1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Real-time detection, control, and sorting of microfluidic droplets
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/1/4/10.1063/1.2795392
1.
1.T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4163
2.
2.H. Song, D. L. Chen, and R. F. Ismagilov, Angew. Chem., Int. Ed. 45, 7336 (2006).
http://dx.doi.org/10.1002/anie.200601554
3.
3.A. J. deMello, Nature (London) 442, 394 (2006).
http://dx.doi.org/10.1038/nature05062
4.
4.A. R. Wheeler, H. Moon H, C. A. Bird, R. R. O. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, Anal. Chem. 77, 534 (2005).
http://dx.doi.org/10.1021/ac048754+
5.
5.L. F. Cheow, L. Yobas, and D. L. Kwong, Appl. Phys. Lett. 90, 054107 (2007).
http://dx.doi.org/10.1063/1.2435607
6.
6.H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, Appl. Phys. Lett. 83, 4664 (2003).
http://dx.doi.org/10.1063/1.1630378
7.
7.P. B. Umbanhowar, V. Prasad, and D. A. Weitz, Langmuir 16, 347 (2000).
http://dx.doi.org/10.1021/la990101e
8.
8.X. Zhang and K. Y. Chan, Chem. Mater. 15, 451 (2003).
http://dx.doi.org/10.1021/cm0203868
9.
9.M. J. Fuerstman, P. Garstecki, and G. M. Whitesides, Science 315, 828 (2007).
10.
10.H. Willaime, V. Barbier, L. Kloul, S. Maine, and P. Tabeling, Phys. Rev. Lett. 96, 054501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.054501
11.
11.L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea, and A. P. Lee, Lab Chip 6, 174 (2006).
http://dx.doi.org/10.1039/b513908b
12.
12.M. Y. He, J. S. Kuo, and D. T. Chiu, Appl. Phys. Lett. 87, 031916 (2005).
http://dx.doi.org/10.1063/1.1997280
13.
13.P. Guillot and A. Colin, Phys. Rev. E 72, 066301 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.066301
14.
14.M. A. Schwarz and P. C. Hauser, 1, 1 (2001).
15.
15.N. T. Nguyen, S. Lassemono, and F. A. Chollet, Sensor Actuat., Biol. Chem. 117, 431 (2006).
16.
16.W. P. Eaton and J. H. Smith, Smart Mater. Struct. 6, 530 (1997).
http://dx.doi.org/10.1088/0964-1726/6/5/004
17.
17.C. Berggren, B. Bjarnason, and G. Johansson, Electroanalysis 13, 173 (2001).
http://dx.doi.org/10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B
18.
18.D. K. Wood, S. H. Oh, S. H. Lee, H. T. Soh, and A. N. Cleland, Appl. Phys. Lett. 87, 184106 (2005).
http://dx.doi.org/10.1063/1.2125111
19.
19.G. Marchand, C. Delattre, R. Campagnolo, P. Pouteau, and F. Ginot, Anal. Chem. 77, 5189 (2005).
http://dx.doi.org/10.1021/ac0505066
20.
20.G. A. Ferrier, A. N. Hladio, D. J. Thomson, G. E. Bridges, M. Hedayatipoor, S. Olson and M. Freeman, NSTI Nanotech (2007).
21.
21.L. L. Sohn, O. A. Saleh, G. R. Facer, A. J. Beavis, R. S. Allan, and D. A. Notterman, Proc. Natl. Acad. Sci. U.S.A. 97, 10687 (2000).
http://dx.doi.org/10.1073/pnas.200361297
22.
22.X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, Adv. Mater. 19, 2682 (2007).
23.
23.G. Cristobal, J. P. Benoit, M. Joanicot, and A. Ajdari, Appl. Phys. Lett. 89, 034104 (2006).
http://dx.doi.org/10.1063/1.2221929
24.
24.C. Priest, S. Herminghaus, and R. Seemannc, Appl. Phys. Lett. 89, 134101 (2006).
http://dx.doi.org/10.1063/1.2357039
25.
25.K. Ahn, J. Agresti, H. Chong, M. Marquez, and D. A. Weitz, Appl. Phys. Lett. 88, 264105 (2006).
http://dx.doi.org/10.1063/1.2218058
26.
26.D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. D. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, Angew. Chem., Int. Ed. 45, 2556 (2006).
http://dx.doi.org/10.1002/anie.200503540
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/4/10.1063/1.2795392
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic view of the microfluidic chip, with a -shaped inlet to generate aqueous droplets and three pairs of coplanar electrodes along the main flow channel for detection and control. The two branches in the downstream are for droplet sorting. (b) A schematic 3-dimensional view of the capacitive droplet detection area.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Processing flow of microfluidic chip fabrication using soft lithography. (b) An optical image of the channel mold and conductive components. (c) and (d) are optical images of the droplet detection area and directional flow control area, captured with an inverted microscope. Scale bar in (d): .

Image of FIG. 3.

Click to view

FIG. 3.

(a) Schematics of the experimental setup for droplet detection and control. The detection circuit is composed of four parts as depicted in the dashed frame. (b) Optical image of the circuit board and the mounted chip for droplet detection.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Relative amplitude of the voltage signal versus droplet volume. (b) Micrographs of droplets with lengths that are larger (case 1), equal (case 2), and smaller (case 3) than the electrode width. (c) Detected capacitive signals corresponding to the three droplets shown in (b).

Image of FIG. 5.

Click to view

FIG. 5.

(a) Optical image of a group of DI water droplets with different sizes. Small amount of dyes (without causing detectable variation of the dielectric constant for the droplets) was added for labeling. The detected signals are depicted in (b).

Image of FIG. 6.

Click to view

FIG. 6.

(a) Optical image of a train of droplets generated in a flow focusing channel. (b) Detected signals. The dashed line denotes the threshold voltage of the comparator. (c) Square wave signals generated by the comparator that can be used directly for droplet control.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Schematic illustration showing the fork-shaped electrodes for droplet size and velocity detection. (b) and (c) are the optical images for big and small droplets passing through fork-shaped electrodes, respectively. The detected voltage signals are depicted in (d), and are marked according to droplets’ positions in (b) and (c).

Image of FIG. 8.

Click to view

FIG. 8.

(a) Image of a fork branch to separate droplets of the same size but different composition. (b) Detected signals with arrows pointing to the corresponding droplets.

Image of FIG. 9.

Click to view

FIG. 9.

(a) Flow chart of the feedback control circuit for droplet control. (b) and (c) Images showing the deflection of the droplets to either the upper or lower branch. (d) Image showing droplet sorting. All the water droplets are directed to the upper branch, whereas the light-colored ethylene glycol droplets are directed to the lower branch.

Loading

Article metrics loading...

/content/aip/journal/bmf/1/4/10.1063/1.2795392
2007-10-03
2014-04-19

Abstract

We report the design and implementation of capacitive detection and control of microfluidicdroplets in microfluidic devices. Integrated microfluidic chip(s) with detection/control circuit enables us to monitor in situ the individual volume of droplets, ranging from nanoliter to picoliter, velocity and even composition, with an operation frequency of several kilohertz. Through electronic feedback, we are able to easily count, sort, and direct the microfluidicdroplets. Potential applications of this approach can be employed in the areas of biomicrofluidic processing, microchemical reactions as well as digital microfluidics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/4/1.2795392.html;jsessionid=mmhqeud730ae.x-aip-live-03?itemId=/content/aip/journal/bmf/1/4/10.1063/1.2795392&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Real-time detection, control, and sorting of microfluidic droplets
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/4/10.1063/1.2795392
10.1063/1.2795392
SEARCH_EXPAND_ITEM