Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/3/4/10.1063/1.4944801
1.
1. E. Kuphal and A. Pocker , Jpn. J. Appl. Phys. Part 1 37(2), 632 (1998).
http://dx.doi.org/10.1143/JJAP.37.632
2.
2. D. M. Wood and A. Zunger , Phys. Rev. Lett. 61(13), 1501 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1501
3.
3. D. M. Wood and A. Zunger , Phys. Rev. B 40(6), 4062 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.4062
4.
4. M. J. Cherng , R. M. Cohen , and G. B. Stringfellow , J. Electron. Mater. 13(5), 799 (1984);
http://dx.doi.org/10.1007/BF02657927
4. A. A. Khandekar , J. Y. Yeh , L. J. Mawst , X. Song , S. E. Babcock , and T. F. Kuech , J. Cryst. Growth 303(2), 456 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.12.034
5.
5. M. J. Cherng , Y. T. Cherng , H. R. Jen , P. Harper , R. M. Cohen , and G. B. Stringfellow , J. Electron. Mater. 15(2), 79 (1986);
http://dx.doi.org/10.1007/BF02649907
5. J. Y. Yeh , L. J. Mawst , A. A. Khandekar , T. F. Kuech , I. Vurgaftman , J. R. Meyer , and N. Tansu , J. Cryst. Growth 287(2), 615 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.10.087
6.
6. C. R. Miranda and A. Antonelli , Phys. Rev. B 74(15), 153203 (2006);
http://dx.doi.org/10.1103/PhysRevB.74.153203
6. K. Moriguchi , S. Munetoh , A. Shintani , and T. Motooka , Phys. Rev. B 64(19), 195409 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195409
7.
7. D. T. J. Hurle , J. Appl. Phys. 85(10), 6957 (1999).
http://dx.doi.org/10.1063/1.370506
8.
8. D. T. J. Hurle , J. Appl. Phys. 107(12), 121301 (2010).
http://dx.doi.org/10.1063/1.3386412
9.
9. K. L. Schulte , “ Defect analysis in III–V semiconductor thin films grown by hydride vapor phase epitaxy,” Ph.D. thesis ( University of Wisconsin -Madison, ProQuest LLC, 2014).
10.
10. S. V. Bulyarskii and V. P. Oleinikov , Phys. Status Solidi B l46(2), 439 (1988);
10. F. A. Kroeger , in Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett ( Mater. Res. Soc. Symp. Proc., 1983), Vol. 14, p. 207;
10. J.-I. Nishizawa , Mater. Chem. Phys. 64(2), 93 (2000).
http://dx.doi.org/10.1016/S0254-0584(99)00257-6
11.
11. G. B. Stringfellow , J. Cryst. Growth 27(1), 21 (1974).
http://dx.doi.org/10.1016/S0022-0248(74)80047-3
12.
12. G. B. Stringfellow , J. Appl. Phys. 54(1), 404 (1983).
http://dx.doi.org/10.1063/1.331719
13.
13. I. H. Ho and G. B. Stringfellow , in Control of Semiconductor Surfaces and Interfaces, edited by S. K. Brierley , J. M. Gibson , O. J. Glembochi , S. M. Prokes , and J. M. Woodall ( Mater. Res. Soc. Symp. Proc., 1997), Vol. 449, p. 871.
14.
14. I. H. Ho and G. B. Stringfellow , J. Cryst. Growth 178(1–2), 1 (1997);
http://dx.doi.org/10.1016/S0022-0248(97)00078-X
14. T. Makihara , T. Akiyama , K. Nakamura , and T. Ito , Surf. Sci. Soc. Jpn. 12, 171 (2014).
15.
15. A. A. Mbaye , D. M. Wood , and A. Zunger , Phys. Rev. B 37(6), 3008 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.3008
16.
16. D. Schlenker , T. Miyamoto , Z. Pan , F. Koyama , and K. Iga , J. Cryst. Growth 196(1), 67 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)00787-8
17.
17. G. B. Stringfellow , J. Cryst. Growth 65(1–3), 454 (1983);
http://dx.doi.org/10.1016/0022-0248(83)90086-6
17. G. B. Stringfellow , J. Cryst. Growth, 58(1), 194 (1982).
18.
18. S. Sikder , P. Rathi , and J. Adhikari , J. Cryst. Growth 324(1), 284 (2011);
http://dx.doi.org/10.1016/j.jcrysgro.2011.03.053
18. F. El Haj Hassan and H. Akbarzadeh , Mater. Sci. Eng. B 121(1–2), 170 (2005);
http://dx.doi.org/10.1016/j.mseb.2005.03.019
18. S. Kumar , S. Joshi , B. Joshi , and S. Auluck , J. Phys. Chem. Solids 86, 101 (2015);
http://dx.doi.org/10.1016/j.jpcs.2015.06.010
18. S. Labidi , M. Labidi , H. Meradji , S. Ghemid , and F. El Haj Hassan , Comput. Mater. Sci. 50(3), 1077 (2011).
http://dx.doi.org/10.1016/j.commatsci.2010.11.004
19.
19. H. Jacobsen , B. Puchala , T. F. Kuech , and D. Morgan , Phys. Rev. B 86(8), 085207 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085207
20.
20. C. Freysoldt , B. Grabowski , T. Hickel , J. Neugebauer , G. Kresse , A. Janotti , and C. G. Van De Walle , Rev. Mod. Phys. 86(1), 253 (2014);
http://dx.doi.org/10.1103/RevModPhys.86.253
20. A. Ciccioli and G. Gigli , J. Phys. Chem. A 116(26), 7107 (2012);
http://dx.doi.org/10.1021/jp300624z
20. J. A. Gupta , W. R. McKinnon , J. Noad , D. Coulas , R. L. Williams , R. Driad , and S. P. McAlister , J. Cryst. Growth 231(1–2), 48 (2001);
http://dx.doi.org/10.1016/S0022-0248(01)01446-4
20. M. Marques , L. G. Ferreira , L. K. Teles , and L. M. R. Scolfaro , Phys. Rev. B 71(20), 205204 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205204
21.
21. J. Y. Tsao , Materials Fundamentals of Molecular Beam Epitaxy ( Elsevier Science, 2012);
21. M. Henini , Molecular Beam Epitaxy: From Research to Mass Production ( Elsevier Science, 2012).
22.
22. G. B. Stringfellow , Organometallic Vapor-Phase Epitaxy: Theory and Practice ( Elsevier Science, 1999).
23.
23. T. F. Kuech , Mater. Sci. Rep. 2(1), 1 (1987).
http://dx.doi.org/10.1016/0920-2307(87)90002-8
24.
24.Handbook of Crystal Growth, edited by D. T. J. Hurle ( North-Holland, Amsterdam; New York, 1993), pp. 19931994.
25.
25. N. A. Stolwijk , G. Bösker , J. V. Thordson , U. Södervall , T. G. Andersson , Ch. Jäger , and W. Jäger , Phys. B: Condens. Matter 273–274, 685 (1999);
http://dx.doi.org/10.1016/S0921-4526(99)00610-9
25. B. Tuck , Atomic Diffusion in III-V Semiconductors ( Taylor & Francis, 1988).
26.
26. M. Mińkowski and M. A. Załuska-Kotur , Phys. Rev. B 91(7), 075411 (2015);
http://dx.doi.org/10.1103/PhysRevB.91.075411
26. P. M. DeLuca , J. G. C. Labanda , and S. A. Barnett , Appl. Phys. Lett. 74(12), 1719 (1999).
http://dx.doi.org/10.1063/1.123666
27.
27. M. Masnadi-Shirazi , D. A. Beaton , R. B. Lewis , X. Lu , and T. Tiedje , J. Cryst. Growth 338(1), 80 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.09.055
28.
28. F. Bastiman , A. G. Cullis , J. P. R. David , and S. J. Sweeney , J. Cryst. Growth 341(1), 19 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.12.058
29.
29. M. Deura , Y. Shimogaki , Y. Nakano , and M. Sugiyama , J. Cryst. Growth 310(23), 4736 (2008);
http://dx.doi.org/10.1016/j.jcrysgro.2008.08.019
29. C. Grasse , R. Meyer , U. Breuer , G. Böhm , and M.-C. Amann , J. Cryst. Growth 310(23), 4835 (2008);
http://dx.doi.org/10.1016/j.jcrysgro.2008.06.078
29. K. Ono and M. Takemi , J. Cryst. Growth 298, 41 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.065
30.
30. J. Y. T. Huang , L. J. Mawst , S. Jha , T. F. Kuech , D. Wang , L. Shterengas , G. Belenky , J. R. Meyer , and I. Vurgaftman , J. Cryst. Growth 310(23), 4839 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.08.026
31.
31. M. Zorn , P. Kurpas , A. Bhattacharya , M. Weyers , J. T. Zettler , and W. Richter , in Self-Organized Processes in Semiconductor Alloys, edited by D. Follstaedt , B. Joyce , A. Mascarenhas , and T. Suzuki ( Mater. Res. Soc. Symp. Proc., 2000), Vol. 583, p. 217;
31. S. F. Cheng , Y. Sun , D. C. Law , S. B. Visbeck , and R. F. Hicks , Surf. Sci. 600(14), 2924 (2006);
http://dx.doi.org/10.1016/j.susc.2006.05.038
31. I. G. Batyrev , W. E. McMahon , S. B. Zhang , J. M. Olson , and Su.-H. Wei , Phys. Rev. Lett. 94(9), 1 (2005).
32.
32. H. Abu-Farsakh and J. Neugebauer , Phys. Rev. B 79(15), 155311 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155311
33.
33. L. Bellaiche , S.-H. Wei , and A. Zunger , Appl. Phys. Lett. 70(26), 3558 (1997);
http://dx.doi.org/10.1063/1.119232
33. U. Tisch , E. Finkman , and J. Salzman , Appl. Phys. Lett. 81(3), 463 (2002).
34.
34. W. Shan , K. M. Yu , W. Walukiewicz , J. W. Ager III , E. E. Haller , and M. C. Ridgway , Appl. Phys. Lett. 75(10), 1410 (1999).
http://dx.doi.org/10.1063/1.124951
35.
35. I. Suemune , K. Uesugi , and W. Walukiewicz , Appl. Phys. Lett. 77(19), 3021 (2000);
http://dx.doi.org/10.1063/1.1322633
35. K. M. Yu , S. V. Novikov , R. Broesler , C. R. Staddon , M. Hawkridge , Z. Liliental-Weber , I. Demchenko , J. D. Denlinger , V. M. Kao , F. Luckert , R. W. Martin , W. Walukiewicz , and C. T. Foxon , Phys. Status Solidi C 7, 1847 (2010).
http://dx.doi.org/10.1002/pssc.200983430
36.
36. A. Lindsay and E. P. O'Reilly , Physica E 21(2–4), 901 (2004);
http://dx.doi.org/10.1016/j.physe.2003.11.147
36. E. P. O'Reilly , A. Lindsay , and S. Fahy , J. Phys.: Condens. Matter 16(31), S3257 (2004).
http://dx.doi.org/10.1088/0953-8984/16/31/019
37.
37. P. Carrier and Su.-H. Wei , Phys. Rev. B 70(3), 035212 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.035212
38.
38. K. Hild , Z. Batool , S. R. Jin , N. Hossain , I. P. Marko , T. J. C. Hosea , X. Lu , T. Tiedje , and S. J. Sweeney , in AIP Conference Proceedings, 31st International Conference on the Physics of Semiconductors, Zurich, edited by T. Ihn , C. Rossler , and A. Kozikov ( AIP, New York, 2013), Vol. 1566, pp. 488.
39.
39. E. A. Fitzgerald , Mater. Sci. Rep. 7(3), 87 (1991);
http://dx.doi.org/10.1016/0920-2307(91)90006-9
39. D. J. Dunstan , S. Young , and R. H. Dixon , J. Appl. Phys. 70(6), 3038 (1991);
http://dx.doi.org/10.1063/1.349335
39. J. W. Matthews and A. E. Blakeslee , J. Cryst. Growth 27(0), 118 (1974).
40.
40. S. Kurtz , R. Reedy , G. D. Barber , J. F. Geisz , D. J. Friedman , W. E. McMahon , and J. M. Olson , J. Cryst. Growth 234(2–3), 318 (2002);
http://dx.doi.org/10.1016/S0022-0248(01)01711-0
40. A. J. Ptak , S. Kurtz , C. Curtis , R. Reedy , and J. M. Olson , J. Cryst. Growth 243(2), 231 (2002);
http://dx.doi.org/10.1016/S0022-0248(02)01412-4
40. C. T. Foxon and O. H. Hughes , J. Mater. Sci. Mater. Electron. 9(3), 227 (1998);
http://dx.doi.org/10.1023/A:1008834426133
40. J. S. Wang , A. R. Kovsh , L. Wei , J. Y. Chi , Y. T. Wu , P. Y. Wang , and V. M. Ustinov , Nanotechnology 12(4), 430 (2001).
http://dx.doi.org/10.1088/0957-4484/12/4/308
41.
41. Y. Zhang , A. Mascarenhas , H. P. Xin , and C. W. Tu , Phys. Rev. B 63(16), 161303 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.161303
42.
42. A. Janotti , Su.-H. Wei , and S. B. Zhang , Phys. Rev. B 65(11), 115203 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.115203
43.
43. D. Madouri , A. Boukra , A. Zaoui , and M. Ferhat , Comput. Mater. Sci. 43(4), 818 (2008);
http://dx.doi.org/10.1016/j.commatsci.2008.01.059
43. M. K. Rajpalke , W. M. Linhart , M. Birkett , K. M. Yu , J. Alaria , J. Kopaczek , R. Kudrawiec , T. S. Jones , M. J. Ashwin , and T. D. Veal , J. Appl. Phys. 116(4), 043511 (2014).
http://dx.doi.org/10.1063/1.4891217
44.
44. I. P. Marko , S. R. Jin , K. Hild , Z. Batool , Z. L. Bushell , P. Ludewig , W. Stolz , K. Volz , R. Butkute , V. Paebutas , A. Geizutis , A. Krotkus , and S. J. Sweeney , Semicond. Sci. Technol. 30(9), 094008 (2015);
http://dx.doi.org/10.1088/0268-1242/30/9/094008
44. S. J. Sweeney , I. P. Marko , S. R. Jin , K. Hild , Z. Batool , P. Ludewig , L. Nattermann , Z. Bushell , W. Stolz , K. Volz , C. A. Broderick , M. Usman , P. E. Harnedy , E. P. Oreilly , R. Butkute , V. Pacebutas , A. Geiutis , and A. Krotkus , in 24th IEEE International Semiconductor Laser Conference (2014), p. 81.
45.
45. T. Thomas , A. Mellor , N. P. Hylton , M. Fuhrer , D. Alonso-Alvarez , A. Braun , N. J. Ekins-Daukes , J. P. R. David , and S. J. Sweeney , Semicond. Sci. Technol. 30(9), 094010 (2015).
http://dx.doi.org/10.1088/0268-1242/30/9/094010
46.
46. P. Ludewig , L. Nattermann , W. Stolz , and K. Volz , Semicond. Sci. Technol. 30(9), 094017 (2015).
http://dx.doi.org/10.1088/0268-1242/30/9/094017
47.
47. L. Nattermann , P. Ludewig , L. Meckbach , B. Ringler , D. Keiper , C. von Haenisch , W. Stolz , and K. Volz , J. Cryst. Growth 426, 54 (2015).
http://dx.doi.org/10.1016/j.jcrysgro.2015.05.015
48.
48. A. A. Khandekar , J. Y. Yeh , L. J. Mawst , X. Song , S. E. Babcock , and T. F. Kuech , J. Cryst. Growth 298, 154 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.012
49.
49. K. Forghani , A. Anand , L. J. Mawst , and T. F. Kuech , J. Cryst. Growth 380, 23 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.05.033
50.
50. K. Forghani , Y. Guan , A. Wood , S. Babock , L. Mawst , and T. F. Kuech , Chem. Vapor Deposition 21, 166 (2015).
http://dx.doi.org/10.1002/cvde.201507160
51.
51. K. Forghani , Y. Guan , A. W. Wood , A. Anand , S. E. Babcock , L. J. Mawst , and T. F. Kuech , J. Cryst. Growth 395, 38 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.03.014
52.
52. G. Luo , S. Yang , J. Li , M. Arjmand , I. Szlufarska , A. S. Brown , T. F. Kuech , and D. Morgan , Phys. Rev. B 92(3), 035415 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.035415
53.
53. A. Duzik , J. C. Thomas , J. M. Millunchick , J. Lang , M. P. J. Punkkinen , and P. Laukkanen , Surf. Sci. 606(15–16), 1203 (2012).
http://dx.doi.org/10.1016/j.susc.2012.03.021
54.
54. A. W. Wood , Y. Guan , K. Forghani , A. Anand , T. F. Kuech , and S. E. Babcock , APL Mater. 3(3), 036108 (2015).
http://dx.doi.org/10.1063/1.4915301
55.
55. R. C. Lucas , “ Density functional theory calculation of the gas phase and surface reaction kinetics for the MOVPE growth of GaAs1−yBiy,” M.S. thesis ( University of Wisconsin, Madison, 2014).
56.
56. J. A. McCaulley , R. J. Shul , and V. M. Donnelly , J. Vac. Sci. Technol., A 9(6), 2872 (1991);
http://dx.doi.org/10.1116/1.577146
56. V. M. Donnelly and J. A. McCaulley , Surf. Sci. 238(1–3), 34 (1990).
http://dx.doi.org/10.1016/0039-6028(90)90063-E
57.
57. A. J. Ptak , R. France , D. A. Beaton , K. Alberi , J. Simon , A. Mascarenhas , and C. S. Jiang , J. Cryst. Growth 338(1), 107 (2012);
http://dx.doi.org/10.1016/j.jcrysgro.2011.10.040
57. H. Fitouri , I. Moussa , A. Rebey , and B. El Jani , Microelectron. Eng. 88(4), 476 (2011);
http://dx.doi.org/10.1016/j.mee.2010.11.016
57. Oe. Kunishige , Jpn. J. Appl. Phys., Part 1 41(5R), 2801 (2002).
58.
58. Z. L. Bushell , P. Ludewig , N. Knaub , Z. Batool , K. Hild , W. Stolz , S. J. Sweeney , and K. Volz , J. Cryst. Growth 396, 79 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.03.038
59.
59. A. Cerezo , P. H. Clifton , M. J. Galtrey , C. J. Humphreys , T. F. Kelly , D. J. Larson , S. Lozano-Perez , E. A. Marquis , R. A. Oliver , G. Sha , K. Thompson , M. Zandbergen , and R. L. Alvis , Mater. Today 10(12), 36 (2007);
http://dx.doi.org/10.1016/S1369-7021(07)70306-1
59. M. K. Miller , T. F. Kelly , K. Rajan , and S. P. Ringer , Mater. Today 15(4), 158 (2012).
60.
60. L. T. Stephenson , A. V. Ceguerra , T. Li , T. Rojhirunsakool , S. Nag , R. Banerjee , J. M. Cairney , and S. P. Ringer , MethodsX 1, 12 (2014);
http://dx.doi.org/10.1016/j.mex.2014.02.001
60. B. Gault , M. P. Moody , J. M. Cairney , and S. P. Ringer , Atom Probe Microscopy ( Springer, New York, 2012).
61.
61. S. E. Babcock and W. Chen , private communication, 2015.
62.
62. P. M. Mooney , K. P. Watkins , Z. Jiang , A. F. Basile , R. B. Lewis , V. Bahrami-Yekta , M. Masnadi-Shirazi , D. A. Beaton , and T. Tiedje , J. Appl. Phys. 117(1), 019901 (2015);
http://dx.doi.org/10.1063/1.4905390
62. Z. Batool , S. Chatterjee , A. Chernikov , A. Duzik , R. Fritz , C. Gogineni , K. Hild , T. J. C. Hosea , S. Imhof , S. R. Johnson , Z. Jiang , S. Jin , M. Koch , S. W. Koch , K. Kolata , R. B. Lewis , X. Lu , M. Masnadi-Shirazi , J. M. Millunchick , P. M. Mooney , N. A. Riordan , O. Rubel , S. J. Sweeney , J. C. Thomas , A. Thraenhardt , T. Tiedje , and K. Volz , Molecular Beam Epitaxy: From Research to Mass Production, Chap. 7, p. 139 (2013);
http://dx.doi.org/10.1016/B978-0-12-387839-7.00007-5
62. P. M. Mooney , K. P. Watkins , Z. Jiang , A. F. Basile , R. B. Lewis , V. Bahrami-Yekta , M. Masnadi-Shirazi , D. A. Beaton , and T. Tiedje , J. Appl. Phys. 113(13), 133708 (2013).
http://dx.doi.org/10.1063/1.4798237
63.
63. F. Gan , K. Oe , and M. Yoshimoto , Jpn. J. Appl. Phys. Part 2 46(29–32), L764 (2007);
63. R. Butkute , V. Pacebutas , B. Cechavicius , R. Adomavicius , A. Koroliov , and A. Krotkus , Phys. Status Solidi C 9, 1614 (2014);
63. I. Moussa , H. Fitouri , Z. Chine , A. Rebey , and B. El Jani , Semicond. Sci. Technol. 23(12), 125034 (2008);
http://dx.doi.org/10.1088/0268-1242/23/12/125034
63. A. R. Mohmad , F. Bastiman , C. J. Hunter , R. Richards , S. J. Sweeney , J. S. Ng , and J. P. R. David , Appl. Phys. Lett. 101(1), 012106 (2012);
http://dx.doi.org/10.1063/1.4731784
63. Z. Chine , H. Fitouri , I. Zaied , A. Rebey , and B. El Jani , Semicond. Sci. Technol. 25(6), 065009 (2010);
http://dx.doi.org/10.1088/0268-1242/25/6/065009
63. O. M. Lemine , A. Alkaoud , H. V. Avanco Galeti , V. Orsi Gordo , Y. Galvao Gobato , H. Bouzid , A. Hajry , and M. Henini , Superlattices Microstruct. 65, 48 (2014).
http://dx.doi.org/10.1016/j.spmi.2013.10.002
64.
64. Wu. Mingjian , E. Luna , J. Puustinen , M. Guina , and A. Trampert , Nanotechnology 25(20), 205605 (2014).
65.
65. T. F. Kuech and E. Veuhoff , J. Cryst. Growth 68(1), 148 (1984).
http://dx.doi.org/10.1016/0022-0248(84)90410-X
66.
66. L. Bellaiche , Appl. Phys. Lett. 75(17), 2578 (1999);
http://dx.doi.org/10.1063/1.125083
66. V. M. Danil'tsev , D. M. Gaponova , M. N. Drozdov , Yu. N. Drozdov , A. V. Murel , D. A. Pryakhin , O. I. Khrykin , and V. I. Shashkin , Fiz. Tekh. Poluprovodn. 39(1), 13 (2005);
66. Q. Du , J. Alperin , and W. I. Wang , J. Cryst. Growth 175–176(pt 2), 849 (1997);
http://dx.doi.org/10.1016/S0022-0248(96)01231-6
66. M. Fischer , D. Gollub , M. Reinhardt , M. Kamp , and A. Forchel , J. Cryst. Growth 251, 353 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02435-1
67.
67. G. Ungaro , I. Sagnes , G. Le Roux , L. Largeau , G. Patriarche , J. Saint-Girons , and J. C. Harmand , in Proceedings of the International Conference on Indium Phosphide and Related Materials (2000), p. 553.
68.
