Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/3/4/10.1063/1.4953165
1.
F. Seitz and N. G. Einspruch, Electronic Genie: The Tangled History of Silicon ( University of Illinois Press, Urbana and Chicago, 1998).
2.
See http://www.semiconductors.org/news/2015/02/02/global_sales_report_2014/global_semiconductor_industry_posts_record_sales_in_2014/ for “Global Semiconductor Industry Posts Record Sales in 2014,” Semiconductor Industry Association (last accessed February 28, 2016).
3.
M. Beekman, Mater. Today 18, 304 (2015).
http://dx.doi.org/10.1016/j.mattod.2015.03.018
4.
R. H. Wentorf, Jr. and J. S. Kasper, Science 139, 338 (1963).
http://dx.doi.org/10.1126/science.139.3552.338-a
5.
S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 41, 12021 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.12021
6.
M. I. McMahon and R. J. Nelmes, Phys. Rev. B 47, 8337 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.8337
7.
B. D. Malone, J. D. Sau, and M. L. Cohen, Phys. Rev. B 78, 161202R (2008).
http://dx.doi.org/10.1103/PhysRevB.78.161202
8.
B. D. Malone, J. D. Sau, and M. L. Cohen, Phys. Rev. B 78, 035210 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035210
9.
J. S. Kasper, P. Hagenmuller, M. Pouchard, and C. Cros, Science 150, 1713 (1965).
http://dx.doi.org/10.1126/science.150.3704.1713
10.
C. Cros, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 2, 570 (1970).
http://dx.doi.org/10.1016/0022-4596(70)90053-8
11.
G. B. Adams, M. O'Keefe, A. A. Demkov, O. F. Sankey, and Y.-M. Huang, Phys. Rev. B 49, 8048 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.8048
12.
M. O'Keeffe, G. B. Adams, and O. F. Sankey, Philos. Mag. Lett. 78, 21 (1998).
http://dx.doi.org/10.1080/095008398178219
13.
M. A. Zwijnenburg, K. E. Jelfsab, and S. T. Bromley, Phys. Chem. Chem. Phys. 12, 8505 (2010).
http://dx.doi.org/10.1039/c004375c
14.
E. Galvani, G. Onida, S. Serra, and G. Benedek, Phys. Rev. Lett. 77, 3573 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3573
15.
J. C. Conesa, J. Phys. Chem. B 106, 3402 (2002).
http://dx.doi.org/10.1021/jp014115g
16.
C. J. Pickard and R. J. Needs, Phys. Rev. B 81, 014106 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.014106
17.
A. J. Karttunen, T. F. Fässler, M. Linnolahti, and T. A. Pakkanen, Inorg. Chem. 50, 1733 (2011).
http://dx.doi.org/10.1021/ic102178d
18.
Z. Zhao, F. Tian, X. Dong, Q. Li, Q. Wang, H. Wang, X. Zhong, B. Xu, D. Yu, J. He, H.-T. Wang, Y. Ma, and Y. Tian, J. Am. Chem. Soc. 134, 12362 (2012).
http://dx.doi.org/10.1021/ja304380p
19.
S. Botti, J. A. Flores-Livas, M. Amsler, S. Goedecker, and M. A. L. Marques, Phys. Rev. B 86, 121204R (2012).
http://dx.doi.org/10.1103/PhysRevB.86.121204
20.
I.-H. Lee, J. Lee, Y. Jun Oh, S. Kim, and K. J. Chang, Phys. Rev. B 90, 115209 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.115209
21.
Q. Wang, B. Xu, J. Sun, H. Liu, Z. Zhao, D. Yu, C. Fan, and J. He, J. Am. Chem. Soc. 136, 9826 (2014).
http://dx.doi.org/10.1021/ja5035792
22.
Y. Guo, Q. Wang, Y. Kawazoe, and P. Jena, Sci. Rep. 5, 14342 (2015).
http://dx.doi.org/10.1038/srep14342
23.
M. Amsler, S. Botti, M. A. L. Marques, T. J. Lenosky, and S. Goedecker, Phys. Rev. B 92, 014101 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.014101
24.
H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, Phys. Rev. Lett. 110, 118702 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.118702
25.
M. C. Nguyen, X. Zhao, C.-Z. Wang, and K.-M. Ho, Phys. Rev. B 89, 184112 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.184112
26.
Q. Zhu, A. R. Oganov, A. O. Lyakhov, and X. Yu, Phys. Rev. B 92, 024106 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.024106
27.
M. Amsler and S. Goedecker, J. Chem. Phys. 133, 224104 (2010).
http://dx.doi.org/10.1063/1.3512900
28.
M. Beekman and G. S. Nolas, Phys. B 383, 111 (2006).
http://dx.doi.org/10.1016/j.physb.2006.03.070
29.
D. Y. Kim, S. Stefanoski, O. O. Kurakevych, and T. A. Strobel, Nat. Mater. 14, 169 (2015).
http://dx.doi.org/10.1038/nmat4140
30.
K. Moriguchi, S. Munetoh, and A. Shintani, Phys. Rev. B 62, 7138 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7138
31.
D. Connétable, Phys. Rev. B 75, 125202 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125202
32.
J. M. Besson, E. H. Mokhtari, J. Gonzalez, and G. Weill, Phys. Rev. Lett. 59, 473 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.473
33.
C. Tang, J. Cao, and S. Xiong, Physica B 466, 59 (2015).
http://dx.doi.org/10.1016/j.physb.2015.03.027
34.
K. Moriguchi, M. Yonemura, A. Shintani, and S. Yamanaka, Phys. Rev. B 61, 9859 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.9859
35.
K. Moriguchi, S. Munetoh, A. Shintani, and T. Motooka, Phys. Rev. B 64, 195409 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.195409
36.
J. Dong, O. F. Sankey, and C. W. Myles, Phys. Rev. Lett. 86, 2361 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2361
37.
J. Dong, O. F. Sankey, and G. Kern, Phys. Rev. B 60, 950 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.950
38.
G. S. Nolas, M. Beekman, J. Gryko, G. A. Lamberton, Jr., T. M. Tritt, and P. F. McMillan, Appl. Phys. Lett. 82, 910 (2003).
http://dx.doi.org/10.1063/1.1544640
39.
J. Dong and O. F. Sankey, J. Phys.: Condens. Mater. 11, 6129 (1999).
http://dx.doi.org/10.1088/0953-8984/11/32/305
40.
X. Tang, J. Dong, P. Hutchins, O. Shebanova, J. Gryko, P. Barnes, J. K. Cockcroft, M. Vickers, and P. F. McMillan, Phys. Rev. B 74, 014109 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.014109
41.
K. Biswas, C. W. Myles, M. Sanati, and G. S. Nolas, J. Appl. Phys. 104, 033535 (2008).
http://dx.doi.org/10.1063/1.2960580
42.
Y. Guyot, L. Grosvalet, B. Champagnon, E. Reny, C. Cros, and M. Pouchard, Phys. Rev. B 60, 14507 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.14507
43.
D. Schopf, H. Cuchner, and H. Trebin, Phys. Rev. B 89, 214306 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.214306
44.
M. Wilson and P. F. McMillan, Phys. Rev. Lett. 90, 135703 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.135703
45.
G. S. Nolas, G. A. Slack, and S. B. Schujman, “ Semiconductor clathrates: A phonon-glass electron-crystal material with potential for thermoelectric applications,” in Semiconductors and Semimetals, edited by T. M. Tritt ( Academic Press, 2001), Vol. 69.
46.
J. Gryko, P. F. McMillan, R. F. Marzke, G. K. Ramachandran, D. Patton, S. K. Deb, and O. F. Sankey, Phys. Rev. B 62, R7707 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R7707
47.
A. Ammar, C. Cros, M. Pouchard, N. Jaussaud, J.-M. Bassat, G. Villeneuve, M. Duttine, M. Ménétrier, and E. Reny, Solid State Sci. 6, 393 (2004).
http://dx.doi.org/10.1016/j.solidstatesciences.2004.02.006
48.
J. G. Slingsby, N. A. Rorrer, L. Krishna, E. S. Toberer, C. A. Koha, and C. M. Maupin, Phys. Chem. Chem. Phys. 18, 5121 (2016).
http://dx.doi.org/10.1039/C5CP06066D
49.
A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, and Y. Grin, Nature 443, 320 (2006).
http://dx.doi.org/10.1038/nature05145
50.
M. Beekman, E. N. Nenghabi, K. Biswas, C. W. Myles, M. Baitinger, Y. Grin, and G. S. Nolas, Inorg. Chem. 49, 5338 (2010).
http://dx.doi.org/10.1021/ic1005049
51.
S. Stefanoski, M. Beekman, W. Wong-Ng, P. Zavalij, and G. S. Nolas, Chem. Mater. 23, 1491 (2011).
http://dx.doi.org/10.1021/cm103135k
52.
H. G. Von Schnering, M. Schwarz, and R. Nesper, J. Less-common Mater. 137, 297 (1988).
http://dx.doi.org/10.1016/0022-5088(88)90095-1
53.
M. Zeilinger, L. Jantke, L. M. Scherf, F. J. Kiefer, G. Neubüser, L. Kienle, A. J. Karttunen, S. Konar, U. Haussermann, and T. F. Fassler, Chem. Mater. 26, 6603 (2014).
http://dx.doi.org/10.1021/cm503371e
54.
A. Gruttner, R. Nesper, and H. G. von Schnering, Angew. Chem. Int. Ed. 21, 912 (1982).
http://dx.doi.org/10.1002/anie.198209122
55.
S. Ganguly, N. Kazem, D. Carter, and S. M. Kauzlarich, J. Am. Chem. Soc. 136, 1296 (2014).
http://dx.doi.org/10.1021/ja412213q
56.
B. Blom, A. Said, T. Szilvási, P. W. Menezes, G. Tan, J. Baumgartner, and M. Driess, Inorg. Chem. 54, 8840 (2015).
http://dx.doi.org/10.1021/acs.inorgchem.5b01643
57.
M. Beekman, M. Baitinger, H. Borrman, W. Schnelle, K. Meier, G. S. Nolas, and Y. Grin, J. Am. Chem. Soc. 131, 9642 (2009).
http://dx.doi.org/10.1021/ja903362b
58.
L. L. Baranowski, L. Krishna, A. D. Martinez, T. Raharjo, V. Stevanovic, A. C. Tamboli, and E. S. Toberer, J. Mater. Chem. C 2, 3231 (2014).
http://dx.doi.org/10.1039/C3TC32102A
59.
A. D. Martinez, L. Krishna, L. L. Baranowski, M. T. Lusk, E. S. Toberer, and A. C. Tamboli, IEEE J. Photovoltaics 3, 1305 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2013.2276478
60.
The Chemistry of Diamond-like Semiconductors, edited by N. A. Goryunova ( Chapman and Hall, London, 1965).
61.
H.-Y. Zhao, J. Wang, Q.-M. Ma, and Y. Liu, Phys. Chem. Chem. Phys. 15, 17619 (2013).
http://dx.doi.org/10.1039/c3cp50946j
62.
T. Langer, S. Dupke, H. Trill, S. Passerini, H. Eckert, R. Pottgen, and M. Winter, J. Electrochem. Soc. 159, A1318 (2012).
http://dx.doi.org/10.1149/2.082208jes
63.
J. Yang and J. S. Tse, J. Mater. Chem. A 1, 7782 (2013).
http://dx.doi.org/10.1039/c3ta11050h
64.
A. Marzouka, P. B. Balbuenab, and F. El-Mellouhi, Electrochim. Acta 207, 301 (2016).
http://dx.doi.org/10.1016/j.electacta.2016.04.118
65.
D. Neiner, N. L. Okamoto, C. L. Condron, Q. M. Ramasse, P. Yu, N. D. Browning, and S. M. Kauzlarich, J. Am. Chem. Soc. 129, 13857 (2007).
http://dx.doi.org/10.1021/ja0724700
http://aip.metastore.ingenta.com/content/aip/journal/apr2/3/4/10.1063/1.4953165
Loading
/content/aip/journal/apr2/3/4/10.1063/1.4953165
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/3/4/10.1063/1.4953165
2016-06-16
2016-12-08

Abstract

In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoretical and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/3/4/1.4953165.html;jsessionid=UIjzbndqG98IW5lK0cD3VgYc.x-aip-live-06?itemId=/content/aip/journal/apr2/3/4/10.1063/1.4953165&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/3/4/10.1063/1.4953165&pageURL=http://scitation.aip.org/content/aip/journal/apr2/3/4/10.1063/1.4953165'
Right1,Right2,Right3,