Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/10/1/10.1063/1.4940884
1.
1. M. D. Tarn and N. Pamme, “ Microfluidics,” in Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, edited by J. Reedijk ( Elsevier, Waltham, MA, 2013).
2.
2. P. N. Nge, C. I. Rogers, and A. T. Woolley, “ Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 25502583 (2013).
http://dx.doi.org/10.1021/cr300337x
3.
3. G. M. Whitesides, “ The origins and the future of microfluidics,” Nature 442(7101), 368373 (2006).
http://dx.doi.org/10.1038/nature05058
4.
4. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “ The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181189 (2014).
http://dx.doi.org/10.1038/nature13118
5.
5. D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, “ Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74(12), 26232636 (2002).
http://dx.doi.org/10.1021/ac0202435
6.
6. P.-A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, “ Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74(12), 26372652 (2002).
http://dx.doi.org/10.1021/ac020239t
7.
7. T. Vilkner, D. Janasek, and A. Manz, “ Micro total analysis systems. Recent developments,” Anal. Chem. 76(12), 33733386 (2004).
http://dx.doi.org/10.1021/ac040063q
8.
8. P. S. Dittrich, K. Tachikawa, and A. Manz, “ Micro total analysis systems. Latest advancements and trends,” Anal. Chem. 78(12), 38873908 (2006).
http://dx.doi.org/10.1021/ac0605602
9.
9. J. West, M. Becker, S. Tombrink, and A. Manz, “ Micro total analysis systems: Latest achievements,” Anal. Chem. 80(12), 44034419 (2008).
http://dx.doi.org/10.1021/ac800680j
10.
10. A. Arora, G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, “ Latest developments in micro total analysis systems,” Anal. Chem. 82(12), 48304847 (2010).
http://dx.doi.org/10.1021/ac100969k
11.
11. G. B. Salieb-Beugelaar, G. Simone, A. Arora, A. Philippi, and A. Manz, “ Latest developments in microfluidic cell biology and analysis systems,” Anal. Chem. 82(12), 48484864 (2010).
http://dx.doi.org/10.1021/ac1009707
12.
12. M. L. Kovarik, P. C. Gach, D. M. Ornoff, Y. Wang, J. Balowski, L. Farrag, and N. L. Allbritton, “ Micro total analysis systems for cell biology and biochemical assays,” Anal. Chem. 84(2), 516540 (2012).
http://dx.doi.org/10.1021/ac202611x
13.
13. M. L. Kovarik, D. M. Ornoff, A. T. Melvin, N. C. Dobes, Y. Wang, A. J. Dickinson, P. C. Gach, P. K. Shah, and N. L. Allbritton, “ Micro total analysis systems: Fundamental advances and applications in the laboratory, clinic, and field,” Anal. Chem. 85(2), 451472 (2013).
http://dx.doi.org/10.1021/ac3031543
14.
14. C. T. Culbertson, T. G. Mickleburgh, S. A. Stewart-James, K. A. Sellens, and M. Pressnall, “ Micro total analysis systems: Fundamental advances and biological applications,” Anal. Chem. 86(1), 95118 (2014).
http://dx.doi.org/10.1021/ac403688g
15.
15. L. R. Volpatti and A. K. Yetisen, “ Commercialization of microfluidic devices,” Trends Biotechnol. 32(7), 347350 (2014).
http://dx.doi.org/10.1016/j.tibtech.2014.04.010
16.
16. C. D. Chin, V. Linder, and S. K. Sia, “ Commercialization of microfluidic point-of-care diagnostic devices,” Lab Chip 12(12), 21182134 (2012).
http://dx.doi.org/10.1039/c2lc21204h
18.
18.Microfluidics Directory, http://www.microfluidicsdirectory.com/home.html for Microfluidics Consortium, 2015.
19.
19. C. W. T. Yang, E. Ouellet, and E. T. Lagally, “ Using inexpensive Jell-O chips for hands-on microfluidics education,” Anal. Chem. 82(13), 54085414 (2010).
http://dx.doi.org/10.1021/ac902926x
20.
20. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “ Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 49744984 (1998).
http://dx.doi.org/10.1021/ac980656z
21.
21. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “ Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 2740 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
22.
22. T. A. Davis, S. L. Athey, M. L. Vandevender, C. L. Crihfield, C. C. E. Kolanko, S. Shao, M. C. G. Ellington, J. K. Dicks, J. S. Carver, and L. A. Holland, “ Electrolysis of water in the secondary school science laboratory with inexpensive microfluidics,” J. Chem. Educ. 92(1), 116119 (2015).
http://dx.doi.org/10.1021/ed400757m
23.
