Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/1/1/10.1063/1.2714185
1.
1.C. L. Baylis, in Detecting Pathogens in Food, edited by T. A. McMeekin (CRC LLC, Boca Raton, FL, 2004), p. 217.
2.
2.L. B. Bangs, Pure Appl. Chem. 68, 1873 (1996).
3.
3.P. E. Andreotti, G. V. Ludwig, A. H. Peruski, J. J. Tuite, S. S. Morse, and L. F. Peruski, Jr., BioTechniques 35, 850 (2003).
4.
4.Z. G. Wang, H. Shang, and G. U. Lee, Langmuir 22, 6723 (2006).
http://dx.doi.org/10.1021/la052902p
5.
5.J. A. Molina-Bolivar, and F. Galisteo-Gonzalez, J. Macromol. Sci., Polym. Rev.C45, 59 (2005).
6.
6.L. B. Bangs and M. T. Kenny, Ind. Res. 18, 46 (1976).
7.
7.G. E. M. Tovar and A. Weber, Dekker Encyclopedia of Nanoscience and Nanotechnology, edited by J. A. Schwarz, C. I. Contescu, and K. Putyera (Marcel Dekker, New York, 2004), p. 277.
8.
8.C. R. Lowe, B. F. Y. Y. Hin, D. C. Cullen, S. E. Evans, L. D. G. Stephens, and P. Maynard, J. Chromatogr. 510, 347 (1990).
9.
9.E. P. Meulenberg, W. H. Mulder, and P. G. Stoks, Environ. Sci. Technol. 29, 553 (1995).
http://dx.doi.org/10.1021/es00003a001
10.
10.L. B. Bangs, J. Clin. Immunoassay 13, 127 (1990).
11.
11.H. A. Stone and S. Kim, AIChE J. 47, 1250 (2001).
http://dx.doi.org/10.1002/aic.690470602
12.
12.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
13.
13.S. K. Cho, H. Moon, and C. J. Kim, J. Microelectromech. Syst. 12, 70 (2003).
http://dx.doi.org/10.1109/JMEMS.2002.807467
14.
14.V. Srinivasan, V. K. Pamula, and R. B. Fair, Lab Chip 4, 310 (2004).
http://dx.doi.org/10.1039/b403341h
15.
15.F. Su, K. Chakrabarty, and R. B. Fair, IEEE Trans. Comput.-Aided Des. 25, 211 (2006).
http://dx.doi.org/10.1109/TCAD.2005.855956
16.
16.O. D. Velev and K. H. Bhatt, Soft Mater. 2, 738 (2006).
http://dx.doi.org/10.1039/b605052b
17.
17.O. D. Velev, B. G. Prevo, and K. H. Bhatt, Nature 426, 515 (2003).
http://dx.doi.org/10.1038/426515a
18.
18.O. D. Velev, K. H. Bhatt, B. G. Prevo, and S. O. Lumsdon, Abstr. Pap. - Am. Chem. Soc. 226, U479 (2003).
19.
19.S. T. Chang and O. D. Velev, Langmuir 22, 1459 (2006).
http://dx.doi.org/10.1021/la052695t
20.
20.J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, Nat. Mater. 4, 98 (2005).
http://dx.doi.org/10.1038/nmat1270
21.
21.L. B. Bangs, Am. Clin. Lab. 9, 16 (1990).
22.
22.J. Turkevich, Gold Bull. (Geneva) 18, 125 (1985).
23.
23.D. Malamud and J. W. Drysdale, Anal. Biochem. 86, 620 (1978).
http://dx.doi.org/10.1016/0003-2697(78)90790-X
24.
24.P. G. Righetti and T. Caravaggio, J. Chromatogr. A 127, 1 (1976).
25.
25.J. Roth, Techniques in Immunocytochemistry, edited by G. R. Bullock and P. Petrusz (Academic, London, 1982), p. 107.
26.
26.J. E. Beesley, Colloidal Gold: A New Perspective for Cytochemical Marking (Royal Microscopical Society, Oxford, England, 1989), p. 10.
27.
27.X.-L. Sun, X.-L. Zhao, J. Tang, J. Zhou, and F. S. Chu, Int. J. Food Microbiol. 99, 185 (2005).
28.
28.R. H. Shyu, H. F. Shyu, H. W. Liu, and S. S. Tang, Toxicon 40, 255 (2002).
http://dx.doi.org/10.1016/S0041-0101(01)00193-3
29.
29.C. Lubelli, A. Chatgilialoglu, A. Bolognesi, P. Strocchi, M. Colombatti, and F. Stirpe, Anal. Biochem. 355, 102 (2006).
30.
30.H. F. Shyu, D. J. Chiao, H. W. Liu, and S. S. Tang, Hybridoma Hybridomics 21, 69 (2002).
31.
31.K. Solc and W. H. Stockmayer, J. Chem. Phys. 54, 2981 (1971).
http://dx.doi.org/10.1063/1.1675283
32.
32.D. A. Dmitriev, Y. S. Massino, and O. L. Segal, J. Immunol. Methods 280, 183 (2003).
33.
33.M. Stenberg and H. Nygren, J. Immunol. Methods 113, 3 (1988).
34.
34.D. F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (Wiley, New York, 1999), pp. 417428.
35.
35.O. G. Berg and P. H. Von Hippel, Annu. Rev. Biophys. Biophys. Chem. 14, 131 (1985).
http://dx.doi.org/10.1146/annurev.bb.14.060185.001023
36.
36.J. Schurr, J. Phys. Chem. 80, 1934 (1976).
http://dx.doi.org/10.1021/j100558a026
37.
37.V. K. Lamer, Discuss. Faraday Soc. 42, 248 (1966).
http://dx.doi.org/10.1039/df9664200248
38.
38.R. Hogg, J. Colloid Interface Sci. 102, 232 (1984).
http://dx.doi.org/10.1016/0021-9797(84)90215-7
39.
39.M. Quesada, J. Puig, J. M. Delgado, J. M. Peula, J. A. Molina, and R. Hidalgo Alvarez, Colloids Surf., B 8, 303 (1997).
http://dx.doi.org/10.1016/S0927-7765(96)01329-X
40.
40.Radius of ricin is as compared to for IgG. The diffusion rate for the first step is roughly larger than the rate of diffusion for second step. The antibody used to detect ricin is also an immunoglobulin attached onto the gold nanoparticle surface. Hence our assumption of second step to be the rate limiting is still valid and the model explains the dynamics of ricin GOAgg assays.
41.
41.E. Rutenber, B. J. Katzin, S. Ernst, E. J. Collins, D. Mlsna, M. P. Ready, and J. D. Robertus, Proteins 10, 240 (1991).
http://dx.doi.org/10.1002/prot.340100308
42.
42.D. A. Handley, Colloidal Gold: Principles, Methods and Applications, edited by M. A. Hayat (Academic, San Diego, 1989), pp. 1.
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/1/10.1063/1.2714185
Loading
/content/aip/journal/bmf/1/1/10.1063/1.2714185
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/1/1/10.1063/1.2714185
2007-03-14
2016-12-11

Abstract

A novel technique for biomolecular detection in microliter droplets floating on the surface of high density oil is presented. Each droplet was captured and manipulated dielectrophoretically and was used as a site for a microscopic bioassay based on agglutination of antibody-conjugated particles. The results were read out by the pattern of unagglomerated goldnanoparticles collected on the droplet surface. Two formats of bioassays, namely gold only agglutination and gold and latex agglutination, were investigated experimentally by varying analyte concentration, particle size and concentration, number of antigen binding sites per particle, time for incubation, and rate of particle collection on the droplet surface. The microbioassays performance was also evaluated with ricin antibodies and compared to the ricin assays in field use. It is estimated that the droplet based assays require smaller sample volume and are ten times more sensitive, though they require longer times to complete. The experiments were interpreted by modeling the kinetics of particle agglutination and mass transfer processes inside the droplets. The incubation time and antigen concentration values calculated by the model correlate well with the experimental results. The results could allow for development of efficient immunoassays on a chip requiring even smaller sample volumes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/1/1.2714185.html;jsessionid=Ot58DBch4EhxArjtijiJttxt.x-aip-live-02?itemId=/content/aip/journal/bmf/1/1/10.1063/1.2714185&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/1/1/10.1063/1.2714185&pageURL=http://scitation.aip.org/content/aip/journal/bmf/1/1/10.1063/1.2714185'
Right1,Right2,Right3,