Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/10/4/10.1063/1.4954814
1.
Afonso, A. M. , Pinho, F. T. , and Alves, M. A. , J. Non-Newtonian Fluid Mech. 179–180, 55 (2012).
http://dx.doi.org/10.1016/j.jnnfm.2012.05.004
2.
Alves, M. A. , AIP Conf. Proc. 1027, 240242 (2008).
http://dx.doi.org/10.1063/1.2964648
3.
Alves, M. A. , Oliveira, P. J. , and Pinho, F. T. , Int. J. Numer. Methods Fluids 41, 47 (2003a).
http://dx.doi.org/10.1002/fld.428
4.
Alves, M. A. , Oliveira, P. J. , and Pinho, F. T. , J. Non-Newtonian Fluid Mech. 110, 45 (2003b).
http://dx.doi.org/10.1016/S0377-0257(02)00191-X
5.
Alves, M. A. , Pinho, F. T. , and Oliveira, P. J. , J. Non-Newtonian Fluid Mech. 101, 55 (2001).
http://dx.doi.org/10.1016/S0377-0257(01)00159-8
6.
Audet, C. and Dennis, Jr., J. E. , SIAM J. Optim. 17, 188 (2006).
http://dx.doi.org/10.1137/040603371
7.
Audet, C. , Le Digabel, S. , and Tribes, C. , “ NOMAD user guide,” Technical Report No. G-2009-37, Les cahiers du GERAD, 2009.
8.
Berghen, V. F. and Bersini, H. , J. Comput. Appl. Math. 181, 157 (2005).
http://dx.doi.org/10.1016/j.cam.2004.11.029
9.
Binding, D. M. , Phillips, P. M. , and Phillips, T. N. , J. Non-Newtonian Fluid Mech. 137, 31 (2006).
http://dx.doi.org/10.1016/j.jnnfm.2006.03.006
10.
Boger, D. V. , in Advances of Transport Processes, edited by Mujumdar, A. S. and Mashelkar, R. A. (Wiley Eastern, New Delhi, 1987), Vol. 2, p. 43.
11.
Bruus, H. , Theoretical Microfluidics, Oxford Master Series in Condensed Matter Physics ( Oxford University Press, 2008).
12.
Campo-Deaño, L. , Galindo-Rosales, F. J. , Pinho, F. T. , Alves, M. A. , and Oliveira, M. S. N. , J. Non-Newtonian Fluid Mech. 166, 1286 (2011).
http://dx.doi.org/10.1016/j.jnnfm.2011.08.006
13.
Catmull, E. and Rom, R. , in Computer Aided Geometric Design, edited by Barnhill, R. E. and Riesenfeld, R. F. ( Academic Press, 1974), pp. 317326.
14.
Cogswell, F. N. , Trans. Soc. Rheol. 16, 383 (1972).
http://dx.doi.org/10.1122/1.549257
15.
Cogswell, F. N. , J. Non-Newtonian Fluid Mech. 4, 23 (1978).
http://dx.doi.org/10.1016/0377-0257(78)85004-6
16.
Cummings, E. B. , Griffiths, S. K. , Nilson, R. H. , and Paul, P. H. , Anal. Chem. 72, 2526 (2000).
http://dx.doi.org/10.1021/ac991165x
17.
Galindo-Rosales, F. J. , Oliveira, M. S. N. , and Alves, M. A. , Microfluid. Nanofluid. 14, 1 (2013).
http://dx.doi.org/10.1007/s10404-012-1028-1
18.
Galindo-Rosales, F. J. , Oliveira, M. S. N. , and Alves, M. A. , RSC Adv. 4, 7799 (2014).
http://dx.doi.org/10.1039/c3ra47230b
19.
Gossett, D. R. , Tsea, H. T. K. , Lee, S. A. , Yinge, Y. , Lindgren, A. G. , Yang, O. O. , Raob, J. , Clark, A. T. , and Carlo, D. D. , Proc. Natl. Acad. Sci. U.S.A. 109, 7630 (2012).
http://dx.doi.org/10.1073/pnas.1200107109
20.
Hassager, O. , “ Working group on numerical techniques (Vth Workshop on Numerical Methods in Non-Newtonian Flow),” J. Non-Newtonian Fluid Mech. 29, 2 (1988).
21.
Haward, S. J. , Biomicrofluidics 10, 043401 (2016).
http://dx.doi.org/10.1063/1.4945604
22.
Haward, S. J. , Jaishankar, A. , Oliveira, M. S. N. , Alves, M. A. , and McKinley, G. H. , Biomicrofluidics 7, 044108 (2013).
http://dx.doi.org/10.1063/1.4816708
23.
Haward, S. J. , Oliveira, M. S. N. , Alves, M. A. , Pinho, F. T. , and McKinley, G. H. , Phys. Rev. Lett. 109, 128301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.128301
24.
Hu, X. , Wang, S. N. , and Lee, L. J. , Phys. Rev. E 79, 041911 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.041911
25.
James, D. F. , AlChE J. 37, 59 (1991).
http://dx.doi.org/10.1002/aic.690370105
26.
James, D. F. , Chandler, G. M. , and Armour, S. J. , J. Non-Newtonian Fluid Mech. 35, 421 (1990).
http://dx.doi.org/10.1016/0377-0257(90)85063-5
27.