23. D. Bardin and A. P. Lee, “ Low-cost experimentation for the study of droplet microfluidics,” Lab Chip 14(20), 39783986 (2014).
http://dx.doi.org/10.1039/C4LC00424H
24.
24. M. Jimenez and H. L. Bridle, “ Angry pathogens, how to get rid of them: Introducing microfluidics for waterborne pathogen separation to children,” Lab Chip 15(4), 947957 (2015).
http://dx.doi.org/10.1039/C4LC00944D
25.
25. D. Nguyen, J. McLane, V. Lew, J. Pegan, and M. Khine, “ Shrink-film microfluidic education modules: Complete devices within minutes,” Biomicrofluidics 5(2), 022209 (2011).
http://dx.doi.org/10.1063/1.3576930
26.
26. A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “ Shrinky-Dink microfluidics: Rapid generation of deep and rounded patterns,” Lab Chip 8(1), 170172 (2008).
http://dx.doi.org/10.1039/B711622E
27.
27. Z. V. Feng, K. R. Edelman, and B. P. Swanson, “ Student-fabricated microfluidic devices as flow reactors for organic and inorganic synthesis,” J. Chem. Educ. 92(4), 723727 (2015).
http://dx.doi.org/10.1021/ed5005307
28.
28. M. Hemling, J. A. Crooks, P. M. Oliver, K. Brenner, J. Gilbertson, G. C. Lisensky, and D. B. Weibel, “ Microfluidics for high school chemistry students,” J. Chem. Educ. 91(1), 112115 (2014).
http://dx.doi.org/10.1021/ed4003018
29.
29. T. C. DeVore, B. H. Augustine, A. M. Christenson, and G. W. Corder, “ A photolithography laboratory experiment for general chemistry students,” J. Chem. Educ. 80(2), 183186 (2003).
http://dx.doi.org/10.1021/ed080p183
30.
30. K. L. Berkowski, K. N. Plunkett, Q. Yu, and J. S. Moore, “ Introduction to photolithography: Preparation of microscale polymer silhouettes,” J. Chem. Educ. 82(9), 13651369 (2005).
http://dx.doi.org/10.1021/ed082p1365
31.
31. P. K. Yuen and V. N. Goral, “ Low-cost rapid prototyping of whole-glass microfluidic devices,” J. Chem. Educ. 89(10), 12881292 (2012).
http://dx.doi.org/10.1021/ed3000292
32.
32. Y. Zheng, J. Nguyen, Y. Wei, and Y. Sun, “ Recent advances in microfluidic techniques for single-cell biophysical characterization,” Lab Chip 13(13), 24642483 (2013).
http://dx.doi.org/10.1039/c3lc50355k
33.
33. M. C. Chia, C. M. Sweeney, and T. W. Odom, “ Chemistry in microfluidic channels,” J. Chem. Educ. 88(4), 461464 (2011).
http://dx.doi.org/10.1021/ed1008624
34.
34. P. A. E. Piunno, A. Zetina, N. Chu, A. J. Tavares, M. O. Noor, E. Petryayeva, U. Uddayasankar, and A. Veglio, “ A comprehensive microfluidics device construction and characterization module for the advanced undergraduate analytical chemistry laboratory,” J. Chem. Educ. 91(6), 902907 (2014).
http://dx.doi.org/10.1021/ed400728a
35.
35. W. Mielczarek, T. J. Aspray, F. Mallevre, M. Jimenez, J. McGrath, P. Cameron, H. Bridle, and M. Kersaudy-Kerhoas, “ “Microworld and microflows”: Initiating school children to microfluidics,” paper presented at the 4th European Conference on Microfluidics (μFlu'14), Limerick, Ireland, 2014.
36.
36. M. Junkin and S. Tay, “ Microfluidic single-cell analysis for systems immunology,” Lab Chip 14(7), 12461260 (2014).
http://dx.doi.org/10.1039/c3lc51182k
37.
37. J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, “ Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141157 (2009).
http://dx.doi.org/10.1016/j.aca.2009.07.017
38.
38. G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “ Microfluidic tools for cell biological research,” Nano Today 5(1), 2847 (2010).
http://dx.doi.org/10.1016/j.nantod.2009.12.001
39.
39. I. Meyvantsson and D. J. Beebe, “ Cell culture models in microfluidic systems,” Annu. Rev. Anal. Chem. 1(1), 423449 (2008).
http://dx.doi.org/10.1146/annurev.anchem.1.031207.113042
40.
40. S. Teerasong and R. L. McClain, “ A student-made microfluidic device for electrophoretic separation of food dyes,” J. Chem. Educ. 88(4), 465467 (2011).
http://dx.doi.org/10.1021/ed100717m
41.
41. T.-C. Chao, S. Bhattacharya, and A. Ros, “ Microfluidic gel electrophoresis in the undergraduate laboratory applied to food analysis,” J. Chem. Educ. 89(1), 125129 (2012).
http://dx.doi.org/10.1021/ed101064p
42.
42. B. Giri, R. R. Peesara, N. Yanagisawa, and D. Dutta, “ Undergraduate laboratory module for implementing ELISA on the high performance microfluidic platform,” J. Chem. Educ. 92(4), 728732 (2015).
http://dx.doi.org/10.1021/ed4009107
43.
43. Y. Fintschenko, “ Education: A modular approach to microfluidics in the teaching laboratory,” Lab Chip 11(20), 33943400 (2011).
http://dx.doi.org/10.1039/c1lc90069b
44.
44. D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, “ Recent developments in paper-based microfluidic devices,” Anal. Chem. 87(1), 1941 (2015).
http://dx.doi.org/10.1021/ac503968p
45.
45. A. K. Yetisen, M. S. Akram, and C. R. Lowe, “ Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 22102251 (2013).
http://dx.doi.org/10.1039/c3lc50169h
46.
46. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “ Patterned paper as a platform for inexpensive, low-volume, portable bioassays,” Angew. Chem. Int. Ed. 46(8), 13181320 (2007).
http://dx.doi.org/10.1002/anie.200603817
47.
47. L. Cai, Y. Wu, C. Xu, and Z. Chen, “ A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract,” J. Chem. Educ. 90(2), 232234 (2013).
http://dx.doi.org/10.1021/ed300385j
48.
48. R. R. Ravgiala, S. Weisburd, R. Sleeper, A. Martinez, D. Rozkiewicz, G. M. Whitesides, and K. A. Hollar, “ Using paper-based diagnostics with high school students to model forensic investigation and colorimetric analysis,” J. Chem. Educ. 91(1), 107111 (2014).
http://dx.doi.org/10.1021/ed300261a
49.
49. B. Wang, Z. Lin, and M. Wang, “ Fabrication of a paper-based microfluidic device to readily determine nitrite ion concentration by simple colorimetric assay,” J. Chem. Educ. 92(4), 733736 (2015).
http://dx.doi.org/10.1021/ed500644m
50.
50. M. T. Koesdjojo, S. Pengpumkiat, Y. Wu, A. Boonloed, D. Huynh, T. P. Remcho, and V. T. Remcho, “ Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom,” J. Chem. Educ. 92(4), 737741 (2015).
http://dx.doi.org/10.1021/ed500401d
51.
51. T. Bowman, J. Frechette, and G. Drazer, “ Force driven separation of drops by deterministic lateral displacement,” Lab Chip 12(16), 29032908 (2012).
http://dx.doi.org/10.1039/c2lc40234c
52.
52. T. J. Bowman, G. Drazer, and J. Frechette, “ Inertia and scaling in deterministic lateral displacement,” Biomicrofluidics 7(6), 064111 (2013).
http://dx.doi.org/10.1063/1.4833955
53.
53.Microfluidics@Rutgers website, https://sites.google.com/site/rutgersmicrofluidics/Home, accessed 2015.
54.
54. L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “ Continuous particle separation through deterministic lateral displacement,” Science 304(5673), 987990 (2004).
http://dx.doi.org/10.1126/science.1094567
55.
55. J. McGrath, M. Jimenez, and H. Bridle, “ Deterministic lateral displacement for particle separation: A review,” Lab Chip 14(21), 41394158 (2014).
http://dx.doi.org/10.1039/C4LC00939H
56.
56. H. Bridle, B. Miller, and M. P. Y. Desmulliez, “ Application of microfluidics in waterborne pathogen monitoring: A review,” Water Res. 55, 256271 (2014).
http://dx.doi.org/10.1016/j.watres.2014.01.061
57.
57. H. Bridle, M. Kersaudy-Kerhoas, B. Miller, D. Gavriilidou, F. Katzer, E. A. Innes, and M. P. Y. Desmulliez, “ Detection of Cryptosporidium in miniaturised fluidic devices,” Water Res. 46(6), 16411661 (2012).
http://dx.doi.org/10.1016/j.watres.2012.01.010
58.
58.Hull Science Festival, www2.hull.ac.uk/science/sciencefestival.aspx for University of Hull, 2015.
59.
59.See supplementary material at http://dx.doi.org/10.1063/1.4940884 for the questionnaire given to school students, the raw data taken from the questionnaire responses, and the A4 posters used to explain the activity and its background at each workstation.[Supplementary Material]
60.
60. C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “ 3D printed microfluidics for biological applications,” Lab Chip 15(18), 36273637 (2015).
http://dx.doi.org/10.1039/C5LC00685F
61.
61. S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, “ Generation of gradients having complex shapes using microfluidic networks,” Anal. Chem. 73(6), 12401246 (2001).
http://dx.doi.org/10.1021/ac001132d
62.
62. H. E. Abaci and M. L. Shuler, “ Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling,” Integr. Biol. 7(4), 383391 (2015).
http://dx.doi.org/10.1039/C4IB00292J
63.
63. J. García-Alonso, R. F. Fakhrullin, V. N. Paunov, Z. Shen, J. D. Hardege, N. Pamme, S. J. Haswell, and G. M. Greenway, “ Microscreening toxicity system based on living magnetic yeast and gradient chips,” Anal. Bioanal. Chem. 400(4), 10091013 (2011).
http://dx.doi.org/10.1007/s00216-010-4241-3
64.
64. S. M. Hattersley, C. E. Dyer, J. Greenman, and S. J. Haswell, “ Development of a microfluidic device for the maintenance and interrogation of viable tissue biopsies,” Lab Chip 8(11), 18421846 (2008).
http://dx.doi.org/10.1039/b809345h
65.
65. D. J. Guckenberger, T. E. de Groot, A. M. D. Wan, D. J. Beebe, and E. W. K. Young, “ Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 23642378 (2015).
http://dx.doi.org/10.1039/C5LC00234F
66.
66. H. Becker and C. Gärtner, “ Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390(1), 89111 (2008).
http://dx.doi.org/10.1007/s00216-007-1692-2
67.
67. J. Giboz, T. Copponnex, and P. Mélé, “ Microinjection molding of thermoplastic polymers: A review,” J. Micromech. Microeng. 17(6), R96R109 (2007).
http://dx.doi.org/10.1088/0960-1317/17/6/R02
68.
68. J.-S. Chu, M. D. Gilchrist, and N. Zhang, in Encyclopedia of Microfluidics and Nanofluidics, edited by D. Li ( Springer, USA, 2014), pp. 118.
69.
69. H. Becker and L. E. Locascio, “ Polymer microfluidic devices,” Talanta 56(2), 267287 (2002).
http://dx.doi.org/10.1016/S0039-9140(01)00594-X
70.
70. U. M. Attia, S. Marson, and J. R. Alcock, “ Micro-injection moulding of polymer microfluidic devices,” Microfluid. Nanofluid. 7(1), 128 (2009).
http://dx.doi.org/10.1007/s10404-009-0421-x
71.
71. P. Lisowski and P. Zarzycki, “ Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends,” Chromatographia 76(19–20), 12011214 (2013).
http://dx.doi.org/10.1007/s10337-013-2413-y
72.
72. A. W. Martinez, “ Microfluidic paper-based analytical devices: From POCKET to paper-based ELISA,” Bioanalysis 3(23), 25892592 (2011).
http://dx.doi.org/10.4155/bio.11.258
73.
73. K. Yamada, T. G. Henares, K. Suzuki, and D. Citterio, “ Paper-based inkjet-printed microfluidic analytical devices,” Angew. Chem. Int. Ed. 54(18), 52945310 (2015).
http://dx.doi.org/10.1002/anie.201411508
74.
74. X. Li, A. V. Valadez, P. Zuo, and Z. Nie, “ Microfluidic 3D cell culture: Potential application for tissue-based bioassays,” Bioanalysis 4(12), 15091525 (2012).
http://dx.doi.org/10.4155/bio.12.133
75.
75. A. Dawson, J. Cleland, S. Jones, and T. McCreedy, “ Paper microfluidics for the detection of iron(II) in human serum samples,” (unpublished).
76.
76. E. Carrilho, A. W. Martinez, and G. M. Whitesides, “ Understanding wax printing: A simple micropatterning process for paper-based microfluidics,” Anal. Chem. 81(16), 70917095 (2009).
http://dx.doi.org/10.1021/ac901071p
77.
77. C. Renault, J. Koehne, A. J. Ricco, and R. M. Crooks, “ Three-dimensional wax patterning of paper fluidic devices,” Langmuir 30(23), 70307036 (2014).
http://dx.doi.org/10.1021/la501212b
78.
78. T. M. Keenan and A. Folch, “ Biomolecular gradients in cell culture systems,” Lab Chip 8(1), 3457 (2008).
http://dx.doi.org/10.1039/B711887B
79.
79. A. G. Toh, Z. P. Wang, C. Yang, and N.-T. Nguyen, “ Engineering microfluidic concentration gradient generators for biological applications,” Microfluid. Nanofluid. 16(1–2), 118 (2014).
http://dx.doi.org/10.1007/s10404-013-1236-3
80.
80. E. Berthier and D. J. Beebe, “ Gradient generation platforms: New directions for an established microfluidic technology,” Lab Chip 14(17), 32413247 (2014).
http://dx.doi.org/10.1039/C4LC00448E
81.
81. S. Kim, H. J. Kim, and N. L. Jeon, “ Biological applications of microfluidic gradient devices,” Integr. Biol. 2(11–12), 584603 (2010).
http://dx.doi.org/10.1039/c0ib00055h
82.
82. B. G. Chung and J. Choo, “ Microfluidic gradient platforms for controlling cellular behavior,” Electrophoresis 31(18), 30143027 (2010).
http://dx.doi.org/10.1002/elps.201000137
83.
83. A. Webster, J. Greenman, and S. J. Haswell, “ Development of microfluidic devices for biomedical and clinical application,” J. Chem. Technol. Biotechnol. 86(1), 1017 (2011).
http://dx.doi.org/10.1002/jctb.2482
84.
84. F. Tanweer, V. L. Green, N. D. Stafford, and J. Greenman, “ Application of microfluidic systems in management of head and neck squamous cell carcinoma,” Head Neck 35(5), 756763 (2013).
http://dx.doi.org/10.1002/hed.22906
85.
85. V. Sivagnanam and M. A. M. Gijs, “ Exploring living multicellular organisms, organs, and tissues using microfluidic systems,” Chem. Rev. 113(5), 32143247 (2013).
http://dx.doi.org/10.1021/cr200432q
86.
86. E. W. K. Young, “ Cells, tissues, and organs on chips: Challenges and opportunities for the cancer tumor microenvironment,” Integr. Biol. 5(9), 10961109 (2013).
http://dx.doi.org/10.1039/c3ib40076j
87.
87. S. N. Bhatia and D. E. Ingber, “ Microfluidic organs-on-chips,” Nat. Biotechnol. 32(8), 760772 (2014).
http://dx.doi.org/10.1038/nbt.2989
88.
88. Y. Huang, J. C. Williams, and S. M. Johnson, “ Brain slice on a chip: Opportunities and challenges of applying microfluidic technology to intact tissues,” Lab Chip 12(12), 21032117 (2012).
http://dx.doi.org/10.1039/c2lc21142d
89.
89. D. Huh, Y.-s. Torisawa, G. A. Hamilton, H. J. Kim, and D. E. Ingber, “ Microengineered physiological biomimicry: Organs-on-chips,” Lab Chip 12(12), 21562164 (2012).
http://dx.doi.org/10.1039/c2lc40089h
90.
90. D. Huh, G. A. Hamilton, and D. E. Ingber, “ From 3D cell culture to organs-on-chips,” Trends Cell Biol. 21(12), 745754 (2011).
http://dx.doi.org/10.1016/j.tcb.2011.09.005
91.
91. C. Moraes, G. Mehta, S. Lesher-Perez, and S. Takayama, “ Organs-on-a-chip: A focus on compartmentalized microdevices,” Ann. Biomed. Eng. 40(6), 12111227 (2012).
http://dx.doi.org/10.1007/s10439-011-0455-6
92.
92. A. D. van der Meer and A. van den Berg, “ Organs-on-chips: Breaking the in vitro impasse,” Integr. Biol. 4(5), 461470 (2012).
http://dx.doi.org/10.1039/c2ib00176d
93.
93. C. Zhang, Z. Zhao, N. A. Abdul Rahim, D. van Noort, and H. Yu, “ Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments,” Lab Chip 9(22), 31853192 (2009).
http://dx.doi.org/10.1039/b915147h
94.
94. I. Maschmeyer, A. K. Lorenz, K. Schimek, T. Hasenberg, A. P. Ramme, J. Hubner, M. Lindner, C. Drewell, S. Bauer, A. Thomas, N. S. Sambo, F. Sonntag, R. Lauster, and U. Marx, “ A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents,” Lab Chip 15(12), 26882699 (2015).
http://dx.doi.org/10.1039/C5LC00392J
95.
95. C. Moraes, J. M. Labuz, B. M. Leung, M. Inoue, T.-H. Chun, and S. Takayama, “ On being the right size: Scaling effects in designing a human-on-a-chip,” Integr. Biol. 5(9), 11491161 (2013).
http://dx.doi.org/10.1039/c3ib40040a
96.
96. A. Webster, C. E. Dyer, S. J. Haswell, and J. Greenman, “ A microfluidic device for tissue biopsy culture and interrogation,” Anal. Methods 2(8), 10051007 (2010).
http://dx.doi.org/10.1039/c0ay00293c
97.
97. S. M. Hattersley, J. Greenman, and S. J. Haswell, “ Study of ethanol induced toxicity in liver explants using microfluidic devices,” Biomed. Microdevices 13(6), 10051014 (2011).
http://dx.doi.org/10.1007/s10544-011-9570-2
98.
98. S. M. Hattersley, D. C. Sylvester, C. E. Dyer, N. D. Stafford, S. J. Haswell, and J. Greenman, “ A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs,” Ann. Biomed. Eng. 40(6), 12771288 (2012).
http://dx.doi.org/10.1007/s10439-011-0428-9
99.
99. D. Sylvester, S. M. Hattersley, N. D. Stafford, S. J. Haswell, and J. Greenman, “ Development of microfluidic-based analytical methodology for studying the effects of chemotherapy agents on cancer tissue,” Curr. Anal. Chem. 9(1), 28 (2013).
http://dx.doi.org/10.2174/157341113804486446
100.
100. J. Woods, P. T. Docker, C. E. Dyer, S. J. Haswell, and J. Greenman, “ On-chip integrated labelling, transport and detection of tumour cells,” Electrophoresis 32(22), 31883195 (2011).
http://dx.doi.org/10.1002/elps.201100172
101.
101. L.-T. Cheah, Y.-H. Dou, A.-M. L. Seymour, C. E. Dyer, S. J. Haswell, J. D. Wadhawan, and J. Greenman, “ Microfluidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species,” Lab Chip 10(20), 27202726 (2010).
http://dx.doi.org/10.1039/c004910g
102.
102. L. T. Cheah, I. Fritsch, S. J. Haswell, and J. Greenman, “ Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: Toward fine-tuning flow in biological microfluidics applications,” Biotechnol. Bioeng. 109(7), 18271834 (2012).
http://dx.doi.org/10.1002/bit.24426
103.
103. S. D. Carr, V. L. Green, N. D. Stafford, and J. Greenman, “ Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices,” Otolaryngol. Head Neck Surg. 150(1), 7380 (2014).
http://dx.doi.org/10.1177/0194599813507427
104.
104.Hull Science Festival, www.flickr.com/photos/universityofhull/albums/72157651111146578/page2/ for HullSciFest photograph album on Flickr, 2015.
http://aip.metastore.ingenta.com/content/aip/journal/bmf/10/1/10.1063/1.4940884
Loading
/content/aip/journal/bmf/10/1/10.1063/1.4940884
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/10/1/10.1063/1.4940884
2016-02-02
2016-12-05

Abstract

The ability to engage and inspire younger generations in novel areas of science is important for bringing new researchers into a burgeoning field, such as lab-on-a-chip. We recently held a lab-on-a-chip workshop for secondary school students, for which we developed a number of hands-on activities that explained various aspects of microfluidic technology, including fabrication (milling and moulding of microfluidic devices, and wax printing of microfluidic paper-based analytical devices, so-called μPADs), flow regimes (gradient formation via diffusive mixing), and applications (tissue analysis and μPADs). Questionnaires completed by the students indicated that they found the workshop both interesting and informative, with all activities proving successful, while providing feedback that could be incorporated into later iterations of the event.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/10/1/1.4940884.html;jsessionid=1UvhQm0GtjmDwvyLJQFrkMCJ.x-aip-live-02?itemId=/content/aip/journal/bmf/10/1/10.1063/1.4940884&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/10/1/10.1063/1.4940884&pageURL=http://scitation.aip.org/content/aip/journal/bmf/10/1/10.1063/1.4940884'
Right1,Right2,Right3,