1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/1/2/10.1063/1.2723669
1.
1.G.-B. Lee, B.-H. Hwei, and G.-R. Huang, J. Micromech. Microeng. 11, 654 (2001).
http://dx.doi.org/10.1088/0960-1317/11/6/306
2.
2.A. Minerick, P. Takhistov, R. Zhou, and H.-C. Chang, Electrophoresis 24, 3703 (2003).
http://dx.doi.org/10.1002/elps.200305644
3.
4.
4.M. P. Hughes, H. Morgan, F. J. Rixon, J. Burt, and R. Pethig, Biochim. Biophys. Acta 1425, 119 (1998).
http://dx.doi.org/10.1016/S0304-4165(98)00058-0
5.
5.H. A. Pohl, Dielectrophoresis (Cambridge University Press, London, 1978).
6.
6.W. M. Arnold, IEEE Trans. Ind. Appl. 37, 1468 (2001).
http://dx.doi.org/10.1109/28.952523
7.
7.Z. Gagnon and H.-C. Chang, Electrophoresis 26, 3725 (2005).
http://dx.doi.org/10.1002/elps.200500129
8.
8.X.-F. Zhou, G. H. Markx, R. Pethig, and I. M. Eastwood, Biochim. Biophys. Acta 1245, 85 (1995).
9.
9.K. L. Chan, H. Morgan, E. Morgan, I. T. Cameron, and M. R. Thomas, Biochim. Biophys. Acta 1500, 313 (2000).
http://dx.doi.org/10.1016/S0925-4439(99)00115-5
10.
10.G. H. Markx, P. A. Dyda, and R. Pethig, J. Biotechnol. 51, 175 (1996).
http://dx.doi.org/10.1016/0168-1656(96)01617-3
11.
11.H. Li and R. Bashir, Sens. Actuators B 86, 215 (2002).
http://dx.doi.org/10.1016/S0925-4005(02)00172-7
12.
12.X. B. Wang, J. Yang, Y. Huang, J. Vykoukal, F. F. Becker, and P. R. Gascoyne, Anal. Chem. 72, 832 (2000).
http://dx.doi.org/10.1021/ac990922o
13.
13.S. Choi and J.-K. Park, Lab Chip 5, 1161 (2005).
http://dx.doi.org/10.1039/b505088j
14.
14.I. Doh and Y.-H. Cho, Sens. Actuators, A 121, 59 (2005).
http://dx.doi.org/10.1016/j.sna.2005.01.030
15.
15.M. Yamada, M. Nakashima, and M. Seki, Anal. Chem. 76, 5465 (2004).
http://dx.doi.org/10.1021/ac049863r
16.
16.G. H. Markx and R. Pethig, Biotechnol. Bioeng. 45, 337 (1995).
http://dx.doi.org/10.1002/bit.260450408
17.
17.J. Wu, Y. Ben, D. Battigelli, and H.-C. Chang, Ind. Eng. Chem. Res. 44, 2815 (2005).
http://dx.doi.org/10.1021/ie049417u
18.
18.N. G. Green, H. Morgan, and J. J. Milner, J. Biochem. Biophys. Methods 35, 89 (1997).
http://dx.doi.org/10.1016/S0165-022X(97)00033-X
19.
19.T. Muller, G. Gradl, S. Howitz, S. Shirley, Th. Schnelle, and G. Fuhr, Biosens. Bioelectron. 14, 247 (1999).
http://dx.doi.org/10.1016/S0956-5663(99)00006-8
20.
20.C. D. James, M. Okandan, P. Galambos, S. S. Mani, D. Bennett, B. Khusid, and A. Acrivos, J. Fluids Eng. 128, 14 (2006).
http://dx.doi.org/10.1115/1.2136924
21.
21.S. Fielder, S. G. Shirley, T. Schnelle, and G. Fuhr, Anal. Chem. 70, 1909 (1998).
http://dx.doi.org/10.1021/ac971063b
22.
22.D. J. Bennett, B. Khusid, C. D. James, P. C. Balambos, M. Okandan, D. Jacqmin, and A. Acrivos, Appl. Phys. Lett. 83, 4866 (2003).
http://dx.doi.org/10.1063/1.1629789
23.
23.T. Schnelle, T. Muller, S. Fielder, and G. Fuhr, J. Electrost. 46, 13 (1999).
http://dx.doi.org/10.1016/S0304-3886(98)00055-2
24.
24.Y. Li, C. Dalton, H. J. Crabtree, G. Nilsson, and K. V. I. S. Kaler, Lab Chip 7, 239 (2006).
http://dx.doi.org/10.1039/b613344d
25.
25.H. Morgan, D. Holmes, and N. G. Green, IEE Proc.: Nanobiotechnol. 150, 76 (2003).
http://dx.doi.org/10.1049/ip-nbt:20031090
26.
26.D. Holmes, H. Morgan, and N. G. Green, Biosens. Bioelectron. 21, 1621 (2006).
http://dx.doi.org/10.1016/j.bios.2005.10.017
27.
27.J. Suehiro, A. Ohtsubo, T. Hatano, and M. Hara, Sens. Actuators B 119, 319 (2006).
http://dx.doi.org/10.1016/j.snb.2005.12.027
28.
28.R. Zhou, P. Wang, and H.-C. Chang, Electrophoresis 27, 1376 (2006).
http://dx.doi.org/10.1002/elps.200500329
29.
29.J. C. Liao, M. Mastali, V. Gau, M. A. Suchard, A. K. Moller, D. A. Bruckner, J. T. Babbitt, Y. Li, J. Gornbein, E. M. Landaw, E. R. B. McCabe, B. M. Churchill, and D. A. Haake, J. Clin. Microbiol. 44, 561 (2006).
http://dx.doi.org/10.1128/jcm.44.2.561–570.2006
30.
30.E. T. Lagally, S.-H. Lee, and H. T. Soh, Lab Chip 5, 1053 (2005).
http://dx.doi.org/10.1039/b505915a
31.
31.T. Vo-Dinh, F. Yan, and M. B. Wabuyele, J. Raman Spectrosc. 36, 640 (2005).
http://dx.doi.org/10.1002/jrs.1348
32.
32.Q. Wu, T. Hamilton, W. H. Nelson, S. Elliott, J. F. Sperry, and M. Wu, Anal. Chem. 73, 3432 (2001).
http://dx.doi.org/10.1021/ac001268b
33.
33.M. Kummerle, S. Scherer, and H. Seiler, Appl. Environ. Microbiol. 64, 2207 (1998).
34.
34.E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (John Wiley & Sons, West Sussex, England 2005).
35.
35.R. M. Jarvis and R. Goodacre, Anal. Chem. 76, 40 (2004).
http://dx.doi.org/10.1021/ac034689c
36.
36.G. J. Thomas, Jr., Annu. Rev. Biophys. Biomol. Struct. 28, 1 (1999).
http://dx.doi.org/10.1146/annurev.biophys.28.1.1
37.
37.B. W. D. de Jong, T. C. Bakker Schut, K. Maquelin, T. vander Kwast, C. H. Bangma, D.-J. Kok, and G. J. Puppels, Anal. Chem. 78, 7761 (2006).
http://dx.doi.org/10.1021/ac061417b
38.
38.Y. C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002).
http://dx.doi.org/10.1126/science.297.5586.1536
39.
39.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, J. Phys.: Condens. Matter 14, R597 (2002).
http://dx.doi.org/10.1088/0953-8984/14/18/202
40.
40.R. Petry, M. Schmitt, and J. Popp, ChemPhysChem 4, 15 (2003).
http://dx.doi.org/10.1002/cphc.200390004
41.
41.R. M. Jarvis, A. Brooker, and R. Goodacre, Faraday Discuss. 132, 281 (2006).
http://dx.doi.org/10.1039/b506413a
42.
42.F. Yan, M. B. Wabuyele, G. D. Griffin, A. A. Vass, and T. Vo-Dinh, IEEE Sens. J. 5, 665 (2005).
http://dx.doi.org/10.1109/JSEN.2005.850993
43.
43.C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Anal. Chem. 77, 3261 (2005).
http://dx.doi.org/10.1021/ac048176x
44.
44.T. Vo-Dinh, D. L. Stokes, G. D. Griffin, M. Volkan, U. J. Kim, and M. I. Simon, J. Raman Spectrosc. 30, 785 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4555(199909)30:9<785::AID-JRS450>3.0.CO;2-6
45.
45.W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones II, and L. D. Ziegler, J. Phys. Chem. B 109, 312 (2005).
http://dx.doi.org/10.1021/jp040442n
46.
46.S. K. Thamida and H.-C. Chang, Phys. Fluids 14, 4315 (2002).
http://dx.doi.org/10.1063/1.1519530
47.
47.N. Flores-Rodriguez and G. H. Markx, J. Micromech. Microeng. 16, 349 (2006).
http://dx.doi.org/10.1088/0960-1317/16/2/020
48.
48.M. Durr, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, Electrophoresis 24, 722 (2003).
http://dx.doi.org/10.1002/elps.200390087
49.
49.P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
http://dx.doi.org/10.1021/j100214a025
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/2/10.1063/1.2723669
Loading
/content/aip/journal/bmf/1/2/10.1063/1.2723669
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/1/2/10.1063/1.2723669
2007-05-10
2014-10-01

Abstract

Multi-target pathogen detection using heterogeneous medical samples require continuous filtering, sorting, and trapping of debris, bioparticles, and immunocolloids within a diagnostic chip. We present an integrated AC dielectrophoretic(DEP) microfluidic platform based on planar electrodes that form three-dimensional (3D) DEP gates. This platform can continuously perform these tasks with a throughput of . Mixtures of latex particles, Escherichia coli Nissle, Lactobacillus, and Candida albicans are sorted and concentrated by these 3D DEP gates. Surface enhanced Raman scattering is used as an on-chip detection method on the concentrated bacteria. A processing rate of 500 bacteria was estimated when of a heterogeneous colony of colony forming units /ml was processed in a single pass within .

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/2/1.2723669.html;jsessionid=43wpd6s44ifeo.x-aip-live-02?itemId=/content/aip/journal/bmf/1/2/10.1063/1.2723669&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf

Most read this month

Article
content/aip/journal/bmf
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/2/10.1063/1.2723669
10.1063/1.2723669
SEARCH_EXPAND_ITEM