1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Cell encapsules with tunable transport and mechanical properties
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Artie McFerrin, Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA and INEST (Interdisciplinary Network of Emerging Science and Technologies) Group Postgraduate Program, Philip Morris USA, Richmond, Virginia 23234, USA
    2 Artie McFerrin, Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
    3 NIST Center for Theoretical and Computational Nanosciences, Gaithersburg, Maryland 20899, USA, Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona 85287, USA and Research Center, Philip Morris USA, 4201 Commerce Road, Richmond, Virginia 23234, USA
    4 Artie McFerrin, Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
    Biomicrofluidics 1, 034102 (2007); http://dx.doi.org/10.1063/1.2757156
/content/aip/journal/bmf/1/3/10.1063/1.2757156
1.
1.F. Lim and A. M. Sun, Science 210, 908 (1980).
http://dx.doi.org/10.1126/science.6776628
2.
2.A. Al-Hendy, G. Hortelano, G. S Tannenbaum, and P. L Chang, Hum. Gene Ther. 7, 61 (1996).
3.
3.P. L. Chang, N. Shen, and A. J. Westcott, Hum. Gene Ther. 4, 433 (1993).
4.
4.W. Xu, L. Liu, and I. G. Charles, FASEB J. 16, 213 (2002).
5.
5.T. M. Chang, Science 146, 524 (1964).
http://dx.doi.org/10.1126/science.146.3643.524
6.
6.G. Orive, M. Rosa, A. R. Gascon, R. Calafiore, T. M. S. Chang, P. De Vos, G. Hortelano, D. Hunkeler, I. Lacik, A. M. J. Shapiro, and J. L. Pedraz, Nat. Med. 9, 104 (2003).
7.
7.H. Gin, B. Dupuy, C. Baquey, D. Ducassou, and J. Aubertin, J. Microencapsul. 4, 239 (1987).
8.
8.Y. Aomatsu, H. Iwata, T. Takagi, H. Amemiya, Y. Nakajima, H. Kanehiro, M. Hisanaga, T. Fukuoka, and H. Nakano, Transplant. Proc. 24, 2922 (1992).
9.
9.H. Iwata, T. Takagi, and H. Amemiya, Transplant. Proc. 24, 952 (1992).
10.
10.H. Iwata, T. Takagi, Iwata, K. Yamashita, K. Kobayashi, and H. Amemiya, Transplant. Proc. 24, 997 (1992).
11.
11.S. T. Lim, G. P. Martin, D. J. Berry, and M. B. Brown, J. Controlled Release 66, 281 (2000).
12.
12.A. J. Ribeiro, R. J. Neufeld, P. Arnaud, and J. C. Chaumeil, Int. J. Pharm. 187, 115 (1999).
13.
13.S. Sakai, K. Kawabata, T. Ono, H. Ijima, and K. Kawakami, Biotechnol. Bioeng. 86, 168 (2004).
http://dx.doi.org/10.1002/bit.20006
14.
14.S. Sakai, K. Kawabata, T. Ono, H. Ijima, and K. Kawakami, Biomaterials 26, 4786 (2005).
15.
15.D. R. Meldrum and M. R. Holl, Science 297, 1197 (2002).
http://dx.doi.org/10.1126/science.297.5584.1197
16.
16.V. L. Workman, S. B. Dunnett, P. Kille, and D. D. Palmer, Biomicrofluidics 1, 014105 (2007).
http://dx.doi.org/10.1063/1.2431860
17.
17.S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima, Biomaterials 26, 3327 (2005).
18.
18.S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett. 82, 364 (2003).
http://dx.doi.org/10.1063/1.1537519
19.
19.Q. Xu and M. Nakajima, Appl. Phys. Lett. 85, 3726 (2004).
http://dx.doi.org/10.1063/1.1812380
20.
20.T. Ward, M. Faivre, M. Abkarian, and H. A. Stone, Electrophoresis 26, 3716 (2005).
http://dx.doi.org/10.1002/elps.200500173
21.
21.C. K. Colton, Trends Biotechnol. 14, 158 (1996).
22.
22.P. T. Hammond, Adv. Math. 16, 1271 (2004).
23.
23.Y. N. Xia and G. M. Whitesides, Angew. Chem., Int. Ed. 37, 550 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.3.CO;2-7
24.
24.J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/3/10.1063/1.2757156
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Production of uniform agarose micro-gel capsules. (a) Experimental setup for generating agarose gelled particles. Agarose solution pinches into droplets in the microfluidic device. The droplets are collected in a glass vial placed in an ice bath to initiate the gelation of agarose (b) Schematic of the microfluidics device with flow focusing geometry producing agarose droplets. Agarose solution is introduced into the center channel and two streams of oil are flowed into two side channels. (c) Variation of droplet size with the flow rates of oil and aqueous phases (d) Droplet size distribution when oil flow rate was and aqueous flow rate was . Dotted line represents the Gaussian fit. Drop diameter is (e) Micrograph of gelled agarose particles.

Image of FIG. 2.

Click to view

FIG. 2.

Yeast cells encapsulation in agarose capsules captured by a fast camera. The production rate of the microcapsule was about 100 Hz. Frame rate of the fast camera is 2200 frames per second. The concentration of yeast suspension measured at 600 nm optical density is . The oil flow rate was and agarose flow rate was .

Image of FIG. 3.

Click to view

FIG. 3.

Mass transfer of Rhodamine B in uncoated and 5-layer polyelectrolytes coated agarose gel particles. Lines are fit of equation (1) to calculate the diffusion coefficients.

Image of FIG. 4.

Click to view

FIG. 4.

Comparison of mechanical stability for uncoated agarose particles , 5-layer polyelectrolyte coating , and 5-layer polyelectrolyte plus 20-nm-silica coating .

Loading

Article metrics loading...

/content/aip/journal/bmf/1/3/10.1063/1.2757156
2007-07-10
2014-04-19

Abstract

We utilized a microfluidic device with hydrodynamic flow focusing geometry to produce uniform agarose droplets in the range of 50 to . The transport property of the thermally gelled particles was tailored by layer-by-layer (LBL) polyelectrolytes coating on the surface and was measured via the release rates of Rhodamine B. The mechanical strength of the capsules was further enhanced by a coating of silica nano-particles in addition to polyelectrolyte coatings. We demonstrated that yeast cells can be successfully encapsulated into agarose capsules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/3/1.2757156.html;jsessionid=1mnl3s3smkf9r.x-aip-live-01?itemId=/content/aip/journal/bmf/1/3/10.1063/1.2757156&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Cell encapsules with tunable transport and mechanical properties
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/3/10.1063/1.2757156
10.1063/1.2757156
SEARCH_EXPAND_ITEM