Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. D. Tarn and N. Pamme, “ Microfluidics,” in Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, edited by J. Reedijk ( Elsevier, Waltham, MA, 2013).
2. P. N. Nge, C. I. Rogers, and A. T. Woolley, “ Advances in microfluidic materials, functions, integration, and applications,” Chem. Rev. 113(4), 25502583 (2013).
3. G. M. Whitesides, “ The origins and the future of microfluidics,” Nature 442(7101), 368373 (2006).
4. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “ The present and future role of microfluidics in biomedical research,” Nature 507(7491), 181189 (2014).
5. D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, “ Micro total analysis systems. 1. Introduction, theory, and technology,” Anal. Chem. 74(12), 26232636 (2002).
6. P.-A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, “ Micro total analysis systems. 2. Analytical standard operations and applications,” Anal. Chem. 74(12), 26372652 (2002).
7. T. Vilkner, D. Janasek, and A. Manz, “ Micro total analysis systems. Recent developments,” Anal. Chem. 76(12), 33733386 (2004).
8. P. S. Dittrich, K. Tachikawa, and A. Manz, “ Micro total analysis systems. Latest advancements and trends,” Anal. Chem. 78(12), 38873908 (2006).
9. J. West, M. Becker, S. Tombrink, and A. Manz, “ Micro total analysis systems: Latest achievements,” Anal. Chem. 80(12), 44034419 (2008).
10. A. Arora, G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, “ Latest developments in micro total analysis systems,” Anal. Chem. 82(12), 48304847 (2010).
11. G. B. Salieb-Beugelaar, G. Simone, A. Arora, A. Philippi, and A. Manz, “ Latest developments in microfluidic cell biology and analysis systems,” Anal. Chem. 82(12), 48484864 (2010).
12. M. L. Kovarik, P. C. Gach, D. M. Ornoff, Y. Wang, J. Balowski, L. Farrag, and N. L. Allbritton, “ Micro total analysis systems for cell biology and biochemical assays,” Anal. Chem. 84(2), 516540 (2012).
13. M. L. Kovarik, D. M. Ornoff, A. T. Melvin, N. C. Dobes, Y. Wang, A. J. Dickinson, P. C. Gach, P. K. Shah, and N. L. Allbritton, “ Micro total analysis systems: Fundamental advances and applications in the laboratory, clinic, and field,” Anal. Chem. 85(2), 451472 (2013).
14. C. T. Culbertson, T. G. Mickleburgh, S. A. Stewart-James, K. A. Sellens, and M. Pressnall, “ Micro total analysis systems: Fundamental advances and biological applications,” Anal. Chem. 86(1), 95118 (2014).
15. L. R. Volpatti and A. K. Yetisen, “ Commercialization of microfluidic devices,” Trends Biotechnol. 32(7), 347350 (2014).
16. C. D. Chin, V. Linder, and S. K. Sia, “ Commercialization of microfluidic point-of-care diagnostic devices,” Lab Chip 12(12), 21182134 (2012).
18.Microfluidics Directory, for Microfluidics Consortium, 2015.
19. C. W. T. Yang, E. Ouellet, and E. T. Lagally, “ Using inexpensive Jell-O chips for hands-on microfluidics education,” Anal. Chem. 82(13), 54085414 (2010).
20. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “ Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 49744984 (1998).
21. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “ Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 2740 (2000).<27::AID-ELPS27>3.0.CO;2-C
22. T. A. Davis, S. L. Athey, M. L. Vandevender, C. L. Crihfield, C. C. E. Kolanko, S. Shao, M. C. G. Ellington, J. K. Dicks, J. S. Carver, and L. A. Holland, “ Electrolysis of water in the secondary school science laboratory with inexpensive microfluidics,” J. Chem. Educ. 92(1), 116119 (2015).
23. D. Bardin and A. P. Lee, “ Low-cost experimentation for the study of droplet microfluidics,” Lab Chip 14(20), 39783986 (2014).
24. M. Jimenez and H. L. Bridle, “ Angry pathogens, how to get rid of them: Introducing microfluidics for waterborne pathogen separation to children,” Lab Chip 15(4), 947957 (2015).
25. D. Nguyen, J. McLane, V. Lew, J. Pegan, and M. Khine, “ Shrink-film microfluidic education modules: Complete devices within minutes,” Biomicrofluidics 5(2), 022209 (2011).
26. A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee, and M. Khine, “ Shrinky-Dink microfluidics: Rapid generation of deep and rounded patterns,” Lab Chip 8(1), 170172 (2008).
27. Z. V. Feng, K. R. Edelman, and B. P. Swanson, “ Student-fabricated microfluidic devices as flow reactors for organic and inorganic synthesis,” J. Chem. Educ. 92(4), 723727 (2015).
28. M. Hemling, J. A. Crooks, P. M. Oliver, K. Brenner, J. Gilbertson, G. C. Lisensky, and D. B. Weibel, “ Microfluidics for high school chemistry students,” J. Chem. Educ. 91(1), 112115 (2014).
29. T. C. DeVore, B. H. Augustine, A. M. Christenson, and G. W. Corder, “ A photolithography laboratory experiment for general chemistry students,” J. Chem. Educ. 80(2), 183186 (2003).
30. K. L. Berkowski, K. N. Plunkett, Q. Yu, and J. S. Moore, “ Introduction to photolithography: Preparation of microscale polymer silhouettes,” J. Chem. Educ. 82(9), 13651369 (2005).
31. P. K. Yuen and V. N. Goral, “ Low-cost rapid prototyping of whole-glass microfluidic devices,” J. Chem. Educ. 89(10), 12881292 (2012).
32. Y. Zheng, J. Nguyen, Y. Wei, and Y. Sun, “ Recent advances in microfluidic techniques for single-cell biophysical characterization,” Lab Chip 13(13), 24642483 (2013).
33. M. C. Chia, C. M. Sweeney, and T. W. Odom, “ Chemistry in microfluidic channels,” J. Chem. Educ. 88(4), 461464 (2011).
34. P. A. E. Piunno, A. Zetina, N. Chu, A. J. Tavares, M. O. Noor, E. Petryayeva, U. Uddayasankar, and A. Veglio, “ A comprehensive microfluidics device construction and characterization module for the advanced undergraduate analytical chemistry laboratory,” J. Chem. Educ. 91(6), 902907 (2014).
35. W. Mielczarek, T. J. Aspray, F. Mallevre, M. Jimenez, J. McGrath, P. Cameron, H. Bridle, and M. Kersaudy-Kerhoas, “ “Microworld and microflows”: Initiating school children to microfluidics,” paper presented at the 4th European Conference on Microfluidics (μFlu'14), Limerick, Ireland, 2014.
36. M. Junkin and S. Tay, “ Microfluidic single-cell analysis for systems immunology,” Lab Chip 14(7), 12461260 (2014).
37. J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, “ Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649(2), 141157 (2009).
38. G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “ Microfluidic tools for cell biological research,” Nano Today 5(1), 2847 (2010).
39. I. Meyvantsson and D. J. Beebe, “ Cell culture models in microfluidic systems,” Annu. Rev. Anal. Chem. 1(1), 423449 (2008).
40. S. Teerasong and R. L. McClain, “ A student-made microfluidic device for electrophoretic separation of food dyes,” J. Chem. Educ. 88(4), 465467 (2011).
41. T.-C. Chao, S. Bhattacharya, and A. Ros, “ Microfluidic gel electrophoresis in the undergraduate laboratory applied to food analysis,” J. Chem. Educ. 89(1), 125129 (2012).
42. B. Giri, R. R. Peesara, N. Yanagisawa, and D. Dutta, “ Undergraduate laboratory module for implementing ELISA on the high performance microfluidic platform,” J. Chem. Educ. 92(4), 728732 (2015).
43. Y. Fintschenko, “ Education: A modular approach to microfluidics in the teaching laboratory,” Lab Chip 11(20), 33943400 (2011).
44. D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, “ Recent developments in paper-based microfluidic devices,” Anal. Chem. 87(1), 1941 (2015).
45. A. K. Yetisen, M. S. Akram, and C. R. Lowe, “ Paper-based microfluidic point-of-care diagnostic devices,” Lab Chip 13(12), 22102251 (2013).
46. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “ Patterned paper as a platform for inexpensive, low-volume, portable bioassays,” Angew. Chem. Int. Ed. 46(8), 13181320 (2007).
47. L. Cai, Y. Wu, C. Xu, and Z. Chen, “ A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract,” J. Chem. Educ. 90(2), 232234 (2013).
48. R. R. Ravgiala, S. Weisburd, R. Sleeper, A. Martinez, D. Rozkiewicz, G. M. Whitesides, and K. A. Hollar, “ Using paper-based diagnostics with high school students to model forensic investigation and colorimetric analysis,” J. Chem. Educ. 91(1), 107111 (2014).
49. B. Wang, Z. Lin, and M. Wang, “ Fabrication of a paper-based microfluidic device to readily determine nitrite ion concentration by simple colorimetric assay,” J. Chem. Educ. 92(4), 733736 (2015).
50. M. T. Koesdjojo, S. Pengpumkiat, Y. Wu, A. Boonloed, D. Huynh, T. P. Remcho, and V. T. Remcho, “ Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom,” J. Chem. Educ. 92(4), 737741 (2015).
51. T. Bowman, J. Frechette, and G. Drazer, “ Force driven separation of drops by deterministic lateral displacement,” Lab Chip 12(16), 29032908 (2012).
52. T. J. Bowman, G. Drazer, and J. Frechette, “ Inertia and scaling in deterministic lateral displacement,” Biomicrofluidics 7(6), 064111 (2013).
53.Microfluidics@Rutgers website,, accessed 2015.
54. L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “ Continuous particle separation through deterministic lateral displacement,” Science 304(5673), 987990 (2004).
55. J. McGrath, M. Jimenez, and H. Bridle, “ Deterministic lateral displacement for particle separation: A review,” Lab Chip 14(21), 41394158 (2014).
56. H. Bridle, B. Miller, and M. P. Y. Desmulliez, “ Application of microfluidics in waterborne pathogen monitoring: A review,” Water Res. 55, 256271 (2014).
57. H. Bridle, M. Kersaudy-Kerhoas, B. Miller, D. Gavriilidou, F. Katzer, E. A. Innes, and M. P. Y. Desmulliez, “ Detection of Cryptosporidium in miniaturised fluidic devices,” Water Res. 46(6), 16411661 (2012).
58.Hull Science Festival, for University of Hull, 2015.
59.See supplementary material at for the questionnaire given to school students, the raw data taken from the questionnaire responses, and the A4 posters used to explain the activity and its background at each workstation.[Supplementary Material]
60. C. M. B. Ho, S. H. Ng, K. H. H. Li, and Y.-J. Yoon, “ 3D printed microfluidics for biological applications,” Lab Chip 15(18), 36273637 (2015).
61. S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, “ Generation of gradients having complex shapes using microfluidic networks,” Anal. Chem. 73(6), 12401246 (2001).
62. H. E. Abaci and M. L. Shuler, “ Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling,” Integr. Biol. 7(4), 383391 (2015).
63. J. García-Alonso, R. F. Fakhrullin, V. N. Paunov, Z. Shen, J. D. Hardege, N. Pamme, S. J. Haswell, and G. M. Greenway, “ Microscreening toxicity system based on living magnetic yeast and gradient chips,” Anal. Bioanal. Chem. 400(4), 10091013 (2011).
64. S. M. Hattersley, C. E. Dyer, J. Greenman, and S. J. Haswell, “ Development of a microfluidic device for the maintenance and interrogation of viable tissue biopsies,” Lab Chip 8(11), 18421846 (2008).
65. D. J. Guckenberger, T. E. de Groot, A. M. D. Wan, D. J. Beebe, and E. W. K. Young, “ Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15(11), 23642378 (2015).
66. H. Becker and C. Gärtner, “ Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem. 390(1), 89111 (2008).
67. J. Giboz, T. Copponnex, and P. Mélé, “ Microinjection molding of thermoplastic polymers: A review,” J. Micromech. Microeng. 17(6), R96R109 (2007).
68. J.-S. Chu, M. D. Gilchrist, and N. Zhang, in Encyclopedia of Microfluidics and Nanofluidics, edited by D. Li ( Springer, USA, 2014), pp. 118.
69. H. Becker and L. E. Locascio, “ Polymer microfluidic devices,” Talanta 56(2), 267287 (2002).
70. U. M. Attia, S. Marson, and J. R. Alcock, “ Micro-injection moulding of polymer microfluidic devices,” Microfluid. Nanofluid. 7(1), 128 (2009).
71. P. Lisowski and P. Zarzycki, “ Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends,” Chromatographia 76(19–20), 12011214 (2013).
72. A. W. Martinez, “ Microfluidic paper-based analytical devices: From POCKET to paper-based ELISA,” Bioanalysis 3(23), 25892592 (2011).
73. K. Yamada, T. G. Henares, K. Suzuki, and D. Citterio, “ Paper-based inkjet-printed microfluidic analytical devices,” Angew. Chem. Int. Ed. 54(18), 52945310 (2015).
74. X. Li, A. V. Valadez, P. Zuo, and Z. Nie, “ Microfluidic 3D cell culture: Potential application for tissue-based bioassays,” Bioanalysis 4(12), 15091525 (2012).
75. A. Dawson, J. Cleland, S. Jones, and T. McCreedy, “ Paper microfluidics for the detection of iron(II) in human serum samples,” (unpublished).
76. E. Carrilho, A. W. Martinez, and G. M. Whitesides, “ Understanding wax printing: A simple micropatterning process for paper-based microfluidics,” Anal. Chem. 81(16), 70917095 (2009).
77. C. Renault, J. Koehne, A. J. Ricco, and R. M. Crooks, “ Three-dimensional wax patterning of paper fluidic devices,” Langmuir 30(23), 70307036 (2014).
78. T. M. Keenan and A. Folch, “ Biomolecular gradients in cell culture systems,” Lab Chip 8(1), 3457 (2008).
79. A. G. Toh, Z. P. Wang, C. Yang, and N.-T. Nguyen, “ Engineering microfluidic concentration gradient generators for biological applications,” Microfluid. Nanofluid. 16(1–2), 118 (2014).
80. E. Berthier and D. J. Beebe, “ Gradient generation platforms: New directions for an established microfluidic technology,” Lab Chip 14(17), 32413247 (2014).
81. S. Kim, H. J. Kim, and N. L. Jeon, “ Biological applications of microfluidic gradient devices,” Integr. Biol. 2(11–12), 584603 (2010).
82. B. G. Chung and J. Choo, “ Microfluidic gradient platforms for controlling cellular behavior,” Electrophoresis 31(18), 30143027 (2010).
83. A. Webster, J. Greenman, and S. J. Haswell, “ Development of microfluidic devices for biomedical and clinical application,” J. Chem. Technol. Biotechnol. 86(1), 1017 (2011).
84. F. Tanweer, V. L. Green, N. D. Stafford, and J. Greenman, “ Application of microfluidic systems in management of head and neck squamous cell carcinoma,” Head Neck 35(5), 756763 (2013).
85. V. Sivagnanam and M. A. M. Gijs, “ Exploring living multicellular organisms, organs, and tissues using microfluidic systems,” Chem. Rev. 113(5), 32143247 (2013).
86. E. W. K. Young, “ Cells, tissues, and organs on chips: Challenges and opportunities for the cancer tumor microenvironment,” Integr. Biol. 5(9), 10961109 (2013).
87. S. N. Bhatia and D. E. Ingber, “ Microfluidic organs-on-chips,” Nat. Biotechnol. 32(8), 760772 (2014).
88. Y. Huang, J. C. Williams, and S. M. Johnson, “ Brain slice on a chip: Opportunities and challenges of applying microfluidic technology to intact tissues,” Lab Chip 12(12), 21032117 (2012).
89. D. Huh, Y.-s. Torisawa, G. A. Hamilton, H. J. Kim, and D. E. Ingber, “ Microengineered physiological biomimicry: Organs-on-chips,” Lab Chip 12(12), 21562164 (2012).
90. D. Huh, G. A. Hamilton, and D. E. Ingber, “ From 3D cell culture to organs-on-chips,” Trends Cell Biol. 21(12), 745754 (2011).
91. C. Moraes, G. Mehta, S. Lesher-Perez, and S. Takayama, “ Organs-on-a-chip: A focus on compartmentalized microdevices,” Ann. Biomed. Eng. 40(6), 12111227 (2012).
92. A. D. van der Meer and A. van den Berg, “ Organs-on-chips: Breaking the in vitro impasse,” Integr. Biol. 4(5), 461470 (2012).
93. C. Zhang, Z. Zhao, N. A. Abdul Rahim, D. van Noort, and H. Yu, “ Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments,” Lab Chip 9(22), 31853192 (2009).
94. I. Maschmeyer, A. K. Lorenz, K. Schimek, T. Hasenberg, A. P. Ramme, J. Hubner, M. Lindner, C. Drewell, S. Bauer, A. Thomas, N. S. Sambo, F. Sonntag, R. Lauster, and U. Marx, “ A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents,” Lab Chip 15(12), 26882699 (2015).
95. C. Moraes, J. M. Labuz, B. M. Leung, M. Inoue, T.-H. Chun, and S. Takayama, “ On being the right size: Scaling effects in designing a human-on-a-chip,” Integr. Biol. 5(9), 11491161 (2013).
96. A. Webster, C. E. Dyer, S. J. Haswell, and J. Greenman, “ A microfluidic device for tissue biopsy culture and interrogation,” Anal. Methods 2(8), 10051007 (2010).
97. S. M. Hattersley, J. Greenman, and S. J. Haswell, “ Study of ethanol induced toxicity in liver explants using microfluidic devices,” Biomed. Microdevices 13(6), 10051014 (2011).
98. S. M. Hattersley, D. C. Sylvester, C. E. Dyer, N. D. Stafford, S. J. Haswell, and J. Greenman, “ A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs,” Ann. Biomed. Eng. 40(6), 12771288 (2012).
99. D. Sylvester, S. M. Hattersley, N. D. Stafford, S. J. Haswell, and J. Greenman, “ Development of microfluidic-based analytical methodology for studying the effects of chemotherapy agents on cancer tissue,” Curr. Anal. Chem. 9(1), 28 (2013).
100. J. Woods, P. T. Docker, C. E. Dyer, S. J. Haswell, and J. Greenman, “ On-chip integrated labelling, transport and detection of tumour cells,” Electrophoresis 32(22), 31883195 (2011).
101. L.-T. Cheah, Y.-H. Dou, A.-M. L. Seymour, C. E. Dyer, S. J. Haswell, J. D. Wadhawan, and J. Greenman, “ Microfluidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species,” Lab Chip 10(20), 27202726 (2010).
102. L. T. Cheah, I. Fritsch, S. J. Haswell, and J. Greenman, “ Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: Toward fine-tuning flow in biological microfluidics applications,” Biotechnol. Bioeng. 109(7), 18271834 (2012).
103. S. D. Carr, V. L. Green, N. D. Stafford, and J. Greenman, “ Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices,” Otolaryngol. Head Neck Surg. 150(1), 7380 (2014).
104.Hull Science Festival, for HullSciFest photograph album on Flickr, 2015.

Data & Media loading...


Article metrics loading...



The ability to engage and inspire younger generations in novel areas of science is important for bringing new researchers into a burgeoning field, such as lab-on-a-chip. We recently held a lab-on-a-chip workshop for secondary school students, for which we developed a number of hands-on activities that explained various aspects of microfluidic technology, including fabrication (milling and moulding of microfluidic devices, and wax printing of microfluidic paper-based analytical devices, so-called μPADs), flow regimes (gradient formation via diffusive mixing), and applications (tissue analysis and μPADs). Questionnaires completed by the students indicated that they found the workshop both interesting and informative, with all activities proving successful, while providing feedback that could be incorporated into later iterations of the event.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd