Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Appenzeller, J. Knoch, M. T. Bjork, H. Riel, H. Schmid, and W. Riess, IEEE Trans. Electron Devices 55, 2827 (2008).
N. S. Ramgir, Y. Yang, and M. Zacharias, Small 6, 1705 (2010).
Z. Fan, D. J. Ruebusch, A. a. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, Nano Res. 2, 829 (2009).
F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Nat. Nanotechnol. 9, 19 (2014).
Y.-H. Yang, S.-J. Wu, H.-S. Chiu, P.-I. Lin, and Y.-T. Chen, J. Phys. Chem. B 108, 846 (2004).
M. Algasinger, J. Paye, F. Werner, J. Schmidt, M. S. Brandt, M. Stutzmann, and S. Koynov, Adv. Energy Mater. 3, 1068 (2013).
X. Li, Curr. Opin. Solid State Mater. Sci. 16, 71 (2012).
S. Schmitt, F. Schechtel, and D. Amkreutz, Nano Lett. 12, 4050 (2012).
B. T. Hanrath and B. A. Korgel, Adv. Mater. 15, 437 (2003).
Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001).
V. Schmidt, J. V. Wittemann, S. Senz, and U. Gösele, Adv. Mater. 21, 2681 (2009).
S. A. Fortuna and X. Li, Semicond. Sci. Technol. 25, 024005 (2010).
V. Schmidt, J. V. Wittemann, and U. Gösele, Chem. Rev. 110, 361 (2010).
R. Wagner and W. Ellis, Appl. Phys. Lett. 4, 89 (1964).
W. M. Bullis, Solid-State Electron. 9, 143 (1966).
J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, Nat. Nanotechnol. 3, 168 (2008).
S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. a. Atwater, and N. S. Lewis, Science 327, 185 (2010).
S. J. Rathi, B. N. Jariwala, J. D. Beach, P. Stradins, P. C. Taylor, X. Weng, Y. Ke, J. M. Redwing, S. Agarwal, and R. T. Collins, J. Phys. Chem. C 115, 3833 (2011).
C.-H. Chiang, J.-W. Ci, W.-Y. Uen, S.-M. Lan, S.-M. Liao, and T.-N. Yang, J. Electrochem. Soc. 159, H112 (2011).
V. A. Nebol'sin and A. A. Shchetinin, Inorg. Mater. 39, 899 (2003).
J. Murray and A. McAlister, Bull. Alloy Phase Diagrams 5, 74 (1984).
P. Rai-Choudhury and W. J. Takei, J. Electrochem. Soc. 121, 1228 (1973).
S. J. Whang, S. J. Lee, W. F. Yang, B. J. Cho, Y. F. Liew, and D. L. Kwong, Electrochem. Solid-State Lett. 10, E11 (2007).
Y. Wang, V. Schmidt, S. Senz, and U. Gösele, Nat. Nanotechnol. 1, 186 (2006).
B. A. Wacaser, M. C. Reuter, M. M. Khayyat, C.-Y. Wen, R. Haight, S. Guha, and F. M. Ross, Nano Lett. 9, 3296 (2009).
E. C. Garnett and P. Yang, J. Am. Chem. Soc. 130, 9224 (2008).
Y. Osada, J. Electrochem. Soc. 126, 31 (1979).
H. K. Mohammed, H. Abu-Safe, B. Newton, S. El-Ghazaly, and H. A. Naseem, Thin Solid Films 519, 1681 (2010).
M. Jeon and K. Kamisako, J. Alloys Compd. 476, 84 (2009).
J. S. Kim, D. Byun, and J. K. Lee, J. Nanosci. Nanotechnol. 12, 1429 (2012).
J. Bae, N. N. Kulkarni, J. P. Zhou, J. G. Ekerdt, and C. K. Shih, J. Cryst. Growth 310, 4407 (2008).
J. Y. Jung, S. W. Jee, K. T. Park, and J. H. Lee, J. Nanosci. Nanotechnol. 8, 6038 (2008).
J.-Y. Jung, S.-W. Jee, and J.-H. Lee, Appl. Surf. Sci. 256, 1744 (2010).
Y. Ke, X. Weng, J. M. Redwing, C. M. Eichfeld, T. R. Swisher, S. E. Mohney, and Y. M. Habib, Nano Lett. 9, 4494 (2009).
M. Hainey, S. M. Eichfeld, H. Shen, J. Yim, M. R. Black, and J. M. Redwing, J. Electron. Mater. 44, 1332 (2014).
O. Moutanabbir, S. Senz, R. Scholz, M. Alexe, Y. Kim, E. Pippel, Y. Wang, C. Wiethoff, T. Nabbefeld, F. Meyer zu Heringdorf, and M. Horn-von Hoegen, ACS Nano 5, 1313 (2011).
D. Kohen, C. Cayron, E. De Vito, V. Tileli, P. Faucherand, C. Morin, A. Brioude, and S. Perraud, J. Cryst. Growth 341, 12 (2012).
C. Wiethoff, F. Ross, and M. Copel, Nano Lett. 8, 3065 (2008).
F. M. Ross, J. Tersoff, and M. C. Reuter, Phys. Rev. Lett. 95, 146104 (2005).
S. M. Eichfeld, M. F. Hainey, H. Shen, C. E. Kendrick, E. A. Fucinato, J. Yim, M. R. Black, and J. M. Redwing, Proc. SPIE 8820, 88200I (2013).
M. F. Hainey, C. Chen, J. Yim, M. R. Black, and J. M. Redwing, “Controlled faceting and morphology for light trapping in aluminum-catalyzed silicon nanostructures,” J. Cryst. Growth (published online).
M. Kolíbal, T. Vystavěl, L. Novák, J. Mach, and T. Šikola, Appl. Phys. Lett. 99, 143113 (2011).
A. Kramer, M. Albrecht, T. Boeck, T. Remmele, P. Schramm, and R. Fornari, Superlattices Microstruct. 46, 277 (2009).
M. Kolíbal, T. Vystavěl, P. Varga, and T. Šikola, Nano Lett. 14, 1756 (2014).
Y. Ke, M. F. Hainey, D. Won, X. Weng, S. M. Eichfeld, and J. M. Redwing, Nanotechnology 27, 135605 (2016).
M. Tao and L. Hunt, J. Electrochem. Soc. 144, 2221 (1997).
T.-C. Shen, C. Wang, and J. Tucker, Phys. Rev. Lett. 78, 1271 (1997).
C. E. Kendrick, H. P. Yoon, Y. a. Yuwen, G. D. Barber, H. Shen, T. E. Mallouk, E. C. Dickey, T. S. Mayer, and J. M. Redwing, Appl. Phys. Lett. 97, 143108 (2010).
Z. Zhang, T. Shimizu, L. Chen, S. Senz, and U. Gósele, Adv. Mater. 21, 4701 (2009).
M. M. Khayyat, B. a. Wacaser, M. C. Reuter, F. M. Ross, D. K. Sadana, and T.-C. Chen, Nanotechnology 24, 235301 (2013).
C. M. Eichfeld, S. S. a. Gerstl, T. Prosa, Y. Ke, J. M. Redwing, and S. E. Mohney, Nanotechnology 23, 215205 (2012).
O. Moutanabbir, D. Isheim, H. Blumtritt, S. Senz, E. Pippel, and D. N. Seidman, Nature 496, 78 (2013).
Y. Ke, X. Wang, X. J. Weng, C. E. Kendrick, Y. a. Yu, S. M. Eichfeld, H. P. Yoon, J. M. Redwing, T. S. Mayer, and Y. M. Habib, Nanotechnology 22, 445401 (2011).
T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park, and C. M. Lieber, Proc. Natl. Acad. Sci. U. S. A. 109, 1407 (2012).
M. P. Jura, J. B. Miller, J. W. L. Yim, J. Forziati, B. Murphy, R. Chleboski, I. B. Cooper, A. Rohatgi, M. R. Black, and B. Engineering, in 40th IEEE Photovolt. Spec. Conf. (PVSC) (2014), p. 0598.
F. Legrain and S. Manzhos, J. Power Sources 274, 65 (2015).

Data & Media loading...


Article metrics loading...



Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd