Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apr2/3/4/10.1063/1.4962984
1.
S. Botti, J. A. Flores-Livas, M. Amsler, S. Goedecker, and M. A. L. Marques, Phys. Rev. B 86, 121204 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.121204
2.
A. Mujica, C. J. Pickard, and R. J. Needs, Phys. Rev. B 91, 214104 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.214104
3.
Q. Zhu, A. R. Oganov, A. O. Lyakhov, and X. X. Yu, Phys. Rev. B 92, 024106 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.024106
4.
M. Amsler, S. Botti, M. A. L. Marques, T. J. Lenosky, and S. Goedecker, Phys. Rev. B 92, 014101 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.014101
5.
N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1748
6.
M. T. Yin, Phys. Rev. B 30, 17731776 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.1773
7.
A. Y. Liu and M. L. Cohen, Science 245, 841 (1989).
http://dx.doi.org/10.1126/science.245.4920.841
8.
R. N. Noyce, “ Semiconductor device and lead structure,” US Patent No. US2981877 A (1961).
9.
J. S. Kilby, “ Miniaturized electronic circuits,” US Patent No. US3138743 A (1964).
10.
D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671374 (1976).
http://dx.doi.org/10.1063/1.88617
11.
M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications ( Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983).
12.
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 23, 1 (2015).
http://dx.doi.org/10.1002/pip.2573
13.
G. J. Ackland, Rep. Prog. Phys. 64, 483516 (2001).
http://dx.doi.org/10.1088/0034-4885/64/4/202
14.
A. Mujica, A. Rubio, A. Munoz, and R. J. Needs, Rev. Mod. Phys. 75, 863912 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.863
15.
H. Katzke and P. Tolédano, J. Phys.: Condens. Matter 19, 275204 (2007).
http://dx.doi.org/10.1088/0953-8984/19/27/275204
16.
D. Y. Kim, S. Stefanoski, O. O. Kurakevych, and T. A. Strobel, Nat. Mater. 14, 169173 (2015).
http://dx.doi.org/10.1038/nmat4140
17.
L. Rapp, B. Haberl, C. J. Pickard, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, Nat. Commun. 6, 7555 (2015).
http://dx.doi.org/10.1038/ncomms8555
18.
M. O'Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi, Acc. Chem. Res. 41, 17821789 (2008).
http://dx.doi.org/10.1021/ar800124u
19.
P. Debye and P. Scherrer, Phys. Z. 17, 277283 (1916).
20.
R. Boehler, Mater. Today 8, 3442 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)71158-5
21.
A. Jayaraman, Rev. Mod. Phys. 55, 65 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.65
22.
J. S. Smith, S. V. Sinogeikin, C. Lin, E. Rod, L. Bai, and G. Shen, Rev. Sci. Instrum. 86, 072208 (2015).
http://dx.doi.org/10.1063/1.4926887
23.
J. C. Jamieson, Science 139, 762764 (1963).
http://dx.doi.org/10.1126/science.139.3556.762
24.
M. I. McMahon and R. J. Nelmes, Phys. Rev. B 47, 83378340 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.8337
25.
M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan, Phys. Rev. B 50, 739743 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.739
26.
H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys. Lett. A 103, 137140 (1984).
http://dx.doi.org/10.1016/0375-9601(84)90219-6
27.
M. Hanfland, U. Schwarz, K. Syassen, and K. Takemura, Phys. Rev. Lett. 82, 11971200 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1197
28.
S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 41, 1202112028 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.12021
29.
S. Minomura and H. G. Drickamer, J. Phys. Chem. Solids 23, 451456 (1962).
http://dx.doi.org/10.1016/0022-3697(62)90085-9
30.
R. H. Wentorf and J. S. Kasper, Science 139, 338 (1963).
http://dx.doi.org/10.1126/science.139.3552.338-a
31.
J. M. Besson, E. H. Mokhtari, J. Gonzalez, and G. Weill, Phys. Rev. Lett. 59, 473476 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.473
32.
J. D. Joannopoulos and M. L. Cohen, Phys. Lett. A 41, 7172 (1972).
http://dx.doi.org/10.1016/0375-9601(72)90638-X
33.
B. D. Malone, J. D. Sau, and M. L. Cohen, Phys. Rev. B 78, 161202 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.161202
34.
B. D. Malone, J. D. Sau, and M. L. Cohen, Phys. Rev. B 78, 035210 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035210
35.
G. Weill, J. L. Mansot, G. Sagon, C. Carlone, and J. M. Besson, Semicond. Sci. Technol. 4, 280282 (1989).
http://dx.doi.org/10.1088/0268-1242/4/4/029
36.
Y. X. Zhao, F. Buehler, J. R. Sites, and I. L. Spain, Solid State Commun. 59, 679682 (1986).
http://dx.doi.org/10.1016/0038-1098(86)90372-8
37.
J. Crain, G. J. Ackland, J. R. Maclean, R. O. Piltz, P. D. Hatton, and G. S. Pawley, Phys. Rev. B 50, 1304313046 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.13043
38.
R. O. Piltz, J. R. Maclean, S. J. Clark, G. J. Ackland, P. D. Hatton, and J. Crain, Phys. Rev. B 52, 40724085 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.4072
39.
S. Ruffell, K. Sears, A. P. Knights, J. E. Bradby, and J. S. Williams, Phys. Rev. B 83, 075316 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.075316
40.
S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, and G. Galli, Phys. Rev. Lett. 110, 046804 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.046804
41.
C. Rödl, T. Sander, F. Bechstedt, J. Vidal, P. Olsson, S. Laribi, and J. F. Guillemoles, Phys. Rev. B 92, 045207 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.045207
42.
M. Wilson and P. F. McMillan, Phys. Rev. Lett. 90, 135703 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.135703
43.
D. Daisenberger, P. F. McMillan, and M. Wilson, Phys. Rev. B 82, 214101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.214101
44.
M. Beekman, Mater. Today 18, 304305 (2015).
http://dx.doi.org/10.1016/j.mattod.2015.03.018
45.
A. F. Wells, Three-Dimensional Nets and Polyhedra ( Wiley, New York, 1977).
46.
O. D. Friedrichs, A. W. M. Dress, D. H. Huson, J. Klinowski, and A. L. Mackay, Nature 400, 644647 (1999).
http://dx.doi.org/10.1038/23210
47.
O. Delgado-Friedrichs, M. D. Foster, M. O'Keeffe, D. M. Proserpio, M. M. J. Treacy, and O. M. Yaghi, J. Solid State Chem. 178, 25332554 (2005).
http://dx.doi.org/10.1016/j.jssc.2005.06.037
48.
M. A. Zwijnenburg, K. E. Jelfs, and S. T. Bromley, Phys. Chem. Chem. Phys. 12, 85058512 (2010).
http://dx.doi.org/10.1039/c004375c
49.
R. Nesper, K. Vogel, and P. E. Blochl, Angew. Chem., Int. Ed. Engl. 32, 701703 (1993).
http://dx.doi.org/10.1002/anie.199307011
50.
J. S. Kasper, P. Hagenmul, M. Pouchard, and C. Cros, Science 150, 1713 (1965).
http://dx.doi.org/10.1126/science.150.3704.1713
51.
G. B. Adams, M. O'Keeffe, A. A. Demkov, O. F. Sankey, and Y.-M. Huang, Phys. Rev. B 49, 8048 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.8048
52.
A. A. Demkov, W. Windl, and O. F. Sankey, Phys. Rev. B 53, 11288 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.11288
53.
K. Moriguchi, S. Munetoh, and A. Shintani, Phys. Rev. B 62, 7138 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7138
54.
X. Blase, Phys. Rev. B 67, 035211 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.035211
55.
J. Gryko, P. F. McMillan, R. F. Marzke, G. K. Ramachandran, D. Patton, S. K. Deb, and O. F. Sankey, Phys. Rev. B 62, R7707R7710 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R7707
56.
D. Connetable, Phys. Rev. B 82, 075209 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075209
57.
J. C. Conesa, J. Phys. Chem. B 106, 34023409 (2002).
http://dx.doi.org/10.1021/jp014115g
58.
A. J. Karttunen, T. F. Fassler, M. Linnolahti, and T. A. Pakkanen, Inorg. Chem. 50, 17331742 (2011).
http://dx.doi.org/10.1021/ic102178d
59.
D. J. Chadi, Phys. Rev. B 32, 64856489 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.6485
60.
A. Gruttner, R. Nesper, and H. G. Vonschnering, Angew. Chem., Int. Ed. Engl. 21, 912913 (1982).
http://dx.doi.org/10.1002/anie.198209122
61.
I. A. Baburin, D. M. Proserpio, V. A. Saleev, and A. V. Shipilova, Phys. Chem. Chem. Phys. 17, 13321338 (2015).
http://dx.doi.org/10.1039/C4CP04569F
62.
L. L. Boyer, E. Kaxiras, J. L. Feldman, J. Q. Broughton, and M. J. Mehl, Phys. Rev. Lett. 67, 715718 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.715
63.
Y. B. Gerbig, C. A. Michaels, A. M. Forster, and R. F. Cook, Phys. Rev. B 85, 104102 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.104102
64.
E. Galvani, G. Onida, S. Serra, and G. Benedek, Phys. Rev. Lett. 77, 35733576 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3573
65.
G. Benedek, E. Galvani, S. Sanguinetti, and S. Serra, Chem. Phys. Lett. 244, 339344 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00946-2
66.
M. O'Keeffe, G. B. Adams, and O. F. Sankey, Philos. Mag. Lett. 78, 2128 (1998).
http://dx.doi.org/10.1080/095008398178219
67.
C. J. Pickard and R. J. Needs, Phys. Rev. B 81, 014106 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.014106
68.
I. H. Lee, J. Lee, Y. J. Oh, S. Kim, and K. J. Chang, Phys. Rev. B 90, 115209 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.115209
69.
H. J. Xiang, B. Huang, E. Kan, S.-H. Wei, and X. G. Gong, Phys. Rev. Lett. 110, 118702 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.118702
70.
Y. Fujimoto, T. Koretsune, S. Saito, T. Miyake, and A. Oshiyama, New J. Phys. 10, 083001 (2008).
http://dx.doi.org/10.1088/1367-2630/10/8/083001
71.
R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Angew. Chem., Int. Ed. 55, 10962 (2016).
http://dx.doi.org/10.1002/anie.201600655
72.
R. H. Baughman and D. S. Galvao, Chem. Phys. Lett. 211, 110118 (1993).
http://dx.doi.org/10.1016/0009-2614(93)80059-X
73.
B. D. Malone, S. G. Louie, and M. L. Cohen, Phys. Rev. B 81, 115201 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115201
74.
M. O'Keeffe and N. E. Brese, Acta Crystallogr., Sect. A: Found. Adv. 48, 663669 (1992).
http://dx.doi.org/10.1107/S0108767392001260
75.
M. Amsler, J. A. Flores-Livas, L. Lehtovaara, F. Balima, S. A. Ghasemi, D. Machon, S. Pailhes, A. Willand, D. Caliste, S. Botti, A. San Miguel, S. Goedecker, and M. A. L. Marques, Phys. Rev. Lett. 108, 065501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.065501
76.
S. Goedecker, J. Chem. Phys. 120, 99119917 (2004).
http://dx.doi.org/10.1063/1.1724816
77.
J. Zhai, D. Yu, K. Luo, Q. Wang, Z. Zhao, J. He, and Y. Tian, J. Phys.: Condens. Matter 24, 405803 (2012).
http://dx.doi.org/10.1088/0953-8984/24/40/405803
78.
Z. Zhao, B. Xu, X.-F. Zhou, L.-M. Wang, B. Wen, J. He, Z. Liu, H.-T. Wang, and Y. Tian, Phys. Rev. Lett. 107, 215502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.215502
79.
R. H. Baughman, A. Y. Liu, C. Cui, and P. J. Schields, Synth. Met. 86, 2371 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)81165-4
80.
A. Bautista-Hernandez, T. Rangel, A. H. Romero, G. M. Rignanese, M. Salazar-Villanueva, and E. Chigo-Anota, J. Appl. Phys. 113, 193504 (2013).
http://dx.doi.org/10.1063/1.4804668
81.
Z. Zhao, F. Tian, X. Dong, Q. Li, Q. Wang, H. Wang, X. Zhong, B. Xu, D. Yu, J. He, H.-T. Wang, Y. Ma, and Y. Tian, J. Am. Chem. Soc. 134, 1236212365 (2012).
http://dx.doi.org/10.1021/ja304380p
82.
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094116
83.
V. Domnich and Y. Gogotsi, Rev. Adv. Mater. Sci. 3, 1 (2002).
84.
H. Y. Zhao, J. Wang, Q. M. Ma, and Y. Liu, Phys. Chem. Chem. Phys. 15, 1761917625 (2013).
http://dx.doi.org/10.1039/c3cp50946j
85.
Q. Q. Wang, B. Xu, J. Sun, H. Y. Liu, Z. S. Zhao, D. L. Yu, C. Z. Fan, and J. L. He, J. Am. Chem. Soc. 136, 98269829 (2014).
http://dx.doi.org/10.1021/ja5035792
86.
M. C. Nguyen, X. Zhao, C. Z. Wang, and K. M. Ho, Phys. Rev. B 89, 184112 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.184112
87.
M. O'Keeffe, Acta Crystallogr., Sect. A: Found. Adv. 54, 320 (1998).
http://dx.doi.org/10.1107/S0108767397017893
88.
O. Delgado-Friedrichs and M. O'Keeffe, Acta Crystallogr., Sect. A: Found. Adv. 61, 358362 (2005).
http://dx.doi.org/10.1107/S0108767305009578
89.
Q. Y. Fan, C. C. Chai, Q. Wei, Q. Yang, P. K. Zhou, M. J. Xing, and Y. T. Yang, Mater. Sci. Semicond. Process. 43, 187195 (2016).
http://dx.doi.org/10.1016/j.mssp.2015.12.016
90.
I. H. Lee, Y. J. Oh, S. Kim, J. Lee, and K. J. Chang, Comput. Phys. Commun. 203, 110 (2016).
http://dx.doi.org/10.1016/j.cpc.2016.02.011
91.
C. Bonneau and M. O'Keeffe, Inorg. Chem. 54, 808 (2015).
http://dx.doi.org/10.1021/ic5017966
92.
C. J. Pickard and R. J. Needs, J. Phys.: Condens. Matter 23, 053201 (2011).
http://dx.doi.org/10.1088/0953-8984/23/5/053201
93.
J. T. Wang, C. F. Chen, H. Mizuseki, and Y. Kawazoe, Phys. Rev. Lett. 110, 165503 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.165503
94.
B. D. Malone and M. L. Cohen, Phys. Rev. B 85, 024116 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.024116
95.
C. P. Tang, J. Cao, and S. J. Xiong, Physica B 466, 5963 (2015).
http://dx.doi.org/10.1016/j.physb.2015.03.027
96.
E. A. Belenkov and V. A. Greshnyakov, J. Exp. Theor. Phys. 119, 101106 (2014).
http://dx.doi.org/10.1134/S1063776114060090
97.
Q. Y. Fan, C. C. Chai, Q. Wei, H. Y. Yan, Y. B. Zhao, Y. T. Yang, X. H. Yu, Y. Liu, M. J. Xing, J. Q. Zhang, and R. H. Yao, J. Appl. Phys. 118, 185704 (2015).
http://dx.doi.org/10.1063/1.4935549
98.
X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, J. Chem. Phys. 138, 114101 (2013).
http://dx.doi.org/10.1063/1.4794424
99.
Y. G. Guo, Q. Wang, Y. Kawazoe, and P. Jena, Sci. Rep. 5, 14342 (2015).
http://dx.doi.org/10.1038/srep14342
100.
B. Wen, J. Zhao, M. J. Bucknum, P. Yao, and T. Li, Diamond Relat. Mater. 17, 356 (2008).
http://dx.doi.org/10.1016/j.diamond.2008.01.020
101.
S. Froyen, D. M. Wood, and A. Zunger, Phys. Rev. B 36, 45474550 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.4547
102.
J. Weber and M. I. Alonso, Phys. Rev. B 40, 56835693 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.5683
103.
J. E. Bernard and A. Zunger, Phys. Rev. B 44, 16631681 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.1663
104.
K. A. Johnson and N. W. Ashcroft, Phys. Rev. B 54, 1448014486 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.14480
105.
M. d'Avezac, J.-W. Luo, T. Chanier, and A. Zunger, Phys. Rev. Lett. 108, 027401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.027401
106.
L. Pizzagalli, EPL 104, 56005 (2013).
http://dx.doi.org/10.1209/0295-5075/104/56005
107.
Y. J. Oh, I. H. Lee, S. Kim, J. Lee, and K. J. Chang, Sci. Rep. 5, 18086 (2015).
http://dx.doi.org/10.1038/srep18086
108.
W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 15641583 (1992).
http://dx.doi.org/10.1557/JMR.1992.1564
109.
J. S. Field and M. V. Swain, J. Mater. Res. 8, 297306 (1993).
http://dx.doi.org/10.1557/JMR.1993.0297
110.
A. P. Gerk and D. Tabor, Nature 271, 732733 (1978).
http://dx.doi.org/10.1038/271732a0
111.
G. M. Pharr, W. C. Oliver, and D. S. Harding, J. Mater. Res. 6, 11291130 (1991).
http://dx.doi.org/10.1557/JMR.1991.1129
112.
E. R. Weppelmann, J. S. Field, and M. V. Swain, J. Mater. Res. 8, 830840 (1993).
http://dx.doi.org/10.1557/JMR.1993.0830
113.
J. E. Bradby, J. S. Williams, and M. V. Swain, Phys. Rev. B 67, 085205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085205
114.
J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, Appl. Phys. Lett. 77, 37493751 (2000).
http://dx.doi.org/10.1063/1.1332110
115.
J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, J. Mater. Res. 16, 15001507 (2001).
http://dx.doi.org/10.1557/JMR.2001.0209
116.
A. Kailer, K. G. Nickel, and Y. G. Gogotsi, J. Raman Spectrosc. 30, 939946 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4555(199910)30:10<939::AID-JRS460>3.0.CO;2-C
117.
I. V. Gridneva, Y. V. Milman, and V. I. Trefilov, Phys. Status Solidi A 14, 177182 (1972).
http://dx.doi.org/10.1002/pssa.2210140121
118.
D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, Phys. Rev. Lett. 60, 21562159 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.2156
119.
T. Page, W. C. Oliver, and C. J. McHargue, J. Mater. Res. 7, 450 (1992).
http://dx.doi.org/10.1557/JMR.1992.0450
120.
A. Kailer, Y. G. Gogotsi, and K. G. Nickel, J. Appl. Phys. 81, 30573063 (1997).
http://dx.doi.org/10.1063/1.364340
121.
V. Domnich, Y. Gogotsi, and S. Dub, Appl. Phys. Lett. 76, 22142216 (2000).
http://dx.doi.org/10.1063/1.126300
122.
S. Wong, B. Haberl, J. S. Williams, and J. E. Bradby, Appl. Phys. Lett. 106, 252103 (2015).
http://dx.doi.org/10.1063/1.4923205
123.
S. Wong, B. Haberl, J. S. Williams, and J. E. Bradby, J. Appl. Phys. 118, 245904 (2015).
http://dx.doi.org/10.1063/1.4938480
124.
S. Ruffell, B. Haberl, S. Koenig, J. E. Bradby, and J. S. Williams, J. Appl. Phys. 105, 093513 (2009).
http://dx.doi.org/10.1063/1.3124366
125.
S. Ruffell, J. E. Bradby, J. S. Williams, and P. Munroe, J. Appl. Phys. 102, 063521 (2007).
http://dx.doi.org/10.1063/1.2781394
126.
B. Haberl, M. Guthrie, G. Shen, J. S. Williams, and J. E. Bradby, “ A direct metastable transition from amorphous silicon to the crystalline rhombohedral r8 phase,” (unpublished).
127.
B. Haberl, A. C. Y. Liu, J. E. Bradby, S. Ruffell, J. S. Williams, and P. Munroe, Phys. Rev. B 79, 155209 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155209
128.
E. Holmström, B. Haberl, O. H. Pakarinen, K. Nordlund, F. Djurabekova, R. Arenal, J. S. Williams, J. E. Bradby, T. C. Petersen, and A. C. Y. Liu, J. Non-Cryst. Solids 438, 2636 (2016).
http://dx.doi.org/10.1016/j.jnoncrysol.2016.02.008
129.
D. B. Ge, V. Domnich, and Y. Gogotsi, J. Appl. Phys. 95, 27252731 (2004).
http://dx.doi.org/10.1063/1.1642739
130.
B. Haberl, M. Guthrie, S. V. Sinogeikin, G. Shen, J. S. Williams, and J. E. Bradby, High Pressure Res. 35, 99116 (2015).
http://dx.doi.org/10.1080/08957959.2014.1003555
131.
R. A. Graham, B. Morosin, E. L. Venturini, and M. J. Carr, Annu. Rev. Mater. Sci. 16, 315341 (1986).
http://dx.doi.org/10.1146/annurev.ms.16.080186.001531
132.
D. Swift, J. Hawreliak, D. Braun, A. Kritcher, S. Glenzer, G. W. Collins, S. Rothman, D. Chapman, and S. Rose, AIP Conf. Proc. 1426, 477 (2012).
http://dx.doi.org/10.1063/1.3686321
133.
R. F. Trunin, Phys.-Usp. 37, 11231146 (1994).
http://dx.doi.org/10.1070/PU1994v037n11ABEH000055
134.
P. Loubeyre, P. M. Celliers, D. G. Hicks, E. Henry, A. Dewaele, J. Pasley, J. Eggert, M. Koenig, F. Occelli, K. M. Lee, R. Jeanloz, D. Neely, A. Benuzzi-Mounaix, D. Bradley, M. Bastea, S. Moon, and G. W. Collins, High Pressure Res. 24, 2531 (2004).
http://dx.doi.org/10.1080/08957950310001635792
135.
L. V. Al'tshuler, Usp. Fiz. Nauk 85, 197258 (1965).
136.
M. N. Pavlovskii, Fiz. Tverd. Tela 9, 31923197 (1967).
137.
T. Goto, T. Sato, and Y. Syono, Jpn. J. Appl. Phys., Part 2 21, L369L371 (1982).
http://dx.doi.org/10.1143/JJAP.21.L369
138.
S. D. Gilev and A. M. Trubachev, J. Phys.: Condens. Matter 16, 81398153 (2004).
http://dx.doi.org/10.1088/0953-8984/16/46/003
139.
H. Kishimura and H. Matsumoto, J. Appl. Phys. 103, 023505 (2008).
http://dx.doi.org/10.1063/1.2830805
140.
P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, Appl. Phys. Lett. 34, 864866 (1979).
http://dx.doi.org/10.1063/1.90703
141.
J. Jia, M. Li, and C. V. Thompson, Appl. Phys. Lett. 84, 3205 (2004).
http://dx.doi.org/10.1063/1.1719280
142.
T. H. R. Crawford, J. Yamanaka, G. A. Botton, and H. K. Haugen, J. Appl. Phys. 103, 053104 (2008).
http://dx.doi.org/10.1063/1.2885111
143.
M. Schade, O. Varlamova, J. Reif, H. Blumtritt, W. Erfurth, and H. S. Leipner, Anal. Bioanal. Chem. 396, 19051911 (2010).
http://dx.doi.org/10.1007/s00216-009-3342-3
144.
M. J. Smith, M.-J. Sher, B. Franta, Y.-T. Lin, E. Mazur, and S. Gradevak, J. Appl. Phys. 112, 083518 (2012).
http://dx.doi.org/10.1063/1.4759140
145.
M. Tsujino, T. Sano, O. Sakata, N. Ozaki, S. Kimura, S. Takeda, M. Okoshi, N. Inoue, R. Kodama, K. F. Kobayashi, and A. Hirose, J. Appl. Phys. 110, 126103 (2011).
http://dx.doi.org/10.1063/1.3673591
146.
Y. Waseda and K. Suzuki, Z. Phys. B: Condens. Matter 20, 339343 (1975).
http://dx.doi.org/10.1007/BF01313204
147.
P. C. Verburg, L. A. Smillie, G. R. B. E. Römer, B. Haberl, J. E. Bradby, J. S. Williams, and A. J. Huis in't Veld, Appl. Phys. A 120, 683 (2015).
http://dx.doi.org/10.1007/s00339-015-9238-5
148.
L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, Appl. Phys. A 114, 33 (2014).
http://dx.doi.org/10.1007/s00339-013-8161-x
149.
L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, Fundamentals of Laser-Assisted Micro- and Nanotechnologies ( Springer, 2014), Vol. 195, pp. 326.
150.
F. P. Bundy and J. S. Kasper, Science 139, 340 (1963).
http://dx.doi.org/10.1126/science.139.3552.340
151.
J. D. Joannopoulos and M. L. Cohen, Phys. Rev. B 7, 2644 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.2644
152.
K. Mylvaganam and L. C. Zhang, Comput. Mater. Sci. 81, 1014 (2014).
http://dx.doi.org/10.1016/j.commatsci.2013.06.052
153.
K. Mylvaganam and L. C. Zhang, Appl. Phys. A: Mater. Sci. Process. 120, 13911398 (2015).
http://dx.doi.org/10.1007/s00339-015-9323-9
154.
A. Weiss, G. Beil, and H. Meyer, Z. Naturforsch. 34b, 25 (1979).
155.
M. Stutzmann, See article in this issue.
156.
H.-G. Von Schnering, M. Schwarz, and R. Nesper, J. Less-Common Met. 137, 297310 (1988).
http://dx.doi.org/10.1016/0022-5088(88)90095-1
157.
F. Kiefer and T. F. Fassler, Solid State Sci. 13, 636640 (2011).
http://dx.doi.org/10.1016/j.solidstatesciences.2010.12.038
158.
F. Kiefer, A. J. Karttunen, M. Doblinger, and T. F. Fassler, Chem. Mater. 23, 45784586 (2011).
http://dx.doi.org/10.1021/cm201976x
159.
J. V. Zaikina, E. Muthuswamy, K. I. Lilova, Z. M. Gibbs, M. Zeilinger, G. J. Snyder, T. F. Fassler, A. Navrotsky, and S. M. Kauzlarich, Chem. Mater. 26, 32633271 (2014).
http://dx.doi.org/10.1021/cm5010467
160.
M. Zeilinger, L. A. Jantke, L. M. Scherf, F. J. Kiefer, G. Neubuser, L. Kienle, A. J. Karttunen, S. Konar, U. Haussermann, and T. F. Fassler, Chem. Mater. 26, 66036612 (2014).
http://dx.doi.org/10.1021/cm503371e
161.
S. Ganguly, N. Kazem, D. Carter, and S. M. Kauzlarich, J. Am. Chem. Soc. 136, 12961299 (2014).
http://dx.doi.org/10.1021/ja412213q
162.
J. S. Kasper and S. M. Richards, Acta Crystallogr. 17, 752 (1964).
http://dx.doi.org/10.1107/S0365110X64001840
163.
D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, and Y. Lu, J. Am. Chem. Soc. 130, 5620 (2008).
http://dx.doi.org/10.1021/ja711027j
164.
S. Bobev and S. C. Sevov, J. Solid State Chem. 153, 92105 (2000).
http://dx.doi.org/10.1006/jssc.2000.8755
165.
A. Ker, E. Todorov, R. Rousseau, K. Uehara, F. X. Lannuzel, and J. S. Tse, Chem. - Eur. J. 8, 27872798 (2002).
http://dx.doi.org/10.1002/1521-3765(20020617)8:12<2787::AID-CHEM2787>3.0.CO;2-B
166.
M. Beekman and G. S. Nolas, J. Mater. Chem. 18, 842851 (2008).
http://dx.doi.org/10.1039/B706808E
167.
C. Cros and M. Pouchard, C. R. Chim. 12, 10141056 (2009).
http://dx.doi.org/10.1016/j.crci.2009.05.004
168.
S. Yamanaka, Dalton Trans. 39, 19011915 (2010).
http://dx.doi.org/10.1039/B918480E
169.
C. Cros, M. Pouchard, and P. Hagenmuller, C. R. Acad. Sci. 260, 4764 (1965).
170.
H. Morito, T. Yamada, T. Ikeda, and H. Yamane, J. Alloys Compd. 480, 723726 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.02.036
171.
O. O. Kurakevych, T. A. Strobel, D. Y. Kim, T. Muramatsu, and V. V. Struzhkin, Cryst. Growth Des. 13, 303307 (2013).
http://dx.doi.org/10.1021/cg3017084
172.
S. Yamanaka, M. Komatsu, M. Tanaka, H. Sawa, and K. Inumaru, J. Am. Chem. Soc. 136, 7717 (2014).
http://dx.doi.org/10.1021/ja502733e
173.
P. T. Hutchins, O. Leynaud, L. A. O'Dell, M. E. Smith, P. Barnes, and P. F. McMillan, Chem. Mater. 23, 51605167 (2011).
http://dx.doi.org/10.1021/cm2018136
174.
C. Cros, M. Pouchard, and P. Hagenmuller, J. Solid State Chem. 2, 570 (1970).
http://dx.doi.org/10.1016/0022-4596(70)90053-8
175.
B. Böhme, A. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger, and Y. Grin, J. Am. Chem. Soc. 129, 53485349 (2007).
http://dx.doi.org/10.1021/ja0705691
176.
A. Ammar, C. Cros, M. Pouchard, N. Jaussaud, J. M. Bassat, G. Villeneuve, M. Duttine, M. Menetrier, and E. Reny, Solid State Sci. 6, 393 (2004).
http://dx.doi.org/10.1016/j.solidstatesciences.2004.02.006
177.
S. Stefanoski, H. Liu, Y. Yao, and T. A. Strobel, Inorg. Chem. 54, 10761 (2015).
http://dx.doi.org/10.1021/acs.inorgchem.5b01780
178.
W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
179.
R. A. Street, Hydrogenated Amorphous Silicon ( Cambridge University Press, Cambridge, 1991).
180.
L. Krishna, L. L. Baranowski, A. D. Martinez, C. A. Koh, C. P. Taylor, A. C. Tamboli, and E. S. Toberer, CrystEngComm 16, 39403949 (2014).
http://dx.doi.org/10.1039/C3CE42626B
181.
L. Krishna and C. A. Koh, MRS Energy Sustainability 2, E8 (2015).
http://dx.doi.org/10.1557/mre.2015.9
182.
A. M. Guloy, R. Ramlau, Z. J. Tang, W. Schnelle, M. Baitinger, and Y. Grin, Nature 443, 320323 (2006).
http://dx.doi.org/10.1038/nature05145
183.
F. B. Bundy, H. T. Hall, H. M. Strong, and R. J. Wentorf, Jr., Nature 176, 51 (1955).
http://dx.doi.org/10.1038/176051a0
184.
M. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr., Nature 184, 1094 (1959).
http://dx.doi.org/10.1038/1841094a0
185.
R. H. Wentorf, Jr., J. Chem. Phys. 34, 809 (1961).
http://dx.doi.org/10.1063/1.1731679
186.
M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, Nat. Mater. 3, 558 (2004).
http://dx.doi.org/10.1038/nmat1146
187.
A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fuess, P. Kroll, and R. Boehler, Nature 400, 340342 (1999).
http://dx.doi.org/10.1038/22493
188.
G. Serghiou, G. Miehe, O. Tschauner, A. Zerr, and R. Boehler, J. Chem. Phys. 111, 4659 (1999).
http://dx.doi.org/10.1063/1.479227
189.
E. Horvath-Bordon, R. Riedel, P. F. McMillan, P. Kroll, G. Miehe, P. A. van Aken, A. Zerr, P. Hoppe, O. Shebanova, I. McLaren, S. Lauterbach, E. Kroke, and R. Boehler, Angew. Chem., Int. Ed. 46, 1476 (2007).
http://dx.doi.org/10.1002/anie.200603851
190.
V. L. Solozhenko and E. Gregoryanz, Mater. Today 8, 44 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)71159-7
191.
R. Boehler, M. Guthrie, J. J. Molaison, A. M. dos Santos, S. V. Sinogeikin, S. Machida, N. Pradhan, and C. A. Tulk, High Pressure Res. 33, 546 (2013).
http://dx.doi.org/10.1080/08957959.2013.823197
192.
S. Klotz, Techniques in High Pressure Neutron Scattering ( CRC Press, Taylor & Francis Group, Boca Raton, FL, 2012).
193.
N. Kawai and S. Endo, Rev. Sci. Instrum. 41, 11781181 (1970).
http://dx.doi.org/10.1063/1.1684753
194.
R. Abbaschian, H. Zhu, and C. Clarke, Diamond Relat. Mater. 14, 19161919 (2005).
http://dx.doi.org/10.1016/j.diamond.2005.09.007
195.
L. Vel, G. Demazeau, and J. Etourneau, Mater. Sci. Eng., B 10, 149164 (1991).
http://dx.doi.org/10.1016/0921-5107(91)90121-B
196.
R. Rao, J. E. Bradby, and J. S. Williams, Appl. Phys. Lett. 91, 123113 (2007).
http://dx.doi.org/10.1063/1.2779111
197.
W. Steen and J. Mazumder, Laser Material Processing, 4th ed. ( Springer-Verlag, London, 2010).
198.
J. C. Angus and C. C. Hayman, Science 241, 913921 (1988).
http://dx.doi.org/10.1126/science.241.4868.913
199.
K. E. Spear and J. P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology ( John Wiley & Sons, 1994), Vol. 25.
200.
H. I. T. Hauge, M. A. Verheijen, S. Conesa-Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino, S. Kolling, A. Li, S. Assali, J. Stangl, and E. Bakkers, Nano Lett. 15, 58555860 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01939
201.
P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, Mater. Sci. Eng., R 21, 47100 (1997).
http://dx.doi.org/10.1016/S0927-796X(97)00009-0
202.
F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).
http://dx.doi.org/10.1063/1.1841236
203.
S. J. Clark, G. J. Ackland, and J. Crain, Phys. Rev. B 52, 15035 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.15035
204.
F. P. Bundy, J. Chem. Phys. 38, 631 (1963).
http://dx.doi.org/10.1063/1.1733716
205.
R. J. Nelmes, M. I. McMahon, N. G. Wright, D. R. Allan, and J. S. Loveday, Phys. Rev. B 48, 9883 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.9883
206.
B. Haberl, M. Guthrie, B. D. Malone, J. S. Smith, S. V. Sinogeikin, M. L. Cohen, J. S. Williams, G. Shen, and J. E. Bradby, Phys. Rev. B 89, 144111 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.144111
207.
B. C. Johnson, B. Haberl, S. Deshmukh, B. D. Malone, M. L. Cohen, J. C. McCallum, J. S. Williams, and J. E. Bradby, Phys. Rev. Lett. 110, 085502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.085502
http://aip.metastore.ingenta.com/content/aip/journal/apr2/3/4/10.1063/1.4962984
Loading
/content/aip/journal/apr2/3/4/10.1063/1.4962984
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/3/4/10.1063/1.4962984
2016-09-27
2016-12-09

Abstract

The Group 14 element silicon possesses a complex free-energy landscape with many (local) minima, allowing for the formation of a variety of unusual structures, some of which may be stabilized at ambient conditions. Such exotic silicon allotropes represent a significant opportunity to address the ever-increasing demand for novel materials with tailored functionality since these exotic forms are expected to exhibit superlative properties including optimized band gaps for solar power conversion. The application of pressure is a well-recognized and uniquely powerful method to access exotic states of silicon since it promotes large changes to atomic bonding. Conventional high-pressure syntheses, however, lack the capability to access many of these local minima and only four forms of exotic silicon allotropes have been recovered over the last 50 years. However, more recently, significant advances in high pressure methodologies and the use of novel precursor materials have yielded at least three more recoverable exotic Si structures. This review aims to give an overview of these innovative methods of high-pressure application and precursor selection and the recent discoveries of new Si allotropes. The background context of the conventional pressure methods and multitude of predicted new phases are also provided. This review also offers a perspective for possible access to many further exotic functional allotropes not only of silicon but also of other materials, in a technologically feasible manner.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/3/4/1.4962984.html;jsessionid=QVoyXKFJSeqb_c8hRNIxAsgs.x-aip-live-03?itemId=/content/aip/journal/apr2/3/4/10.1063/1.4962984&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apr.aip.org/3/4/10.1063/1.4962984&pageURL=http://scitation.aip.org/content/aip/journal/apr2/3/4/10.1063/1.4962984'
Right1,Right2,Right3,