Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature (London) 412, 166 (2001).
2.A. J. Storm, J. H. Chen, H. W. Zandbergen, and C. Dekker, Phys. Rev. E 71, 051903 (2005).
3.A. J. Storm, C. Storm, J. H. Chen, H. Zandbergen, J. F. Joanny, and C. Dekker, Nano Lett. 5, 1193 (2005).
4.C. H. Wei, P. H. Tsao, W. Farm, P. K. Wei, J. O. Tegenfeldt, and R. H. Austin, J. Opt. Soc. Am. B 21, 1005 (2004).
5.J. Han and H. G. Craighead, Science 288, 1026 (2000).
6.S. W. P. Turner, M. Cabodi, and H. G. Craighead, Phys. Rev. Lett. 88, 128103 (2002).
7.M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
8.K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, Biophys. J. 88, 2145 (2005).
9.M. Cabodi, Y. F. Chen, S. W. P. Turner, H. G. Craighead, and R. H. Austin, Electrophoresis 23, 3496 (2002).<3496::AID-ELPS3496>3.0.CO;2-9
10.M. Foquet, J. Korlach, W. Zipfel, W. W. Webb, and H. G. Craighead, Anal. Chem. 74, 1415 (2002).
11.H. P. Chou, C. Spence, A. Scherer, and S. Quake, Proc. Natl. Acad. Sci. U.S.A. 96, 11 (1999).
12.R. Riehn, M. C. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, Proc. Natl. Acad. Sci. U.S.A. 102, 10012 (2005).
13.W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. N. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, Phys. Rev. Lett. 94, 196101 (2005).
14.J. O. Tegenfeldt, H. Cao, W. W. Reisner, C. Prinz, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, Biophys. J. 86, 596A (2004).
15.J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, Proc. Natl. Acad. Sci. U.S.A. 101, 10979 (2004).
16.M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, Anal. Chem. 76, 1618 (2004).
17.S. M. Stavis, J. B. Edel, K. T. Samiee, and H. G. Craighead, Lab Chip 5, 337 (2005).
18.S. M. Stavis, J. B. Edel, Y. G. Li, K. T. Samiee, D. Luo, and H. G. Craighead, Nanotechnology 16, S314 (2005).
19.S. M. Stavis, J. B. Edel, Y. G. Li, K. T. Samiee, D. Luo, and H. G. Craighead, J. Appl. Phys. 98, 044903 (2005).
20.N. A. Saunders, Real-Time PCR: An Essential Guide, edited by K. Edwards, J. Logan, and N. Saunders (Horizon Bioscience, Wymondham, Norfolk, UK, 2004), Chap. 6, pp. 103123.
21.R. G. Rutledge and C. Cote, Nucleic Acids Res. 31, 93 (2003).
22.S. S. Verbridge, J. B. Edel, S. M. Stavis, J. M. Moran-Mirabal, S. D. Allen, G. Coates, and H. G. Craighead, J. Appl. Phys. 97, 124317 (2005).
23.D. Magde, W. W. Webb, and E. Elson, Phys. Rev. Lett. 29, 705 (1972).
24.D. Magde, E. L. Elson, and W. W. Webb, Biopolymers 13, 29 (1974).
25.E. L. Elson and D. Magde, Biopolymers 13, 1 (1974).
26.D. Magde and E. L. Elson, Biopolymers 17, 361 (1978).
27.P. Schwille, F. J. MeyerAlmes, and R. Rigler, Biophys. J. 72, 1878 (1997).
28.R. Rigler, Z. Foldes-Papp, F. J. Meyer-Alme, C. Sammet, M. Volcker, and A. Schnetz, J. Biotechnol. 63, 97 (1998).
29.Q. F. Gao and E. S. Yeung, Anal. Chem. 70, 1382 (1998).

Data & Media loading...


Article metrics loading...



Laser induced fluorescence in submicrometer fluidic channels was used to characterize the synthesis of polymerase chain reaction(PCR) products from a model bacterial system in order to explore the advantages and limitations of on chip real time single molecule PCRanalysis. Single oligonucleotide universal bacterial primers and PCR amplicons from the 16S rDNA of Thermobifida fusca (325 bp) were directly detected at all phases of the reaction with low sample consumption and without post-amplification purification or size screening. Primers were fluorescently labeled with single Alexa Fluor 488 or Alexa Fluor 594 fluorophores, resulting in double labeled, two color amplicons. PCR products were driven electrokinetically through a fused silica channel with a 250 nm by 500 nm rectangular cross section. Lasers with 488 nm and 568 nm wavelengths were focused and overlapped on the channel for fluorescence excitation. All molecules entering the channel were rapidly and uniformly analyzed.Photon burst analysis was used to detect and identify individual primers and amplicons, and fluorescence correlation and cross-correlation spectroscopy were used to account for analyte flow speed. Conventional gel and capillary electrophoresis were also used to characterize the PCR amplification, and the results of differences in detection sensitivity and analyte discrimination were examined. Limits were imposed by the purity and labeling efficiency of the PCR reagents, which must be improved in parallel with increases in detection sensitivity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd