Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. F. Hoettges, M. P. Hughes, A. Cotton, N. A. E. Hopkins, and M. B. McDonnell, IEEE Eng. Med. Biol. Mag. 22, 68 (2003).
2.J. Wu, Y. Ben, D. Battigelli, and H.-C. Chang, Indust. Eng. Chem. Res. 44, 2815 (2005).
3.J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006).
4.H. A. Pohl, Dielectrophoresis (Cambridge University Press, London, Great Britain, 1978).
5.H. Li and R. Bashir, Sens. Actuators B 86, 215 (2002);
5.Il Doh and Y.-H. Cho, Sens. Actuators, A 121, 59 (2005).
6.W. M Arnold, IEEE Trans. Appl. Ind. 37, 1468 (2001).
7.Z. Gagnon and H.-C. Chang, Electrophoresis 26, 3725 (2005).
8.N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, Phys. Rev. E 61, 4011 (2000);
8.M. P. Hughes, Nanotechnology 11, 124 (2000).
9.J. Wu, Y. Ben, and H.-C. Chang, Microfluid and Nanofluid 1, 161 (2005).
10.J. Suehiro, A. Ohtsubo, T. Hatano, and M. Hara, Sens. Actuators B 119, 319 (2006);
10.A. Bange, H. B. Halsall, and W. R. Heineman, Biosense. Bioelectron 20, 2488 (2005);
10.K. Cheung, S. Gawad, and P. Renaud, Cytometry Part A 65A, 124 (2005);
10.I. V. Kourkin, M. Ristic-Petrovic, E. Davis, C. G. Ruffolo, A. Kapsalis, and A. E. Barron, Electrophoresis 24, 655 (2003);
10.M. G. Roper, C. J. Easley, and J. P. Landers, Anal. Chem. 77, 3887 (2005).
11.T. Vo-Dinh, F. Yan, and M. B. Wabuyele, J. Raman Spectrosc. 36, 640 (2005);
11.M. Kummerle, S. Scherer, and H. Seiler, Appl. Environ. Microbiol. 64, 2207 (1998).
12.E. Smith, and G. Dent, Modern Raman Spectroscopy: A Practical Approach (John Wiley & Sons, 2005).
13.P. Rosch, M. Harz, M. Schmitt, and J. Popp, J. Raman Spectrosc. 36, 377 (2005).
14.G. J. Thomas, Jr., Annu. Rev. Biophys. Biomol. Struct. 28, 1 (1999);
14.B. W. D. de Jong, T. C. Bakker Schut, K. Maquelin, T. vander Kwast, C. H. Bangma, D.-J. Kok, and G. J. Puppels, Anal. Chem. 78, 7761 (2006);
14.Y. C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002).
15.C. Xie, C. Goodman, M. A. Dinno, and Y.-Q. Li, Opt. Express 12, 6208 (2004).
16.R. M. Jarvis and R. Goodacre, Anal. Chem. 76, 40 (2004).
17.K. Maquelin, L.-P. Choo-Smith, H. P. Endtz, H. A. Bruining, and G. J. Puppels, J. Clin. Microbiol. 40, 594 (2002).
18.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, J. Phys.: Condens. Matter 14, R597 (2002).
19.F. Yan, M. B. Wabuyele, G. D. Griffin, A. A. Vass, and T. Vo-Dinh, IEEE Sens. J. 5, 665 (2005);
19.T. Vo-Dinh, D. L. Stokes, G. D. Griffin, M. Volkan, U. J. Kim, and M. I. Simon, J. Raman Spectrosc. 30, 785 (1999);<785::AID-JRS450>3.0.CO;2-6
19.W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones II, and L. D. Ziegler, J. Phys. Chem. B 109, 312 (2005).
20.R. M. Jarvis, A. Brooker, and R. Goodacre, Faraday Discuss. 132, 281 (2006).
21.L. Yeo, D. Hou, S. Maheshwari, and H.-C. Chang, Appl. Phys. Lett. 88, 233512 (2006).
22.R. Ohyama, K. Kaneko, and J.-S. Chang, IEEE Trans. Dielectr. Electr. Insul. 10, 57 (2003).
23.D. H. McCoy and M. M. Denn, Rheol. Acta 10, 408 (1971).
24.G. L. Leal, Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis (Butterworth-Heinemann, 1992).
25.L. Yeo, J. R. Friend, and D. R. Arifin, Appl. Phys. Lett. 89, 103516 (2006);
25.D. R. Arifin, L. Y. Yeo, and J. R. Friend, Biomicrofluidics 1, 014103 (2007).
26.P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
27.M. A. Young, D. A. Stuart, O. Lyandres, M. R. Glucksberg, and R. P. van Duyne, Can. J. Chem. 82, 1435 (2004).

Data & Media loading...


Article metrics loading...



Rapid concentration and detection of bacteria in integrated chips and microfluidic devices is needed for the advancement of lab-on-a-chip devices because current detection methods require high concentrations of bacteria which render them impractical. We present a new chip-scale rapid bacteria concentration technique combined with surface-enhanced Raman scattering(SERS) to enhance the detection of low bacteria count samples. This concentration technique relies on convection by a long-range converging vortex to concentrate the bacteria into a packed mound of in diameter within . Concentration of bioparticle samples as low as colony forming units (CFU)/ml are presented using batch volumes as large as . Mixtures of silver nanoparticles with Saccharomyces cerevisiae, Escherichia coli F-amp, and Bacillus subtilis produce distinct and noticeably different Raman spectra, illustrating that this technique can be used as a detection and identification tool.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd