Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/3/4/10.1063/1.4961724
1.
A. Mujica, A. Rubio, A. Muñoz, and R. J. Needs, Rev. Mod. Phys. 75, 863 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.863
2.
B. D. Malone and M. L. Cohen, Phys. Rev. B 85, 024116 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024116
3.
M. C. Nguyen, X. Zhao, Y. Wang, C.-Z. Wang, and K.-M. Ho, Solid State Commun. 182, 14 (2014).
http://dx.doi.org/10.1016/j.ssc.2013.12.005
4.
K. Mylvaganam, L. C. Zhang, P. Eyben, J. Mody, and W. Vandervorst, Nanotechnology 20, 305705 (2009).
http://dx.doi.org/10.1088/0957-4484/20/30/305705
5.
S. J. Clark et al., Phys. Rev. B 49, 5341 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.5341
6.
Y. Fujimoto et al., New J. Phys. 10, 083001 (2008).
http://dx.doi.org/10.1088/1367-2630/10/8/083001
7.
L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, Nat. Commun. 6, 7555 (2015).
http://dx.doi.org/10.1038/ncomms8555
8.
M. J. Smith, Y.-T. Lin, M.-J. Sher, M. T. Winkler, E. Mazur, and S. Gradecak, J. Appl. Phys. 110, 053524 (2011).
http://dx.doi.org/10.1063/1.3633528
9.
C. Rödl, T. Sander, F. Bechstedt, J. Vidal, P. Olsson, S. Laribi, and J.-F. Guillemoles, Phys. Rev. B 92, 045207 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.045207
10.
M. L. Cohen and B. D. Malone, J. Appl. Phys. 109, 102402 (2011).
http://dx.doi.org/10.1063/1.3575641
11.
S. Botti, J. A. Flores-Livas, M. Amsler, S. Goedecker, and M. A. L. Marques, Phys. Rev. B 86, 121204(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.86.121204
12.
H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, Phys. Rev. Lett. 110, 118702 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.118702
13.
Q. Wang, B. Xu, J. Sun, H. Liu, Z. Zhao, D. Yu, C. Fan, and J. He, J. Am. Chem. Soc. 136, 9826 (2014).
http://dx.doi.org/10.1021/ja5035792
14.
Z. Zhao et al., J. Am. Chem. Soc. 134, 12362 (2012).
http://dx.doi.org/10.1021/ja304380p
15.
A. Mujica, C. J. Pickard, and R. J. Needs, Phys. Rev. B 91, 214104 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.214104
16.
Y. Guo, Q. Wang, Y. Kawazoe, and P. Jena, Sci. Rep. 5, 14342 (2015).
http://dx.doi.org/10.1038/srep14342
17.
M. d'Avezac, J.-W. Luo, T. Chanier, and A. Zunger, Phys. Rev. Lett. 108, 027401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.027401
18.
Y. Jun Oh, I.-H. Lee, S. Kim, J. Lee, and K. Joo Chang, Sci. Rep. 5, 18086 (2015).
http://dx.doi.org/10.1038/srep18086
19.
T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Rev. Mod. Phys. 86, 841 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.841
20.
G. A. Slack, CRC Handbook of Thermoelectronics ( CRC Press, Boca Raton, Florida, 1995), pp. 407440.
21.
M. Zwijnenburg, K. E. Jelfs, and S. T. Bromley, Phys. Chem. Chem. Phys. 12, 8505 (2010).
http://dx.doi.org/10.1039/c004375c
22.
A. J. Karttunen, T. F. Fässler, M. Linnolahti, and T. A. Pakkanen, Inorg. Chem. 50, 1733 (2011).
http://dx.doi.org/10.1021/ic102178d
23.
M. Amsler, S. Botti, M. A. L. Marques, T. J. Lenosky, and S. Goedecker, Phys. Rev. B 92, 014101 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.014101
24.
L. L. Baranowski, L. Krishna, A. D. Martinez, T. Raharjo, V. Stevanovic, A. C. Tamboli, and E. S. Toberer, J. Mater. Chem. C 2, 3231 (2014).
http://dx.doi.org/10.1039/C3TC32102A
25.
A. San-Miguel, P. Kéghélian, X. Blase, P. Mélinon, A. Perez, J. P. Itié, A. Polian, E. Reny, C. Cros, and M. Pouchard, Phys. Rev. Lett. 83, 5290 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.5290
26.
D. Y. Kim, S. Stefanoski, O. O. Kurakevych, and T. A. Strobel, Nat. Mater. 14, 169 (2015).
http://dx.doi.org/10.1038/nmat4140
27.
Y. He, F. S. S. Kauzlarich, and G. Galli, Energy Environ. Sci. 7, 2598 (2014).
http://dx.doi.org/10.1039/C4EE00256C
28.
N. P. Brawand and M. T. Lusk, J. Phys. Chem. C 118, 27091 (2014).
http://dx.doi.org/10.1021/jp507484p
29.
H.-Y. Zhao, J. Wang, Q.-M. Ma, and Y. Liu, Phys. Chem. Chem. Phys. 15, 17619 (2013).
http://dx.doi.org/10.1039/c3cp50946j
30.
M. Christensen, S. Johnsen, and B. B. Iversen, Dalton Trans. 39, 978 (2010).
http://dx.doi.org/10.1039/B916400F
31.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
32.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
33.
J. H. Roudebush, C. de la Cruz, B. C. Chakoumakoss, and S. M. Kauzlarich, Inorg. Chem. 51, 1805 (2011).
http://dx.doi.org/10.1021/ic202095e
34.
A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput. Phys. Commun. 180, 1392 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.02.003
35.
H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Proc. Natl. Acad. Sci. U. S. A. 109, 9705 (2012).
http://dx.doi.org/10.1073/pnas.1111419109
36.
M. V. Fischetti and S. E. Laux, J. Appl. Phys. 80, 2234 (1996).
http://dx.doi.org/10.1063/1.363052
37.
N. D. Arora, J. R. Hauser, and D. J. Roulston, IEEE Trans. Electron Devices 29, 292 (1982).
http://dx.doi.org/10.1109/T-ED.1982.20698
38.
F. Schindler, M. C. Schubert, A. Kimmerle, J. Broisch, S. Rein, W. Kwapil, and W. Warta, Sol. Energy Mater. Sol. Cells 106, 31 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.06.018
39.
P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, Adv. Energy Mater. 1, 1116 (2011).
http://dx.doi.org/10.1002/aenm.201100330
40.
Y. S. Lee, M. T. Winkler, S. C. Siah, R. Brandt, and T. Buonassisi, Appl. Phys. Lett. 98, 192115 (2011).
http://dx.doi.org/10.1063/1.3589810
41.
T. Tiedje, B. Abeles, D. L. Morel, T. D. Moustakas, and C. R. Wronski, Appl. Phys. Lett. 36, 695 (1980).
http://dx.doi.org/10.1063/1.91596
42.
M. Hoheisel and W. Fuhs, Philos. Mag. B 57, 411 (1988).
http://dx.doi.org/10.1080/13642818808208513
43.
E. A. Schiff, J. Non-Cryst. Solids 352, 1087 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.11.074
44.
A. R. Moore, Appl. Phys. Lett. 31, 762 (1977).
http://dx.doi.org/10.1063/1.89539
45.
Y. Zhang, S.-C. Chien, K.-S. Chen, H.-L. Yip, Y. Sun, J. A. Davies, F.-C. Chen, and A. K. Y. Jen, Chem. Commun. 47, 11026 (2011).
http://dx.doi.org/10.1039/c1cc14586j
46.
R. Guerra, I. Marri, R. Magri, L. Martin-Samos, O. Pulci, E. Degoli, and S. Ossicini, Phys. Rev. B 79, 155320 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155320
47.
T. Li, F. Gygi, and G. Galli, Phys. Rev. Lett. 107, 206805 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.206805
48.
B. G. Pfrommer, M. Cote, S. G. Louie, and M. L. Cohen, Phys. Rev. B 56, 6662 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.6662
49.
J. M. Besson, E. H. Mokhtari, J. Gonzalez, and G. Weill, Phys. Rev. Lett. 59, 473 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.473
50.
B. D. Malone, J. D. Sau, and M. L. Cohen, Phys. Rev. B 78, 035210 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035210
51.
A. J. Nozik, Physica E 14, 115 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
52.
R. D. Schaller et al., Phys. Rev. Lett. 92, 186601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.186601
53.
G. Nair and M. G. Bawendi, Phys. Rev. B 76, 081304 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.081304
54.
J.-W. Luo et al., Nano Lett. 8, 3174 (2008).
http://dx.doi.org/10.1021/nl801459h
55.
M. C. Beard et al., Nano Lett. 7, 2506 (2007).
http://dx.doi.org/10.1021/nl071486l
56.
M. C. Beard, J. Phys. Chem. Lett. 2, 1282 (2011).
http://dx.doi.org/10.1021/jz200166y
57.
D. Timmerman et al., Nat. Photonics 2, 105 (2008).
http://dx.doi.org/10.1038/nphoton.2007.279
58.
D. Timmerman et al., Nat. Nanotechnol. 6, 710 (2011).
http://dx.doi.org/10.1038/nnano.2011.167
59.
W. A. Su et al., Appl. Phys. Lett. 100, 071111 (2012).
http://dx.doi.org/10.1063/1.3687184
60.
M. T. Trinh et al., Nat. Photonics 6, 316 (2012).
http://dx.doi.org/10.1038/nphoton.2012.36
61.
M. C. Beard et al., Acc. Chem. Res. 46, 1252 (2012).
http://dx.doi.org/10.1021/ar3001958
62.
O. E. Semonin et al., Science 334, 1530 (2011).
http://dx.doi.org/10.1126/science.1209845
63.
G. Zhai et al., Nanotechnology 23, 405401 (2012).
http://dx.doi.org/10.1088/0957-4484/23/40/405401
64.
M. Hanna and A. Nozik, J. Appl. Phys. 100, 074510 (2006).
http://dx.doi.org/10.1063/1.2356795
65.
M. C. Hanna, M. C. Beard, and A. J. Nozik, J. Phys. Chem. Lett. 3, 2857 (2012).
http://dx.doi.org/10.1021/jz301077e
66.
S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, and G. Galli, Phys. Rev. Lett. 110, 046804 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.046804
67.
C. Fisker et al., J. Phys.: Condens. Matter 24, 325803 (2012).
http://dx.doi.org/10.1088/0953-8984/24/32/325803
68.
M. Shishkin et al., Phys. Rev. B 75, 235102 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235102
69.
T. Arguirov et al., Appl. Phys. Lett. 89, 053111 (2006).
http://dx.doi.org/10.1063/1.2260825
70.
Y. Wang et al., Nanotechnology 18, 465705 (2007).
http://dx.doi.org/10.1088/0957-4484/18/46/465705
71.
M. Pandey et al., J. Phys.: Condens. Matter 20, 335234 (2008).
http://dx.doi.org/10.1088/0953-8984/20/33/335234
72.
Y. Gogotsi, C. Baek, and F. Kirscht, Semicond. Sci. Technol. 14, 936 (1999).
http://dx.doi.org/10.1088/0268-1242/14/10/310
73.
I. Zarudi, J. Zhou, and L. C. Zhang, Appl. Phys. Lett. 82, 874 (2003).
http://dx.doi.org/10.1063/1.1544429
74.
I. Zarudi, L. C. Zhang, J. Zou, and T. Vodenitcharova, J. Mater. Res. 19, 332 (2004).
http://dx.doi.org/10.1557/jmr.2004.19.1.332
75.
M. Kiran, B. Haberl, J. E. Bradby, and J. S. Williams, Semicond. Semimetals 91, 165 (2015).
http://dx.doi.org/10.1016/bs.semsem.2014.12.002
76.
S. Ganguly, N. Kazem, D. Carter, and S. M. Kauzlarich, J. Am. Chem. Soc. 136, 1296 (2014).
http://dx.doi.org/10.1021/ja412213q
77.
J. Perdew and A. Zunger, Phys. Rev. B 23, 50485079 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
78.
D. Hamann et al., Phys. Rev. Lett. 43, 1494 (1979).
http://dx.doi.org/10.1103/PhysRevLett.43.1494
79.
P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
80.
L. Hedin, Phys. Rev. 139, A796 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A796
81.
H.-V. Nguyen et al., Phys. Rev. B 85, 081101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.081101
82.
M. Vörös, D. Rocca, G. Galli, G. T. Zimanyi, and A. Gali, Phys. Rev. B 87, 155402 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155402
83.
A. Piryatinski et al., J. Chem. Phys. 133, 084508 (2010).
http://dx.doi.org/10.1063/1.3474576
84.
K. Velizhanin et al., Phys. Rev. Lett. 106, 207401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.207401
85.
H. Wilson et al., Phys. Rev. B 78, 113303 (2008);
http://dx.doi.org/10.1103/PhysRevB.78.113303
H. Wilson, Phys. Rev. B 79, 245106 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245106
86.
C. Delerue et al., J. Lumin. 80, 65 (1999).
http://dx.doi.org/10.1016/S0022-2313(98)00071-4
87.
C. Delerue et al., Phys. Rev. Lett. 84, 2457 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2457
88.
A. R. Porter et al., Phys. Rev. B 64, 035320 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035320
89.
D. Rocca, M. Vörös, A. Gali, and G. Galli, J. Chem. Theor. Comput. 10, 3290 (2014).
http://dx.doi.org/10.1021/ct5000956
90.
A. J. Williamson, J. C. Grossman, R. Q. Hood, A. Puzder, and G. Galli, Phys. Rev. Lett. 89, 196803 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.196803
91.
A. Gali, M. Vörös, D. Rocca, G. Zimanyi, and G. Galli, Nano Lett. 9, 3780 (2009).
http://dx.doi.org/10.1021/nl901970u
92.
A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, Phys. Rev. Lett. 88, 097401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.097401
93.
A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, J. Chem. Phys. 117, 6721 (2002).
http://dx.doi.org/10.1063/1.1504707
94.
A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, J. Am. Chem. Soc. 125, 2786 (2003).
http://dx.doi.org/10.1021/ja0293296
95.
A. Puzder, A. J. Williamson, F. A. Reboredo, and G. Galli, Phys. Rev. Lett. 91, 157405 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157405
96.
E. W. Draeger, J. C. Grossman, A. J. Williamson, and G. Galli, Phys. Rev. Lett. 90, 167402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.167402
97.
F. A. Reboredo, E. Schwegler, and G. Galli, J. Am. Chem. Soc. 125, 15243 (2003).
http://dx.doi.org/10.1021/ja035254+
98.
E. W. Draeger, J. C. Grossman, A. J. Williamson, and G. Galli, J. Chem. Phys. 120, 10807 (2004).
http://dx.doi.org/10.1063/1.1738633
99.
A. J. Williamson, R. Q. Hood, and J. C. Grossman, Phys. Rev. Lett. 87, 246406 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.246406
100.
R. J. Nelmes et al., Phys. Rev. B 48, 9883 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.9883
101.
S. J. Kim et al., J. Mater. Chem. 20, 331 (2010).
http://dx.doi.org/10.1039/B915841C
102.
Y. J. Cho et al., ACS Nano 7, 9075 (2013).
http://dx.doi.org/10.1021/nn403674z
103.
L. Pizzagalli et al., Phys. Rev. B 63, 165324 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.165324
104.
M. Vörös, S. Wippermann, B. Somogyi, A. Gali, D. Rocca, G. Zimanyi, and G. Galli, J. Mater. Chem. A 2, 9820 (2014).
http://dx.doi.org/10.1039/c4ta01543f
105.
Y. Liu et al., Nano Lett. 13, 1578 (2013).
http://dx.doi.org/10.1021/nl304753n
106.
A. Short, L. Jewell, S. Doshay, C. Church, T. Keiber, F. Bridges, S. Carter, and G. Alers, J. Vac. Sci. Technol., A 31, 01A138 (2013).
http://dx.doi.org/10.1116/1.4769862
107.
S. Ten Cate, Y. Liu, C. S. S. Sandeep, S. Kinge, A. J. Houtepen, T. J. Savenije, J. M. Schins, M. Law, and L. D. A. Siebbeles, J. Phys. Chem. Lett. 4, 1766 (2013).
http://dx.doi.org/10.1021/jz4007492
108.
M. V. Kovalenko, M. Scheele, and D. V. Talapin, Science 324, 1417 (2009).
http://dx.doi.org/10.1126/science.1170524
109.
S. Itthuria and D. V. Talapin, J. Am. Chem. Soc. 134, 18585 (2012).
http://dx.doi.org/10.1021/ja308088d
110.
M. Kovalenko et al., ACS Nano 9, 1012 (2015).
http://dx.doi.org/10.1021/nn506223h
111.
D. S. Dolzhnikov et al., Science 347, 425 (2015).
http://dx.doi.org/10.1126/science.1260501
112.
C. S. S. Sandeep et al., Nat. Commun. 4, 2360 (2013).
http://dx.doi.org/10.1038/ncomms3360
113.
S. Ten Cate et al., Acc. Chem. Res. 48, 174 (2015).
http://dx.doi.org/10.1021/ar500248g
114.
M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2006), ISBN 9783540265627.
115.
R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, Appl. Phys. Lett. 90, 173125 (2007).
http://dx.doi.org/10.1063/1.2734492
116.
S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003).
http://dx.doi.org/10.1021/ja0361749
117.
J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin, Nat. Nanotechnol. 6, 348 (2011).
http://dx.doi.org/10.1038/nnano.2011.46
118.
C. M. Cirloganu et al., Nat. Commun. 5, 4148 (2014).
http://dx.doi.org/10.1038/ncomms5148
119.
K. S. Leschkies et al., Nano Lett. 7, 1793 (2007).
http://dx.doi.org/10.1021/nl070430o
120.
J. H. Bang and P. V. Kamat, ACS Nano 3, 1467 (2009).
http://dx.doi.org/10.1021/nn900324q
121.
P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008).
http://dx.doi.org/10.1021/jp806791s
122.
K. Seino, F. Bechstedt, and P. Kroll, Phys. Rev. B 82, 085320 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085320
123.
G. Seguini, S. Schamm-Chardon, P. Pellegrino, and M. Perego, Appl. Phys. Lett. 99, 082107 (2011).
http://dx.doi.org/10.1063/1.3629813
124.
G. Seguini, C. Castro, S. Schamm-Chardon, G. BenAssayag, P. Pellegrino, and M. Perego, Appl. Phys. Lett. 03, 023103 (2013).
http://dx.doi.org/10.1063/1.4813743
125.
C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
http://dx.doi.org/10.1038/nature01665
126.
S. Wippermann, M. Vörös, A. Gali, G. Zimanyi, F. Gygi, and G. Galli, Phys. Rev. Lett. 112, 106801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.106801
127.
F. Gygi and I. Duchemin, J. Chem. Theory Comput. 9, 582 (2013).
http://dx.doi.org/10.1021/ct3007088
128.
T. Yamasaki, C. Kaneta, T. Uchiyama, T. Uda, and K. Terakura, Phys. Rev. B 63, 115314 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.115314
129.
T. A. Pham, T. Li, H.-V. Nguyen, S. Shankar, F. Gygi, and G. Galli, Appl. Phys. Lett. 102, 241603 (2013).
http://dx.doi.org/10.1063/1.4811481
http://aip.metastore.ingenta.com/content/aip/journal/apr2/3/4/10.1063/1.4961724
Loading
/content/aip/journal/apr2/3/4/10.1063/1.4961724
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/3/4/10.1063/1.4961724
2016-09-01
2016-12-05

Abstract

Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamond-like Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/3/4/1.4961724.html;jsessionid=_NzvS5TYsukwB30i9EJyjRbu.x-aip-live-02?itemId=/content/aip/journal/apr2/3/4/10.1063/1.4961724&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/3/4/10.1063/1.4961724&pageURL=http://scitation.aip.org/content/aip/journal/apr2/3/4/10.1063/1.4961724'
Right1,Right2,Right3,