1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Real-time detection, control, and sorting of microfluidic droplets
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/1/4/10.1063/1.2795392
1.
1.T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4163
2.
2.H. Song, D. L. Chen, and R. F. Ismagilov, Angew. Chem., Int. Ed. 45, 7336 (2006).
http://dx.doi.org/10.1002/anie.200601554
3.
3.A. J. deMello, Nature (London) 442, 394 (2006).
http://dx.doi.org/10.1038/nature05062
4.
4.A. R. Wheeler, H. Moon H, C. A. Bird, R. R. O. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, Anal. Chem. 77, 534 (2005).
http://dx.doi.org/10.1021/ac048754+
5.
5.L. F. Cheow, L. Yobas, and D. L. Kwong, Appl. Phys. Lett. 90, 054107 (2007).
http://dx.doi.org/10.1063/1.2435607
6.
6.H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, Appl. Phys. Lett. 83, 4664 (2003).
http://dx.doi.org/10.1063/1.1630378
7.
7.P. B. Umbanhowar, V. Prasad, and D. A. Weitz, Langmuir 16, 347 (2000).
http://dx.doi.org/10.1021/la990101e
8.
8.X. Zhang and K. Y. Chan, Chem. Mater. 15, 451 (2003).
http://dx.doi.org/10.1021/cm0203868
9.
9.M. J. Fuerstman, P. Garstecki, and G. M. Whitesides, Science 315, 828 (2007).
10.
10.H. Willaime, V. Barbier, L. Kloul, S. Maine, and P. Tabeling, Phys. Rev. Lett. 96, 054501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.054501
11.
11.L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea, and A. P. Lee, Lab Chip 6, 174 (2006).
http://dx.doi.org/10.1039/b513908b
12.
12.M. Y. He, J. S. Kuo, and D. T. Chiu, Appl. Phys. Lett. 87, 031916 (2005).
http://dx.doi.org/10.1063/1.1997280
13.
13.P. Guillot and A. Colin, Phys. Rev. E 72, 066301 (2005).
http://dx.doi.org/10.1103/PhysRevE.72.066301
14.
14.M. A. Schwarz and P. C. Hauser, 1, 1 (2001).
15.
15.N. T. Nguyen, S. Lassemono, and F. A. Chollet, Sensor Actuat., Biol. Chem. 117, 431 (2006).
16.
16.W. P. Eaton and J. H. Smith, Smart Mater. Struct. 6, 530 (1997).
http://dx.doi.org/10.1088/0964-1726/6/5/004
17.
17.C. Berggren, B. Bjarnason, and G. Johansson, Electroanalysis 13, 173 (2001).
http://dx.doi.org/10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B
18.
18.D. K. Wood, S. H. Oh, S. H. Lee, H. T. Soh, and A. N. Cleland, Appl. Phys. Lett. 87, 184106 (2005).
http://dx.doi.org/10.1063/1.2125111
19.
19.G. Marchand, C. Delattre, R. Campagnolo, P. Pouteau, and F. Ginot, Anal. Chem. 77, 5189 (2005).
http://dx.doi.org/10.1021/ac0505066
20.
20.G. A. Ferrier, A. N. Hladio, D. J. Thomson, G. E. Bridges, M. Hedayatipoor, S. Olson and M. Freeman, NSTI Nanotech (2007).
21.
21.L. L. Sohn, O. A. Saleh, G. R. Facer, A. J. Beavis, R. S. Allan, and D. A. Notterman, Proc. Natl. Acad. Sci. U.S.A. 97, 10687 (2000).
http://dx.doi.org/10.1073/pnas.200361297
22.
22.X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, Adv. Mater. 19, 2682 (2007).
23.
23.G. Cristobal, J. P. Benoit, M. Joanicot, and A. Ajdari, Appl. Phys. Lett. 89, 034104 (2006).
http://dx.doi.org/10.1063/1.2221929
24.
24.C. Priest, S. Herminghaus, and R. Seemannc, Appl. Phys. Lett. 89, 134101 (2006).
http://dx.doi.org/10.1063/1.2357039
25.
25.K. Ahn, J. Agresti, H. Chong, M. Marquez, and D. A. Weitz, Appl. Phys. Lett. 88, 264105 (2006).
http://dx.doi.org/10.1063/1.2218058
26.
26.D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. D. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, Angew. Chem., Int. Ed. 45, 2556 (2006).
http://dx.doi.org/10.1002/anie.200503540
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/4/10.1063/1.2795392
Loading
/content/aip/journal/bmf/1/4/10.1063/1.2795392
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/1/4/10.1063/1.2795392
2007-10-03
2014-10-20

Abstract

We report the design and implementation of capacitive detection and control of microfluidicdroplets in microfluidic devices. Integrated microfluidic chip(s) with detection/control circuit enables us to monitor in situ the individual volume of droplets, ranging from nanoliter to picoliter, velocity and even composition, with an operation frequency of several kilohertz. Through electronic feedback, we are able to easily count, sort, and direct the microfluidicdroplets. Potential applications of this approach can be employed in the areas of biomicrofluidic processing, microchemical reactions as well as digital microfluidics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/1/4/1.2795392.html;jsessionid=ytcfl8c3k8ap.x-aip-live-02?itemId=/content/aip/journal/bmf/1/4/10.1063/1.2795392&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Real-time detection, control, and sorting of microfluidic droplets
http://aip.metastore.ingenta.com/content/aip/journal/bmf/1/4/10.1063/1.2795392
10.1063/1.2795392
SEARCH_EXPAND_ITEM