68. S. K. Das , T. D. Das , and S. Dhar , in Physics of Semiconductor Devices, 17th International Workshop on the Physics of Semiconductor Devices 2013, edited by V. K. Jain and A. Verma (2014), pp. 847.
69.
69. T. D. Das , in Physics of Semiconductor Devices, 17th International Workshop on the Physics of Semiconductor Devices 2013, edited by V. K. Jain and A. Verma (2014), pp. 879.
70.
70. T. M. Christian , D. A. Beaton , K. Alberi , B. Fluegel , and A. Mascarenhas , Appl. Phys. Express 8(6), 061202 (2015).
http://dx.doi.org/10.7567/APEX.8.061202
71.
71. J. Y. T. Huang , D. R. Xu , L. J. Mawst , T. F. Kuech , I. Vurgaftman , and J. R. Meyer , IEEE J. Sel. Top. Quantum Electron. 13(5), 1065 (2007).
http://dx.doi.org/10.1109/JSTQE.2007.902831
72.
72. J. Y. Yeh , N. Tansu , and L. J. Mawst , Electron. Lett. 40(12), 739 (2004);
http://dx.doi.org/10.1049/el:20040474
72. O. Reentila , M. Mattila , L. Knuuttila , T. Hakkarainen , M. Soparlen , and H. Lipsanen , J. Cryst. Growth 298, 536 (2007);
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.069
72. S. Sanorpim , F. Nakajima , W. Ono , R. Katayama , and K. Onabe , Phys. Status Solidi A 203(7), 1612 (2006).
http://dx.doi.org/10.1002/pssa.200565240
73.
73. S. J. Sweeney and S. R. Jin , J. Appl. Phys. 113(4), 043110 (2013).
http://dx.doi.org/10.1063/1.4789624
74.
74. V. Pacebutas , A. Urbanowicz , P. Cicenas , S. Stanionyte , A. Biciunas , I. Nevinskas , and A. Krotkus , Semicond. Sci. Technol. 30(9), 094012 (2015).
http://dx.doi.org/10.1088/0268-1242/30/9/094012
75.
75. D. A. Beaton , A. J. Ptak , K. Alberi , and A. Mascarenhas , J. Cryst. Growth 351(1), 37 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.04.028
76.
76. K. Forghani , Y. Guan , M. Losurdo , G. Luo , D. Morgan , S. E. Babcock , A. S. Brown , L. J. Mawst , and T. F. Kuech , Appl. Phys. Lett. 105(11), 111101 (2014).
http://dx.doi.org/10.1063/1.4895116
http://aip.metastore.ingenta.com/content/aip/journal/apr2/3/4/10.1063/1.4944801
Loading
/content/aip/journal/apr2/3/4/10.1063/1.4944801
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/3/4/10.1063/1.4944801
2016-03-29
2016-12-11

Abstract

The development of new applications has driven the field of materials design and synthesis to investigate materials that are not thermodynamically stable phases. Materials which are not thermodynamically stable can be synthesized and used in many applications. These materials are kinetically stabilized during use. The formation of such metastable materials requires both an understanding of the associated thermochemistry and the key surface transport processes present during growth. Phase separation is most easily accomplished at the growthsurface during synthesis where mass transport is most rapid. These surface transport processes are sensitive to the surface stoichiometry, reconstruction, and chemistry as well as the growth temperature. The formation of new metastable semiconducting alloys with compositions deep within a compositional miscibilitygap serves as model systems for the understanding of the surface chemical and physical processes controlling their formation. The GaAsBi system is used here to elucidate the role of surface chemistry in the formation of a homogeneous metastable composition during the chemical vapor deposition of the alloy system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/3/4/1.4944801.html;jsessionid=KJb5i-U7QR3OllDSSF4Nw-4o.x-aip-live-03?itemId=/content/aip/journal/apr2/3/4/10.1063/1.4944801&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/3/4/10.1063/1.4944801&pageURL=http://scitation.aip.org/content/aip/journal/apr2/3/4/10.1063/1.4944801'
Right1,Right2,Right3,