912 (2007).
F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
K. Martens, N. Aetukuri, J. Jeong, M. G. Samant, and S. S. P. Parkin, Appl. Phys. Lett. 104, 081918 (2014).
D. Ruzmetov and S. Ramanathan, Thin Film Metal Oxides: Fundamentals and Applications in Electronics and Energy ( Springer, New York, 2010).
J. de la Venta, S. Wang, J. G. Ramirez, and I. K. Schuller, Appl. Phys. Lett. 102, 122404 (2013).
R. Molaei, R. Bayati, S. Nori, D. Kumar, J. T. Prater, and J. Narayan, Appl. Phys. Lett. 103, 252109 (2013).
R. Molaei, R. Bayati, F. Wu, and J. Narayan, J. Appl. Phys. 115, 164311 (2014).
G. M. Foley, S. R. Singamaneni, J. Prater, and J. Narayan, “Control of magnetic coercivity in epitaxial Ni/VO2/YSZ/Si(001) heterostructures by manipulation of Ni thin film growth modes,” MRS Adv. (published online).
A. Gupta, R. Aggarwal, P. Gupta, T. Dutta, R. J. Narayan, and J. Narayan, Appl. Phys. Lett. 95, 111915 (2009).
J. Narayan and V. M. Bhosle, J. Appl. Phys. 100, 103524 (2006).
W. Yin, S. Wolf, C. Ko, S. Ramanathan, and P. Reinke, J. Appl. Phys. 109, 024311 (2011).
B. Lazarovits, K. Kim, K. Haule, and G. Kotliar, Phys. Rev. B 81, 115117 (2010).
E. Fujii, A. Tomozawa, H. Torii, and R. Takayama, Jpn. J. Appl. Phys., Part 2 35, L328 (1996).
M. Kitao, K. Izawa, K. Urabe, T. Komatsu, S. Kuwano, and S. Yamada, Jpn. J. Appl. Phys., Part 1 33, 6656 (1994).
D. Adler and J. Feinleib, Phys. Rev. B 2, 3112 (1970).
H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films 236, 27 (1993).
H. Kumagai, M. Matsumoto, K. Toyoda, and M. J. Obara, J. Mater. Sci. Lett. 15, 1081 (1996).
X. Chen, N. J. Wu, L. Smith, and A. Ignatiev, Appl. Phys. Lett. 84, 2700 (2004).
M. Stamataki, D. Tsamakis, N. Brilis, I. Fasaki, A. Giannoudakos, and M. Kompitsas, Phys. Status Solidi A 205, 2064 (2008).
R. Molaei, R. Bayati, and J. Narayan, Cryst. Growth Des. 13, 54595465 (2013).
S. S. Rao, Y. F. Lee, J. T. Prater, A. I. Smirnov, and J. Narayan, Appl. Phys. Lett. 105, 042403 (2014).
S. Mal, J. Narayan, S. Nori, J. T. Prater, and D. Kumar, Solid State Commun. 150, 1660 (2010).
M. R. Bayati, A. Z. Moshfegh, and F. Golestani-Fard, Appl. Catal., A 389, 60 (2010).
K. Prashant, J. Phys. Chem. C 116, 11849 (2012).
P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown, J. Appl. Phys. 111, 064320 (2012).
B. Santara, B. Pal, and P. K. Giri, J. Appl. Phys. 110, 114322 (2011).
P. Chinnamuthu, J. C. Dhar, A. Mondal, A. Bhattacharyya, and N. K. Singh, J. Phys. D: Appl. Phys. 45, 135102 (2012).
N. Naseri, M. Amiri, and A. Z. Moshfegh, J. Phys. D: Appl. Phys. 43, 105405 (2010).
B. Xi, L. K. Verma, J. Li, C. S. Bhatia, A. J. Danner, H. Yang, and H. C. Zeng, Appl. Mater. Interfaces 4, 1093 (2012).
M. R. Bayati, S. Joshi, R. Molaei, R. J. Narayan, and J. Narayan, J. Appl. Phys. 113, 063706 (2013).
P. Gupta, T. Dutta, S. Mal, and J. Narayan, J. Appl. Phys. 111, 013706 (2012).
T. V. Perevalov and V. A. Gritsenko, J. Exp. Theor. Phys. 112, 310 (2011).
R. K. Singh and J. Narayan, Mater. Sci. Eng., B 3, 217 (1989).
N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B 105, 3023 (2001).
C.-P. Chang, M.-W. Chu, H. T. Jeng, S.-L. Cheng, J. G. Lin, J.-R. Yang, and C. H. Chen, Nat. Commun. 5, 3522 (2014).
N. Gauquelin, E. Benckiser, M. K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.-U. Habermeier, U. Kaiser, B. Keimer, and G. A. Botton, Phys. Rev. B 90, 195140 (2014).
Y.-M. Kim, A. Morozovska, E. Eliseev, M. P. Oxley, R. Mishra, S. M. Selbach, T. Grande, S. T. Pantelides, S. V. Kalinin, and A. Y. Borisevich, Nat. Mater. 13, 1019 (2014).
A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D. Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
T. J. Pennycook, M. P. Oxley, J. Garcia-Barriocanal, F. Y. Bruno, C. Leon, J. Santamaria, S. T. Pantelides, M. Varela, and S. J. Pennycook, Eur. Phys. J.: Appl. Phys. 54, 33507 (2011).

Data & Media loading...


Article metrics loading...



Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO, SrTiO (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called “domain matching epitaxy,” is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%–25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation “smart” devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a variety of ferroelectric, multiferroic, magnetic, photocatalytic, and smart materials. Their properties have been extensively investigated and their functionality found to be comparable to films grown on single-crystal oxide substrates previously reported by researchers in this field. In addition, this review explores the utility of using laser processing to introduce stable defects in a controlled way and induce magnetism and engineer the optical and electrical properties of nonmagnetic oxides such as BaTiO, VO, NiO, and TiO as an alternative for incorporating additional magnetic and conducting layers into the structure. These significant materials advancements herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd