Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/1/1/10.1063/1.2710191
1.
1.K. F. Hoettges, M. P. Hughes, A. Cotton, N. A. E. Hopkins, and M. B. McDonnell, IEEE Eng. Med. Biol. Mag. 22, 68 (2003).
http://dx.doi.org/10.1109/MEMB.2003.1266049
2.
2.J. Wu, Y. Ben, D. Battigelli, and H.-C. Chang, Indust. Eng. Chem. Res. 44, 2815 (2005).
http://dx.doi.org/10.1021/ie049417u
3.
3.J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739
4.
4.H. A. Pohl, Dielectrophoresis (Cambridge University Press, London, Great Britain, 1978).
5.
5.H. Li and R. Bashir, Sens. Actuators B 86, 215 (2002);
http://dx.doi.org/10.1016/S0925-4005(02)00172-7
5.Il Doh and Y.-H. Cho, Sens. Actuators, A 121, 59 (2005).
http://dx.doi.org/10.1016/j.sna.2005.01.030
6.
6.W. M Arnold, IEEE Trans. Appl. Ind. 37, 1468 (2001).
http://dx.doi.org/10.1109/28.952523
7.
7.Z. Gagnon and H.-C. Chang, Electrophoresis 26, 3725 (2005).
http://dx.doi.org/10.1002/elps.200500129
8.
8.N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, Phys. Rev. E 61, 4011 (2000);
http://dx.doi.org/10.1103/PhysRevE.61.4011
8.M. P. Hughes, Nanotechnology 11, 124 (2000).
http://dx.doi.org/10.1088/0957-4484/11/2/314
9.
9.J. Wu, Y. Ben, and H.-C. Chang, Microfluid and Nanofluid 1, 161 (2005).
http://dx.doi.org/10.1007/s10404-004-0024-5
10.
10.J. Suehiro, A. Ohtsubo, T. Hatano, and M. Hara, Sens. Actuators B 119, 319 (2006);
http://dx.doi.org/10.1016/j.snb.2005.12.027
10.A. Bange, H. B. Halsall, and W. R. Heineman, Biosense. Bioelectron 20, 2488 (2005);
http://dx.doi.org/10.1016/j.bios.2004.10.016
10.K. Cheung, S. Gawad, and P. Renaud, Cytometry Part A 65A, 124 (2005);
10.I. V. Kourkin, M. Ristic-Petrovic, E. Davis, C. G. Ruffolo, A. Kapsalis, and A. E. Barron, Electrophoresis 24, 655 (2003);
http://dx.doi.org/10.1002/elps.200390077
10.M. G. Roper, C. J. Easley, and J. P. Landers, Anal. Chem. 77, 3887 (2005).
http://dx.doi.org/10.1021/ac050756m
11.
11.T. Vo-Dinh, F. Yan, and M. B. Wabuyele, J. Raman Spectrosc. 36, 640 (2005);
http://dx.doi.org/10.1002/jrs.1348
11.M. Kummerle, S. Scherer, and H. Seiler, Appl. Environ. Microbiol. 64, 2207 (1998).
12.
12.E. Smith, and G. Dent, Modern Raman Spectroscopy: A Practical Approach (John Wiley & Sons, 2005).
13.
13.P. Rosch, M. Harz, M. Schmitt, and J. Popp, J. Raman Spectrosc. 36, 377 (2005).
http://dx.doi.org/10.1002/jrs.1312
14.
14.G. J. Thomas, Jr., Annu. Rev. Biophys. Biomol. Struct. 28, 1 (1999);
http://dx.doi.org/10.1146/annurev.biophys.28.1.1
14.B. W. D. de Jong, T. C. Bakker Schut, K. Maquelin, T. vander Kwast, C. H. Bangma, D.-J. Kok, and G. J. Puppels, Anal. Chem. 78, 7761 (2006);
http://dx.doi.org/10.1021/ac061417b
14.Y. C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002).
http://dx.doi.org/10.1126/science.297.5586.1536
15.
15.C. Xie, C. Goodman, M. A. Dinno, and Y.-Q. Li, Opt. Express 12, 6208 (2004).
http://dx.doi.org/10.1364/OPEX.12.006208
16.
16.R. M. Jarvis and R. Goodacre, Anal. Chem. 76, 40 (2004).
http://dx.doi.org/10.1021/ac034689c
17.
17.K. Maquelin, L.-P. Choo-Smith, H. P. Endtz, H. A. Bruining, and G. J. Puppels, J. Clin. Microbiol. 40, 594 (2002).
18.
18.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, J. Phys.: Condens. Matter 14, R597 (2002).
http://dx.doi.org/10.1088/0953-8984/14/18/202
19.
19.F. Yan, M. B. Wabuyele, G. D. Griffin, A. A. Vass, and T. Vo-Dinh, IEEE Sens. J. 5, 665 (2005);
http://dx.doi.org/10.1109/JSEN.2005.850993
19.T. Vo-Dinh, D. L. Stokes, G. D. Griffin, M. Volkan, U. J. Kim, and M. I. Simon, J. Raman Spectrosc. 30, 785 (1999);
http://dx.doi.org/10.1002/(SICI)1097-4555(199909)30:9<785::AID-JRS450>3.0.CO;2-6
19.W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones II, and L. D. Ziegler, J. Phys. Chem. B 109, 312 (2005).
http://dx.doi.org/10.1021/jp040442n
20.
20.R. M. Jarvis, A. Brooker, and R. Goodacre, Faraday Discuss. 132, 281 (2006).
http://dx.doi.org/10.1039/b506413a
21.
21.L. Yeo, D. Hou, S. Maheshwari, and H.-C. Chang, Appl. Phys. Lett. 88, 233512 (2006).
http://dx.doi.org/10.1063/1.2212275
22.
22.R. Ohyama, K. Kaneko, and J.-S. Chang, IEEE Trans. Dielectr. Electr. Insul. 10, 57 (2003).
http://dx.doi.org/10.1109/TDEI.2003.1176562
23.
23.D. H. McCoy and M. M. Denn, Rheol. Acta 10, 408 (1971).
http://dx.doi.org/10.1007/BF01993718
24.
24.G. L. Leal, Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis (Butterworth-Heinemann, 1992).
25.
25.L. Yeo, J. R. Friend, and D. R. Arifin, Appl. Phys. Lett. 89, 103516 (2006);
http://dx.doi.org/10.1063/1.2345590
25.D. R. Arifin, L. Y. Yeo, and J. R. Friend, Biomicrofluidics 1, 014103 (2007).
http://dx.doi.org/10.1063/1.2409629
26.
26.P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
http://dx.doi.org/10.1021/j100214a025
27.
27.M. A. Young, D. A. Stuart, O. Lyandres, M. R. Glucksberg, and R. P. van Duyne, Can. J. Chem. 82, 1435 (2004).
http://dx.doi.org/10.1139/v04-098
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/1/10.1063/1.2710191
Loading
/content/aip/journal/bmf/1/1/10.1063/1.2710191
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/1/1/10.1063/1.2710191
2007-02-16
2016-12-06

Abstract

Rapid concentration and detection of bacteria in integrated chips and microfluidic devices is needed for the advancement of lab-on-a-chip devices because current detection methods require high concentrations of bacteria which render them impractical. We present a new chip-scale rapid bacteria concentration technique combined with surface-enhanced Raman scattering(SERS) to enhance the detection of low bacteria count samples. This concentration technique relies on convection by a long-range converging vortex to concentrate the bacteria into a packed mound of in diameter within . Concentration of bioparticle samples as low as colony forming units (CFU)/ml are presented using batch volumes as large as . Mixtures of silver nanoparticles with Saccharomyces cerevisiae, Escherichia coli F-amp, and Bacillus subtilis produce distinct and noticeably different Raman spectra, illustrating that this technique can be used as a detection and identification tool.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/1/1.2710191.html;jsessionid=HN7ezC2PYUtR5g4ah8WSAKES.x-aip-live-03?itemId=/content/aip/journal/bmf/1/1/10.1063/1.2710191&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/1/1/10.1063/1.2710191&pageURL=http://scitation.aip.org/content/aip/journal/bmf/1/1/10.1063/1.2710191'
Right1,Right2,Right3,