Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/10/2/10.1063/1.4945734
1.
1. R. P. Feynman, Eng. Sci. (CalTech) 23, 22 (1960).
2.
2. R. B. Freitas, Jr., “ Current status of nanomedicine and medical nanorobotics,” J. Comput. Theor. Nanosci. 2, 125 (2005).
3.
3. E. M. Purcell, Am. J. Phys. 45, 311 (1977).
http://dx.doi.org/10.1119/1.10903
4.
4. K. E. Drexler, Proc. Natl. Acad. Sci. U.S.A. 78, 5275 (1981).
http://dx.doi.org/10.1073/pnas.78.9.5275
5.
5. K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation ( John Wiley & Sons, New York, 1992).
6.
6. R. A. Freitas, Jr., Nanomedicine, Volume 1: Basic Capabilities ( Landes Bioscience, Georgetown, TX, 1999).
7.
7. B. Coley, Ann. Surg. 14, 199220 (1891).
http://dx.doi.org/10.1097/00000658-189112000-00015
8.
8. M. W. Freeman, A. Arrot, and H. H. L. Watson, J. Appl. Phys. 31, S404 (1960).
http://dx.doi.org/10.1063/1.1984765
9.
9. M. S. Grady et al., Med. Phys. 17, 405415 (1990).
http://dx.doi.org/10.1118/1.596520
10.
10. R. Fearing, in 2nd International Symposium on Micromachines and Human Sciences (1991), pp. 115.
11.
11. R. G. McNeil et al., IEEE Trans. Biomed. Eng. 42, 793801 (1995).
http://dx.doi.org/10.1109/10.398640
12.
12. A. P. Davis, Nature 401, 120121 (1999).
http://dx.doi.org/10.1038/43576
13.
13. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, Nature 405, 417 (2000).
http://dx.doi.org/10.1038/35013140
14.
14. R. Soong, D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, and C. D. Montemagno, Science 290, 15551558 (2000).
http://dx.doi.org/10.1126/science.290.5496.1555
15.
15. K. Ishiyama, M. Sendoh, A. Yamazaki, and K. I. Arai, Sens. Actuators, A 91, 141144 (2001).
http://dx.doi.org/10.1016/S0924-4247(01)00517-9
16.
16. N. Darnton, L. Turner, K. Breuer, and H. C. Berg, Biophys. J. 86, 18631870 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74253-8
17.
17. W. F. Paxton et al., J. Am. Chem. Soc. 126, 1342413431 (2004).
http://dx.doi.org/10.1021/ja047697z
18.
18. R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Nature 437(6), 862865 (2005).
http://dx.doi.org/10.1038/nature04090
19.
19. Y. Shirai et al., Nano Lett. 5(11), 23302334 (2005).
http://dx.doi.org/10.1021/nl051915k
20.
20. D. Weibel et al., Proc. Natl. Acad. Sci. 102, 1196311967 (2005).
http://dx.doi.org/10.1073/pnas.0505481102
21.
21. S. Martel, C. Tremblay, S. Ngakeng, and G. Langlois, Appl. Phys. Lett. 89, 233904 (2006).
http://dx.doi.org/10.1063/1.2402221
22.
22. S. Martel, U.S. Provisional Patent Application No. 11/145,007 (4 June 2004).
23.
23. S. Martel and M. Mohammadi, in IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, May 3–8 (2010).
24.
24. P. W. K. Rothemund, Nature 440, 297302 (2006).
http://dx.doi.org/10.1038/nature04586
25.
25. S. Martel and W. André, in International Advanced Robotics Program (IARP), Paris, France (2006).
26.
26. S. Martel, J.-B. Mathieu, O. Felfoul, A. Chanu, É. Aboussouan, S. Tamaz, P. Pouponneau, G. Beaudoin, G. Soulez, L'H. Yahia, and M. Mankiewicz, Appl. Phys. Lett. 90, 114105 (2007).
http://dx.doi.org/10.1063/1.2713229
27.
27. D. Akin et al., Nat. Nanotechnol. 2, 441449 (2007).
http://dx.doi.org/10.1038/nnano.2007.149
28.
28. E. Steager et al., Appl. Phys. Lett. 90(26), 263901 (2007).
http://dx.doi.org/10.1063/1.2752721
29.
29. M. S. Sakar et al., Int. J. Rob. Res. 30, 647658 (2011).
http://dx.doi.org/10.1177/0278364910394227
30.
