Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. J. Lee and S. Y. Lee, Appl. Microbiol. Biotechnol. 64, 289 (2004).
2.A. Manz, N. Graber, and H. M. Widmer, Sens. Actuators B 1, 244 (1990).
3.T. C. Kuo, D. M. Cannon, Jr., Y. Chen, J. J. Tulock, M. A. Shannon, J. V. Sweedler, and P. W. Bohn, Anal. Chem. 75, 1861 (2003).
4.J. J. Tulock, M. A. Shannon, P. W. Bohn, and J. V. Sweedler, Anal. Chem. 76, 6419 (2004).
5.J. M. Iannacone, J. A. Jakubowski, P. W. Bohn, and J. V. Sweedler, Electrophoresis 26, 4684 (2005).
6.J. Han and H. G. Craighead, Science 288, 1026 (2000).
7.D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz, Science 261, 895 (1993).
8.P. S. Dittrich, K. Tachikawa, and A. Manz, Anal. Chem. 78, 3887 (2006).
9.C. L. Rice and R. Whitehead, J. Phys. Chem. 69, 4017 (1965).
10.B. R. Flachsbart, K. Wong, J. M. Iannacone, E. N. Abante, R. L. Vlach, P. A. Rauchfuss, P. W. Bohn, J. V. Sweedler, and M. A. Shannon, Lab Chip 6, 667 (2006).
11.Y. C. Wang, A. L. Stevens, and J. Han, Anal. Chem. 77, 4293 (2005);
11.Y. Zhang and A. T. Timperman, Analyst (Cambridge, U.K.) 128, 537 (2003).
12.D. M. Cannon, Jr., T.-C. Kuo, J. V. Sweedler, and P. W. Bohn, Anal. Chem. 75, 2224 (2003).
13.T. C. Kuo, H. K. Kim, D. M. Cannon, Jr., M. A. Shannon, J. V. Sweedler, and P. W. Bohn, Angew. Chem., Int. Ed. 43, 1862 (2004).
14.I. H. Chang, J. J. Tulock, J. Liu, W. S. Kim, D. M. Cannon, Jr., Y. Lu, and P. W. Bohn, Environ. Sci. Technol. 39, 3756 (2005).
15.K. Fa, J. J. Tulock, J. V. Sweedler, and P. W. Bohn, J. Am. Chem. Soc. 127, 13928 (2005).
16.A. N. Chatterjee, D. M. Cannon, Jr., E. N. Gatimu, J. V. Sweedler, N. R. Aluru, and P. W. Bohn, J. Nanopart. Res. 7, 507 (2005).
17.R. Qiao and N. R. Aluru, J. Chem. Phys. 118, 4692 (2003).
18.R. Qiao and N. R. Aluru, Phys. Rev. Lett. 92, 198301 (2004).
19.N. Petsev Dimiter, J. Chem. Phys. 123, 244907 (2005).
20.L. Sun and R. M. Crooks, Langmuir 15, 738 (1999).
21.C. C. Harrell, S. B. Lee, and C. R. Martin, Anal. Chem. 75, 6861 (2003).
22.P. Scopece, L. A. Baker, P. Ugo, and C. R. Martin, Nanotechnology 17, 3951 (2006).
23.D. M. Cannon, Jr., B. R. Flachsbart, M. A. Shannon, J. V. Sweedler, and P. W. Bohn, Appl. Phys. Lett. 85, 1241 (2004).
24.S. B. Lee and C. R. Martin, Chem. Mater. 13, 3236 (2001).
25.S. B. Lee and C. R. Martin, Anal. Chem. 73, 768 (2001).
26.Y. Ito, Y. S. Park, and Y. Imanishi, Langmuir 16, 5376 (2000).
27.I. S. Lokuge and P. W. Bohn, Langmuir 21, 1979 (2005).
28.I. Lokuge, X. Wang, and P. W. Bohn, Langmuir 23, 305 (2007).
29.R. Karnik, K. Castelino, R. Fan, P. Yang, and A. Majumdar, Nano Lett. 5, 1638 (2005).
30.L. Sun, J. Dai, G. L. Baker, and M. L. Bruening, Chem. Mater. 18, 4033 (2006).
31.D. P. Wernette, C. B. Swearingen, D. M. Cropek, Y. Lu, J. V. Sweedler, and P. W. Bohn, Analyst (Cambridge, U.K.) 131, 41 (2006).
32.T. Ito, L. Sun, M. A. Bevan, and R. M. Crooks, Langmuir 20, 6940 (2004).
33.L. Q. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature (London) 398, 686 (1999).

Data & Media loading...


Article metrics loading...



The extension of microfluidic devices to three dimensions requires innovative methods to interface fluidic layers. Externally controllable interconnects employing nanocapillary array membranes (NCAMs) have been exploited to produce hybrid three-dimensional fluidic architectures capable of performing linked sequential chemical manipulations of great power and utility. Because the solution Debye length, , is of the order of the channel diameter, , in the nanopores,fluidic transfer is controlled through applied bias, polarity and density of the immobile nanoporesurface charge,solution ionic strength and the impedance of the nanopore relative to the microfluidic channels. Analyte transport between vertically separated microchannels can be saturated at two stable transfer levels, corresponding to reverse and forward bias. These NCAM-mediated integrated microfluidic architectures have been used to achieve highly reproducible and tunable injections down to attoliter volumes, sample stacking for preconcentration, preparative analyte band collection from an electrophoretic separation, and an actively-tunable size-dependent transport in hybrid structures with grafted polymers displaying thermally-regulated swelling behavior. The synthetic elaboration of the nanopore interior has also been used to great effect to realize molecular separations of high efficiency. All of these manipulations depend critically on the transport properties of individual nanocapillaries, and the study of transport in single nanopores has recently attracted significant attention. Both computation and experimental studies have utilized single nanopores as test beds to understand the fundamental chemical and physical properties of chemistry and fluid flow at nanometer length scales.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd