1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/1/2/10.1063/1.2723669
1.
1.G.-B. Lee, B.-H. Hwei, and G.-R. Huang, J. Micromech. Microeng. 11, 654 (2001).
http://dx.doi.org/10.1088/0960-1317/11/6/306
2.
2.A. Minerick, P. Takhistov, R. Zhou, and H.-C. Chang, Electrophoresis 24, 3703 (2003).
http://dx.doi.org/10.1002/elps.200305644
3.
4.
4.M. P. Hughes, H. Morgan, F. J. Rixon, J. Burt, and R. Pethig, Biochim. Biophys. Acta 1425, 119 (1998).
http://dx.doi.org/10.1016/S0304-4165(98)00058-0
5.
5.H. A. Pohl, Dielectrophoresis (Cambridge University Press, London, 1978).
6.
6.W. M. Arnold, IEEE Trans. Ind. Appl. 37, 1468 (2001).
http://dx.doi.org/10.1109/28.952523
7.
7.Z. Gagnon and H.-C. Chang, Electrophoresis 26, 3725 (2005).
http://dx.doi.org/10.1002/elps.200500129
8.
8.X.-F. Zhou, G. H. Markx, R. Pethig, and I. M. Eastwood, Biochim. Biophys. Acta 1245, 85 (1995).
9.
9.K. L. Chan, H. Morgan, E. Morgan, I. T. Cameron, and M. R. Thomas, Biochim. Biophys. Acta 1500, 313 (2000).
http://dx.doi.org/10.1016/S0925-4439(99)00115-5
10.
10.G. H. Markx, P. A. Dyda, and R. Pethig, J. Biotechnol. 51, 175 (1996).
http://dx.doi.org/10.1016/0168-1656(96)01617-3
11.
11.H. Li and R. Bashir, Sens. Actuators B 86, 215 (2002).
http://dx.doi.org/10.1016/S0925-4005(02)00172-7
12.
12.X. B. Wang, J. Yang, Y. Huang, J. Vykoukal, F. F. Becker, and P. R. Gascoyne, Anal. Chem. 72, 832 (2000).
http://dx.doi.org/10.1021/ac990922o
13.
13.S. Choi and J.-K. Park, Lab Chip 5, 1161 (2005).
http://dx.doi.org/10.1039/b505088j
14.
14.I. Doh and Y.-H. Cho, Sens. Actuators, A 121, 59 (2005).
http://dx.doi.org/10.1016/j.sna.2005.01.030
15.
15.M. Yamada, M. Nakashima, and M. Seki, Anal. Chem. 76, 5465 (2004).
http://dx.doi.org/10.1021/ac049863r
16.
16.G. H. Markx and R. Pethig, Biotechnol. Bioeng. 45, 337 (1995).
http://dx.doi.org/10.1002/bit.260450408
17.
17.J. Wu, Y. Ben, D. Battigelli, and H.-C. Chang, Ind. Eng. Chem. Res. 44, 2815 (2005).
http://dx.doi.org/10.1021/ie049417u
18.
18.N. G. Green, H. Morgan, and J. J. Milner, J. Biochem. Biophys. Methods 35, 89 (1997).
http://dx.doi.org/10.1016/S0165-022X(97)00033-X
19.
19.T. Muller, G. Gradl, S. Howitz, S. Shirley, Th. Schnelle, and G. Fuhr, Biosens. Bioelectron. 14, 247 (1999).
http://dx.doi.org/10.1016/S0956-5663(99)00006-8
20.
20.C. D. James, M. Okandan, P. Galambos, S. S. Mani, D. Bennett, B. Khusid, and A. Acrivos, J. Fluids Eng. 128, 14 (2006).
http://dx.doi.org/10.1115/1.2136924
21.
21.S. Fielder, S. G. Shirley, T. Schnelle, and G. Fuhr, Anal. Chem. 70, 1909 (1998).
http://dx.doi.org/10.1021/ac971063b
22.
22.D. J. Bennett, B. Khusid, C. D. James, P. C. Balambos, M. Okandan, D. Jacqmin, and A. Acrivos, Appl. Phys. Lett. 83, 4866 (2003).
http://dx.doi.org/10.1063/1.1629789
23.
23.T. Schnelle, T. Muller, S. Fielder, and G. Fuhr, J. Electrost. 46, 13 (1999).
http://dx.doi.org/10.1016/S0304-3886(98)00055-2
24.
24.Y. Li, C. Dalton, H. J. Crabtree, G. Nilsson, and K. V. I. S. Kaler, Lab Chip 7, 239 (2006).
http://dx.doi.org/10.1039/b613344d
25.
25.H. Morgan, D. Holmes, and N. G. Green, IEE Proc.: Nanobiotechnol. 150, 76 (2003).
http://dx.doi.org/10.1049/ip-nbt:20031090
26.
26.D. Holmes, H. Morgan, and N. G. Green, Biosens. Bioelectron. 21, 1621 (2006).
http://dx.doi.org/10.1016/j.bios.2005.10.017
27.
27.J. Suehiro, A. Ohtsubo, T. Hatano, and M. Hara, Sens. Actuators B 119, 319 (2006).
http://dx.doi.org/10.1016/j.snb.2005.12.027
28.
28.R. Zhou, P. Wang, and H.-C. Chang, Electrophoresis 27, 1376 (2006).
http://dx.doi.org/10.1002/elps.200500329
29.
29.J. C. Liao, M. Mastali, V. Gau, M. A. Suchard, A. K. Moller, D. A. Bruckner, J. T. Babbitt, Y. Li, J. Gornbein, E. M. Landaw, E. R. B. McCabe, B. M. Churchill, and D. A. Haake, J. Clin. Microbiol. 44, 561 (2006).
http://dx.doi.org/10.1128/jcm.44.2.561–570.2006
30.
30.E. T. Lagally, S.-H. Lee, and H. T. Soh, Lab Chip 5, 1053 (2005).
http://dx.doi.org/10.1039/b505915a
31.
31.T. Vo-Dinh, F. Yan, and M. B. Wabuyele, J. Raman Spectrosc. 36, 640 (2005).
http://dx.doi.org/10.1002/jrs.1348
32.
32.Q. Wu, T. Hamilton, W. H. Nelson, S. Elliott, J. F. Sperry, and M. Wu, Anal. Chem. 73, 3432 (2001).
http://dx.doi.org/10.1021/ac001268b
33.
33.M. Kummerle, S. Scherer, and H. Seiler, Appl. Environ. Microbiol. 64, 2207 (1998).
34.
34.E. Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach (John Wiley & Sons, West Sussex, England 2005).
35.
35.R. M. Jarvis and R. Goodacre, Anal. Chem. 76, 40 (2004).
http://dx.doi.org/10.1021/ac034689c
36.
36.G. J. Thomas, Jr., Annu. Rev. Biophys. Biomol. Struct. 28, 1 (1999).
http://dx.doi.org/10.1146/annurev.biophys.28.1.1
37.
37.B. W. D. de Jong, T. C. Bakker Schut, K. Maquelin, T. vander Kwast, C. H. Bangma, D.-J. Kok, and G. J. Puppels, Anal. Chem. 78, 7761 (2006).
http://dx.doi.org/10.1021/ac061417b
38.
38.Y. C. Cao, R. Jin, and C. A. Mirkin, Science 297, 1536 (2002).
http://dx.doi.org/10.1126/science.297.5586.1536
39.
39.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, J. Phys.: Condens. Matter 14, R597 (2002).
http://dx.doi.org/10.1088/0953-8984/14/18/202
40.
40.R. Petry, M. Schmitt, and J. Popp, ChemPhysChem 4, 15 (2003).
http://dx.doi.org/10.1002/cphc.200390004
41.
41.R. M. Jarvis, A. Brooker, and R. Goodacre, Faraday Discuss. 132, 281 (2006).
http://dx.doi.org/10.1039/b506413a
42.
42.F. Yan, M. B. Wabuyele, G. D. Griffin, A. A. Vass, and T. Vo-Dinh, IEEE Sens. J. 5, 665 (2005).
http://dx.doi.org/10.1109/JSEN.2005.850993
43.
43.C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Anal. Chem. 77, 3261 (2005).
http://dx.doi.org/10.1021/ac048176x
44.
44.T. Vo-Dinh, D. L. Stokes, G. D. Griffin, M. Volkan, U. J. Kim, and M. I. Simon, J. Raman Spectrosc. 30, 785 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4555(199909)30:9<785::AID-JRS450>3.0.CO;2-6
45.
45.W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones II, and L. D. Ziegler, J. Phys. Chem. B 109, 312 (2005).
http://dx.doi.org/10.1021/jp040442n
46.
46.S. K. Thamida and H.-C. Chang, Phys. Fluids 14, 4315 (2002).
http://dx.doi.org/10.1063/1.1519530
47.
47.N. Flores-Rodriguez and G. H. Markx, J. Micromech. Microeng. 16, 349 (2006).
http://dx.doi.org/10.1088/0960-1317/16/2/020
48.
48.M. Durr, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, Electrophoresis 24, 722 (2003).
http://dx.doi.org/10.1002/elps.200390087
49.
49.P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
http://dx.doi.org/10.1021/j100214a025
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/2/10.1063/1.2723669
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Image of the four stages of the integrated chip from the inlet to outlet. (b) The entire chip consists of a high, wide, and long channel, enclosed by two glass slides. The individual outlet channels are high, wide, and in length. Electrodes were fabricated on both glass slides, creating a 3D electrode system. (c) A top view of the three different trapping electrode configuration. From the top channel to the bottom channel, a flower—multiple curved electrode, crescent—a semicircle electrode, and an arrowhead—a pointed electrode.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Flow profile of Hele-Shaw flow in the chip, due to the branch channel dimensions, wide and high. The angle of the electrode trap exploits the low viscous forces near the side wall due to the flow profile to exert a strong negative DEP force on the particles. (b) Finite element simulation on the electric field at the arrowhead tip in comparison with the electric field using a horizontal electrode. The electrode and channel geometries are the same as the actual chip and the applied voltage is . The field intensity at the midplane and at the center of the channel is shown for the two geometries.

Image of FIG. 3.

Click to view

FIG. 3.

A diagram of the sorting electrodes to separate particles A, B, and C by their negative DEP mobilities into individual channels. The first pair of electrodes deflects all particles, the second pair deflects only particles A and B, and the third pair deflects only particle B.

Image of FIG. 4.

Click to view

FIG. 4.

Schematic of the chip process using standard lithography techniques.

Image of FIG. 5.

Click to view

FIG. 5.

Diagram of experimental set-up.

Image of FIG. 6.

Click to view

FIG. 6.

Filtering and focusing stages of the chip with C. albicans and latex particles. (a) Filtering live/dead C. albicans, where live C. albicans exhibits pDEP at , , while dead C. albicans exhibits negative DEP and passes through the filtering array. (b) Focusing fluorescent latex particles through the first focusing unit to a region of . This image is enhanced in the supplemental material. (c) Finer focusing of the latex particles to a region of (enhanced online). [URL: http://dx.doi.org/10.1063/1.2723669.1]10.1063/1.2723669.1

Image of FIG. 7.

Click to view

FIG. 7.

Sorting latex particles and Lactobacillus based on their negative DEP mobilities. (a) A mixture of 1 and latex particles are separated because the latex particles exhibit strong nDEP mobilities at , and and are being deflected along the length of the electrode. This image is enhanced in the supplemental material. (b) The mixture of Lactobacillus and E. coli Nissle at and being separated, where the Lactobacillus is being deflected along the electrode while the E. coli pass through the electrode gate (enhanced online). [URL: http://dx.doi.org/10.1063/1.2723669.2]10.1063/1.2723669.2

Image of FIG. 8.

Click to view

FIG. 8.

Trapping of E. coli and Lactobacillus after they have been sorted into their individual channels. Under a field of and , both bacteria exhibit nDEP properties and are trapped and concentrated. (a) E. coli is trapped in the crescent electrode and (b) Lactobacillus is trapped in the arrowhead electrode. This image is enhanced in the supplemental material.

Image of FIG. 9.

Click to view

FIG. 9.

Trapping rate of fluorescent latex particles in the crescent electrode under an applied field of and over . Images were taken at intervals. This image is enhanced in the supplemental material to show the trapping rate of the arrowhead electrode (enhanced online). [URL: http://dx.doi.org/10.1063/1.2723669.3]10.1063/1.2723669.3

Image of FIG. 10.

Click to view

FIG. 10.

Trapping efficiency comparing a horizontal electrode with the crescent and the arrowhead electrode at and . (a) The voltage at which each electrode can trap particles at varying flow rates is plotted. The arrowhead electrode can trap at lower voltages and higher flow rates due to the sharp tip of the electric field. The horizontal electrode can trap the least, requiring the highest voltage at low flow rates. (b) Comparing area of the concentrated particles once they are trapped by the crescent and the arrowhead electrode at a volume flow rate of and a particle velocity of . The arrowhead electrode has a larger area of trapped particles, letting the least amount of particle pass through the trapping electrode.

Image of FIG. 11.

Click to view

FIG. 11.

Raman spectra of E. coli and Lactobacillus using SERS. (a) The red line indicates the Lactobacillus “fingerprint” and the blue line is the E. coli. (b) A sample of their peaks and corresponding bonds.

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
The following multimedia file is available:
The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/bmf/1/2/10.1063/1.2723669
2007-05-10
2014-04-17

Abstract

Multi-target pathogen detection using heterogeneous medical samples require continuous filtering, sorting, and trapping of debris, bioparticles, and immunocolloids within a diagnostic chip. We present an integrated AC dielectrophoretic(DEP) microfluidic platform based on planar electrodes that form three-dimensional (3D) DEP gates. This platform can continuously perform these tasks with a throughput of . Mixtures of latex particles, Escherichia coli Nissle, Lactobacillus, and Candida albicans are sorted and concentrated by these 3D DEP gates. Surface enhanced Raman scattering is used as an on-chip detection method on the concentrated bacteria. A processing rate of 500 bacteria was estimated when of a heterogeneous colony of colony forming units /ml was processed in a single pass within .

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/2/1.2723669.html;jsessionid=qw87fx3glmj5.x-aip-live-06?itemId=/content/aip/journal/bmf/1/2/10.1063/1.2723669&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/2/10.1063/1.2723669
10.1063/1.2723669
SEARCH_EXPAND_ITEM