1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electroosmotic flow in vapor deposited silicon dioxide and nitride microchannels
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/1/3/10.1063/1.2752376
1.
1.S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, Opt. Lett. 29, 1894 (2004).
http://dx.doi.org/10.1364/OL.29.001894
2.
2.J. P. Barber, E. J. Lunt, Z. A. George, D. Yin, H. Schmidt, and A. R. Hawkins, IEEE Photon. Technol. Lett. 18, 28 (2006).
http://dx.doi.org/10.1109/LPT.2005.859990
3.
3.D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, Opt. Express 13, 10564 (2005).
http://dx.doi.org/10.1364/OPEX.13.010564
4.
4.I. M. Lazar and B. L. Karger, Anal. Chem. 74, 6259 (2002).
http://dx.doi.org/10.1021/ac0203950
5.
5.C. H. Chen and J. G. Santiago, J. Microelectromech. Syst. 11, 672 (2002).
http://dx.doi.org/10.1109/JMEMS.2002.805055
6.
6.D. J. Laser and J. G. Santiago, J. Micromech. Microeng. 14, R35 (2004).
http://dx.doi.org/10.1088/0960-1317/14/6/R01
7.
7.J. D. Ramsey, S. C. Jacobson, C. T. Culbertson, and J. M. Ramsey, Anal. Chem. 75, 3758 (2003).
http://dx.doi.org/10.1021/ac0264574
8.
8.S. K. Sia and G. M. Whitesides, Electrophoresis 24, 3563 (2003).
http://dx.doi.org/10.1002/elps.200305584
9.
9.M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, Science 282, 484 (1998).
http://dx.doi.org/10.1126/science.282.5388.484
10.
10.B. Dang, P. Joseph, M. Bakir, T. Spencer, P. Kohl, and J. Meindl, Proceedings of the International Interconnect Technology Conference, 180 (IEEE, New York, 2005).
11.
11.V. Pamula and K. Chakrabarty, Proceedings of the ACM Great Lakes Symposium on VLSI, 84 (ACM, New York, 2003).
12.
12.B. J. Kirby and E. F. Hasselbrink, Jr., Electrophoresis 25, 187 (2004).
http://dx.doi.org/10.1002/elps.200305754
13.
13.B. J. Kirby and E. F. Hasselbrink, Jr., Electrophoresis 25, 203 (2004).
http://dx.doi.org/10.1002/elps.200305755
14.
14.L. Bousse and S. Mostarshed, J. Electroanal. Chem. Interfacial Electrochem. 302, 269 (1991).
http://dx.doi.org/10.1016/0022-0728(91)85046-R
15.
15.E. Lidén, M. Persson, E. Carlström, and R. Carlsson, J. Am. Ceram. Soc. 74, 1335 (1991).
http://dx.doi.org/10.1111/j.1151-2916.1991.tb04108.x
16.
16.N. B. Hubbard, L. L. Howell, J. P. Barber, D. B. Conkey, A. R. Hawkins, and H. Schmidt, J. Micromech. Microeng. 15, 720 (2005).
http://dx.doi.org/10.1088/0960-1317/15/4/008
17.
17.B. A. Peeni, D. B. Conkey, J. P. Barber, R. T. Kelly, M. L. Lee, A. T. Woolley, and A. R. Hawkins, Lab Chip 5, 501 (2005).
http://dx.doi.org/10.1039/b500870k
18.
18.B. A. Peeni, M. L. Lee, A. R. Hawkins, and A. T. Woolley, Electrophoresis 27, 4888 (2006).
http://dx.doi.org/10.1002/elps.200600399
19.
19.J. R. Lee, J. P. Barber, Z. A. George, M. L. Lee, H. Schmidt, and A. R. Hawkins, J. Micro/Nanolith. MEMS MOEMS 6, 013010 (2007).
20.
20.J. M. Edwards IV, M. N. Hamblin, N. V. Fuentes, B. A. Peeni, M. L. Lee, A. T. Woolley, and A. R. Hawkins, Biomicrofluidics 1, 014101 (2007).
http://dx.doi.org/10.1063/1.2372215
21.
21.M. Moini, P. Cao, and A. J. Bard, Anal. Chem. 71, 1658 (1999).
http://dx.doi.org/10.1021/ac9811266
22.
22.C. L. Rice and R. Whitehead, J. Phys. Chem. 69, 4017 (1965).
http://dx.doi.org/10.1021/j100895a062
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/3/10.1063/1.2752376
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Microfluidic channel layout and scanning electron micrographs. (a) Illustration of a multichannel electroosmotic pump followed by a single channel, and a single channel by itself. The reservoirs placed over the channel openings are used to introduce solutions and connect electrodes. (b) SEM of a cross section of a single small oxide channel within a multichannel electroosmotic pump layout. (c) SEM of a cross section of a -wide single oxide microchannel.

Image of FIG. 2.

Click to view

FIG. 2.

Zeta potential vs for PECVD silicon oxide and nitride microchannels compared against LPCVD silicon nitride (Ref. 14). For levels 2.6, 2.9, and 3.9, citrate buffer was used at a concentration of 10 mM at ionic strengths of 4.5, 8.7, and 22 mM, respectively. For levels 4.8, 6.0, 7.0, 8.0, and 8.3, phosphate buffer was used at a concentration of 10 mM at ionic strengths of 10, 12, 21, 28, and 30 mM, respectively. The LPCVD nitride curve spans a range from 2.4 to 6.2 with 10 mM NaCl (Ref. 14). The relative electrical permittivity was approximated to and the dynamic viscosity was approximated to . The microfluidic channels used have a width of and height of .

Image of FIG. 3.

Click to view

FIG. 3.

Fluid flow rate vs applied electric field for nitride multichannel and single-channel EOF pump systems. The dots indicate measured points, whereas the solid lines result from values calculated using Eqs. (1) and (3). The relative electrical permittivity was approximated to and the dynamic viscosity was approximated to . The EOF pump consists of 75 channels measuring wide and tall each, and the remainder of the microfluidic network was wide and tall.

Loading

Article metrics loading...

/content/aip/journal/bmf/1/3/10.1063/1.2752376
2007-07-09
2014-04-23

Abstract

Electroosmotic flow was studied in thin film microchannels with silicon dioxide and silicon nitride sidewalls formed using plasma-enhanced chemical vapor deposition(PECVD). A sacrificial etching process was employed for channel fabrication allowing for cross-sections with heights of , ranging from to in width. Flow rates were measured for single channels and multichannel electroosmotic pump structures for levels ranging from 2.6 to 8.3, and zeta potentials were calculated for both silicon dioxide and silicon nitride surfaces. Flow rates as high as were measured for nitride multichannel pumps at applied electric fields of 300 V/mm. The surface characteristics of PECVD nitride were analyzed and compared to more well-known oxide surfaces to determine the density of amine sites compared to silanol sites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/3/1.2752376.html;jsessionid=1mcuh6qqvcbbs.x-aip-live-02?itemId=/content/aip/journal/bmf/1/3/10.1063/1.2752376&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electroosmotic flow in vapor deposited silicon dioxide and nitride microchannels
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/3/10.1063/1.2752376
10.1063/1.2752376
SEARCH_EXPAND_ITEM