30. S. Martel, O. Felfoul, and M. Mohammadi, in The 2nd IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Scottsdale, AZ, USA (2008).
31.
31. B. Behkam and M. Sitti, Appl. Phys. Lett. 93, 223901 (2008).
http://dx.doi.org/10.1063/1.3040318
32.
32. L. Zhang, J. J. Abbott, L. X. Dong, B. E. Kratochvil, D. J. Bell, and B. J. Nelson, Appl. Phys. Lett. 94, 064107 (2009).
http://dx.doi.org/10.1063/1.3079655
33.
33. A. Ghosh and P. Fisher, Nano Lett. 9(6), 22432246 (2009).
http://dx.doi.org/10.1021/nl900186w
34.
34. M. P. Kummer, B. E. Kratochvil, R. Borer, A. Sengul, and B. J. Nelson, IEEE Trans. Rob. 26(6), 10061017 (2010).
http://dx.doi.org/10.1109/TRO.2010.2073030
35.
35. K. Belharet, D. Folio, and A. Ferreira, in Proceedings of the 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Japan, September (2010), pp. 808813.
36.
36. T. Mirkovic, N. S. Zacharia, G. D. Scholes, and G. A. Ozin, ACS Nano 4(4), 17821789 (2010).
http://dx.doi.org/10.1021/nn100669h
37.
37. P. Pouponneau, J.-C. Leroux, G. Soulez, L. Gaboury, and S. Martel, Biomaterials 32(13), 34813486 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2010.12.059
38.
38. S. Tabatabei, N. Lapointe, and S. Martel, Adv. Rob. 25(8), 10491067 (2011).
http://dx.doi.org/10.1163/016918611X568648
39.
39. M. Kojima, Z. Zhang, M. Nakajima, and T. Fukuda, Biomed. Microdevices 14, 10271032 (2012).
http://dx.doi.org/10.1007/s10544-012-9711-2
40.
40. D. Kim, A. Liu, E. Diller, and M. Sitti, Biomed. Microdevices 14(6), 10091017 (2012).
http://dx.doi.org/10.1007/s10544-012-9701-4
41.
41. S. Martel, Ther. Delivery 5, 189204 (2014).
http://dx.doi.org/10.4155/tde.13.147
42.
42. M. Latulippe and S. Martel, in Proceedings of the IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Sao Paolo, Brazil (2014).
43.
43. D. de Lanauze, O. Felfoul, J.-P. Turcot, M. Mohammadi, and S. S. Martel, Int. J. Rob. Res. 33(3), 359374 (2013).
http://dx.doi.org/10.1177/0278364913500543
44.
44. S. J. Park et al., “ New paradigm for tumor theranostic methodology using bacteria-based microrobot,” Sci. Rep. (published online 2013).
http://dx.doi.org/10.1038/srep03394
45.
45. G. Zhao, M. Viehrig, and M. Pumera, Lab Chip 13, 19301936 (2013).
http://dx.doi.org/10.1039/c3lc41423j
46.
46. I. Khalil, V. Magdanz, S. Sanchez, O. G. Schmidt, and S. Misra, PLoS One 9(2), e83053 (2014).
http://dx.doi.org/10.1371/journal.pone.0083053
47.
47. A. M. Singh, K. K. Dey, A. Chattopadhyay, T. K. Mandal, and D. Bandyopadhyay, Nanoscale 6, 13981405 (2014).
http://dx.doi.org/10.1039/C3NR05294J
48.
48. W. Gao, R. Gong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, and J. Wang, ACS Nano 9(1), 117123 (2015).
http://dx.doi.org/10.1021/nn507097k
49.
49. I. S. M. Khalil, V. Magdanz, S. Sanchez, O. G. Schmidt, and S. Misra, J. Micro-Bio Rob. 9, 7986 (2014).
http://dx.doi.org/10.1007/s12213-014-0077-9
50.
50. S. Taherkhani, M. Mohammadi, J. Daoud, S. Martel, and M. Tabrizian, ACS Nano 8(5), 50495060 (2014).
http://dx.doi.org/10.1021/nn5011304
51.
51. F. Qiu, R. Mhanna, L. Zhang, Y. Ding, S. Fujita, and B. J. Nelson, Sens. Actuators, B 196, 676681 (2014).
http://dx.doi.org/10.1016/j.snb.2014.01.099
52.
52. R. Mhanna, F. Qiu, L. Zhang, Y. Ding, K. Sugihara, M. Zenobi-Wong, and B. J. Nelson, Small 10, 19531957 (2014).
http://dx.doi.org/10.1002/smll.201303538
53.
53. R. W. Carlsen, M. R. Edwards, J. Zhuang, C. Pacoret, and M. Sitti, Lab Chip 14, 38503859 (2014).
http://dx.doi.org/10.1039/C4LC00707G
54.
54. Y. Amir et al., Nat. Nanotechnol. 9, 353357 (2014).
http://dx.doi.org/10.1038/nnano.2014.58
55.
55. C. Tremblay, B. Conan, D. Loghin, A. Bigot, and S. Martel, in 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC), Dubrovnik, Croatia (2014).
56.
56. M. Handi and A. Ferreira, IEEE Trans. Rob. 30(1), 8192 (2014).
http://dx.doi.org/10.1109/TRO.2013.2291616
57.
57. A. T. Becker, O. Felfoul, and P. E. Dupont, in ICRA (2015).
58.
58. S. Ania, F. Qiu, M. Mazza, K. Kostarelos, and B. J. Nelson, Adv. Mater. 27, 29812988 (2015).
http://dx.doi.org/10.1002/adma.201404444
59.
59. S. N. Tabatabaei, H. Girouard, A.-S. Carret, and S. Martel, J. Controlled Release 206, 4957 (2015).
http://dx.doi.org/10.1016/j.jconrel.2015.02.027
60.
60. B. Gleich and J. Weizenecker, Nature 435, 12141217 (2005).
http://dx.doi.org/10.1038/nature03808
61.
61. H. C. Berg and R. Anderson, Nature 245, 380382 (1973).
http://dx.doi.org/10.1038/245380a0
62.
62. E. Benson et al., Nature 523, 441444 (2015).
http://dx.doi.org/10.1038/nature14586
63.
63. F. Zhang, Nat. Nanotechnol. 10, 779784 (2015).
http://dx.doi.org/10.1038/nnano.2015.162
64.
64. C. Geary, P. W. K. Rothemund, and E. S. Andersen, Science 345(6198), 799804 (2014).
http://dx.doi.org/10.1126/science.1253920
65.
65. S. M. Douglas, I. Bachelet, and G. M. Church, Science 335, 831834 (2012).
http://dx.doi.org/10.1126/science.1214081
66.
66. E. S. Andersen et al., Nature 459, 7376 (2009).
http://dx.doi.org/10.1038/nature07971
67.
67. A. Kuzuya and M. Komoyama, Chem. Commun. 2009, 41824184.
http://dx.doi.org/10.1039/b907800b
http://aip.metastore.ingenta.com/content/aip/journal/bmf/10/2/10.1063/1.4945734
Loading
/content/aip/journal/bmf/10/2/10.1063/1.4945734
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/10/2/10.1063/1.4945734
2016-04-20
2016-09-28

Abstract

The vascular system in each human can be described as a 3D biomicrofluidic network providing a pathway close to approximately 100 000 km in length. Such network can be exploited to target any parts inside the human body with further accessibility through physiological spaces such as the interstitial microenvironments. This fact has triggered research initiatives towards the development of new medical tools in the form of microscopic robotic agents designed for surgical, therapeutic, imaging, or diagnostic applications. To push the technology further towards medical applications, nanotechnology including nanomedicine has been integrated with principles of robotics. This new field of research is known as medical nanorobotics. It has been particularly creative in recent years to make what was and often still considered science-fiction to offer concrete implementations with the potential to enhance significantly many actual medical practices. In such a global effort, two main strategic trends have emerged where artificial and synthetic implementations presently compete with swimming microorganisms being harnessed to act as medical nanorobotic agents. Recognizing the potentials of each approach, efforts to combine both towards the implementation of hybrid nanorobotic agents where functionalities are implemented using both artificial/synthetic and microorganism-based entities have also been initiated. Here, through the main eras of progressive developments in this field, the evolutionary path being described from some of the main historical achievements to recent technological innovations is extrapolated in an attempt to provide a perspective view on the future of medical nanorobotics capable of targeting any parts of the human body accessible through the vascular network.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/10/2/1.4945734.html;jsessionid=-_j19oXY6lYxy6Gj3rRMP-hl.x-aip-live-06?itemId=/content/aip/journal/bmf/10/2/10.1063/1.4945734&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/10/2/10.1063/1.4945734&pageURL=http://scitation.aip.org/content/aip/journal/bmf/10/2/10.1063/1.4945734'
Right1,Right2,Right3,