1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Microfluidic blood plasma separation via bulk electrohydrodynamic flows
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/1/1/10.1063/1.2409629
1.
1.M. Toner and D. Irimia, Annu. Rev. Biomed. Eng. 7, 77 (2005).
http://dx.doi.org/10.1146/annurev.bioeng.7.011205.135108
2.
2.C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, and W. Menz, in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, 2004 (IEEE, New York, 2004).
3.
3.J. Guigan, “Method and apparatus for obtaining and delivering a predetermined quantity of plasma from a blood sample for analysis purpose,” U.S. Patent No. 4,788,154 (1998).
4.
4.M. J. Pugia, J. A. Profitt, L. S. Schulman, G. Blankenstein and R.-P. Peters, “Method and apparatus for separation of particles in a microfluidic device,” W. O. Patent No. 2004/061413 (2004).
5.
5.S. Haeberle, T. Brenner, R. Zengerle, and J. Ducree, Lab Chip 6, 776 (2006).
http://dx.doi.org/10.1039/b604145k
6.
6.P. Wilding, J. Pfahler, H. H. Bau, J. N. Zemel, and L. J. Kricka, Clin. Chem. 40, 43 (1994).
7.
7.J. P. Brody, T. D. Osborn, F. K. Forster, and P. Yager, Sens. Act. A 54, 704 (1996).
8.
8.P. K. Yuen, L. J. Kricka, P. Fortina, N. J. Panaro, T. Sakazume, and P. Wilding, Genome Res. 11, 405 (2001).
http://dx.doi.org/10.1101/gr.155301
9.
9.H. A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978).
10.
10.P. R. C. Gascoyne and J. Vykoukal, Electrophoresis 23, 1973 (2002).
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
11.
11.A. R. Minerick, R. Zhou, P. Takhistov, and H.-C. Chang, Electrophoresis 24, 3703 (2003).
http://dx.doi.org/10.1002/elps.200305644
12.
12.S. Yang, A. Ündar, and J. D. Zahn, Lab Chip 6, 871 (2006).
13.
13.K. Svanes and B. W. Zweifach, Microvasc. Res. 1, 210 (1968).
14.
14.Y.-C. Fung, Microvasc. Res. 5, 34 (1973).
15.
15.R. T. Yen and Y.-C. Fung, Am. J. Physiol. Heart Circ. Physiol. 235, H251 (1978).
16.
16.L. B. Loeb, Electrical Corona (University of California, Berkeley, 1965).
17.
17.R.-I. Ohyama, K. Kaneko, and J.-S. Chang, IEEE Trans. Dielectrics Elec. Ins. 10, 57 (2003).
18.
18.H. Kawamoto and S. Umezu, J. Phys. D 38, 887 (2005).
http://dx.doi.org/10.1088/0022-3727/38/6/017
19.
19.L. Y. Yeo, D. Hou, S. Maheshswari, and H.-C. Chang, Appl. Phys. Lett. 88, 233512 (2006).
http://dx.doi.org/10.1063/1.2212275
20.
20.A. Einstein, Naturwiss. 14, 223 (1926).
http://dx.doi.org/10.1007/BF01510300
21.
21.L. Y. Yeo, J. R. Friend, and D. R. Arifin, Appl. Phys. Lett. 89, 103516 (2006).
http://dx.doi.org/10.1063/1.2345590
22.
22.M. B. Gorbet, E. L. Yeo, and M. V. Sefton, J. Biomed. Mater. Res. 44, 289 (1999).
23.
23.S. Yang, A. Ündar, and J. D. Zahn, ASAIO J. 51, 585 (2005).
24.
24.D. R. Arifin and A. F. Palmer, Biotechnol. Prog. 9, 1798 (2003).
25.
25.W. G. Zijlstra and E. van Kampen, Clin. Chim. Acta 5, 719 (1960).
26.
26.E. van Kampen and W. G. Zijlstra, Clin. Chim. Acta 6, 538 (1961).
http://dx.doi.org/10.1016/0009-8981(61)90145-0
27.
27.G. K. Batchelor, Q. J. Mech. Appl. Maths 4, 29 (1951).
28.
28.H.-P. Pau, Phys. Lett. 15, 4 (1972).
29.
29.H.-C. Chang and L. Y. Yeo (unpublished).
30.
30.L. Schouveiler, P. Le Gal, M. P. Chauve, and Y. Takeda, Exp. Fluids 26, 179 (1999).
http://dx.doi.org/10.1007/s003480050278
31.
31.E. Serre, E. Crespo del Arco, and P. Bontoux, J. Fluid Mech. 434, 65 (2001).
http://dx.doi.org/10.1017/S0022112001003494
32.
32.D. Hou, S. Maheshswari, and H.-C. Chang, Biomicrofluidics (submitted).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/1/10.1063/1.2409629
Loading
/content/aip/journal/bmf/1/1/10.1063/1.2409629
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/1/1/10.1063/1.2409629
2006-12-20
2014-08-23

Abstract

An effective mechanism for rapid and efficient microfluidic particle trapping and concentration is proposed without requiring any mechanically moving parts. When a voltage beyond the threshold atmospheric ionization value is applied on a sharp electrode tip mounted at an angle above a microfluidic liquid chamber, the bulk electrohydrodynamic air thrust that is generated results in interfacial shear and, hence, primary azimuthal liquid surface recirculation. This discharge driven vortex mechanism, in turn, causes a secondary bulk meridional liquid recirculation, which produces an inward radial force near the bottom of the chamber. Particles suspended in the liquid are then rapidly convected by the bulk recirculation toward the bottom, where the inward radial force causes them to spiral in a helical swirl-like fashion toward a stagnation point. In particular, we show that these flows, similar to Batchelor flows occurring in a cylindrical liquid column between a stationary and rotating disk, can be used for the separation of red blood cells from blood plasma in a miniaturized device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/1/1.2409629.html;jsessionid=9incg5a5c7zl.x-aip-live-03?itemId=/content/aip/journal/bmf/1/1/10.1063/1.2409629&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microfluidic blood plasma separation via bulk electrohydrodynamic flows
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/1/10.1063/1.2409629
10.1063/1.2409629
SEARCH_EXPAND_ITEM