Larson, J. W. , Yantz, G. R. , Zhong, Q. , Charnas, R. , D'Antoni, C. M. , Gallo, M. V. , Gillis, K. A. , Neely, L. A. , Phillips, K. M. , Wong, G. G. , Gullans, S. R. , and Gilmanshin, R. , Lab Chip 6, 1187 (2006).
http://dx.doi.org/10.1039/B602845D
28.
Lamousin, H. J. and Waggenspack, W. N. , IEEE Comput. Graph. Appl. 14, 5965 (1994).
http://dx.doi.org/10.1109/38.329096
29.
Le Digabel, S. , ACM Trans. Math. Software 37, 1 (2011).
http://dx.doi.org/10.1145/1916461.1916468
30.
Lee, S. S. , Yim, Y. , Ahn, K. H. , and Lee, S. J. , Biomed. Microdevices 11, 1021 (2009).
http://dx.doi.org/10.1007/s10544-009-9319-3
31.
Mai, D. J. , Brockman, C. , and Schroeder, C. M. , Soft Matter 8, 10560 (2012).
http://dx.doi.org/10.1039/c2sm26036k
32.
McKinley, G. H. , Rodd, L. E. , Oliveira, M. S. N. , and Cooper-White, J. J. , J. Cent. South Univ. Technol. 14, 6 (2007).
http://dx.doi.org/10.1007/s11771-007-0202-1
33.
Mulligan, M. K. and Rothstein, J. P. , Phys. Fluids 23, 022004 (2011).
http://dx.doi.org/10.1063/1.3548856
34.
Nigen, S. and Walters, K. , J. Non-Newtonian Fluid Mech. 102, 343 (2002).
http://dx.doi.org/10.1016/S0377-0257(01)00186-0
35.
Ober, T. J. , Haward, S. J. , Pipe, C. J. , Soulages, J. , and McKinley, G. H. , Rheol. Acta 52, 529 (2013).
http://dx.doi.org/10.1007/s00397-013-0701-y
36.
Oliveira, P. J. , J. Non-Newtonian Fluid Mech. 114, 33 (2003).
http://dx.doi.org/10.1016/S0377-0257(03)00117-4
37.
Oliveira, P. J. , Numer. Heat Transfer 40, 283 (2001).
http://dx.doi.org/10.1080/104077901317091695
38.
Oliveira, M. S. N. , Alves, M. A. , Pinho, F. T. , and McKinley, G. H. , Exp. Fluids 43, 437 (2007).
http://dx.doi.org/10.1007/s00348-007-0306-2
39.
Oliveira, M. S. N. , Rodd, L. E. , McKinley, G. H. , and Alves, M. A. , Microfluid. Nanofluid. 5, 809 (2008).
http://dx.doi.org/10.1007/s10404-008-0277-5
40.
Oliveira, P. J. and Pinho, F. T. , J. Fluid. Mech. 387, 271 (1999).
http://dx.doi.org/10.1017/S002211209900453X
41.
Oliveira, P. J. , Pinho, F. T. , and Pinto, G. A. , J. Non-Newtonian Fluid Mech. 79, 1 (1998).
http://dx.doi.org/10.1016/S0377-0257(98)00082-2
42.
Owens, R. G. and Phillips, T. N. , Computational Rheology ( Imperial College Press, 2002).
43.
Phan-Thien, N. and Tanner, R. I. , J. Non-Newtonian Fluid Mech. 2, 353 (1977).
http://dx.doi.org/10.1016/0377-0257(77)80021-9
44.
Pipe, C. J. and McKinley, G. H. , Mech. Res. Commun. 36, 110 (2009).
http://dx.doi.org/10.1016/j.mechrescom.2008.08.009
45.
Poole, R. J. , Alves, M. A. , Oliveira, P. J. , and Pinho, F. T. , J. Non-Newtonian Fluid Mech. 146, 79 (2007).
http://dx.doi.org/10.1016/j.jnnfm.2006.11.001
46.
Powell, M. J. D. , Math. Program. 92, 555 (2002).
http://dx.doi.org/10.1007/s101070100290
47.
Randall, G. C. , Schultz, K. M. , and Doyle, P. S. , Lab Chip 6, 516 (2006).
http://dx.doi.org/10.1039/b515326c
48.
Rhie, C. M. and Chow, W. L. , AIAA J. 21, 1525 (1983).
http://dx.doi.org/10.2514/3.8284
49.
Rodd, L. E. , Cooper-White, J. J. , Boger, D. V. , and McKinley, G. H. , J. Non-Newtonian Fluid Mech. 143, 170191 (2007).
http://dx.doi.org/10.1016/j.jnnfm.2007.02.006
50.
Rodd, L. E. , Scott, T. P. , Boger, D. V. , Cooper-White, J. J. , and McKinley, G. H. , J. Non-Newtonian Fluid Mech. 129, 1 (2005).
http://dx.doi.org/10.1016/j.jnnfm.2005.04.006
51.
Rodrigues, R. O. , Pinho, D. , Faustino, V. , and Lima, R. , Biomed. Microdevices 17, 108 (2015).
http://dx.doi.org/10.1007/s10544-015-0014-2
52.
Rothenstein, J. P. and McKinley, G. H. , J. Non-Newtonian Fluid Mech. 98, 33 (2001).
http://dx.doi.org/10.1016/S0377-0257(01)00094-5
53.
Rothenstein, J. P. and McKinley, G. H. , J. Rheol. 46, 1419 (2002).
http://dx.doi.org/10.1122/1.1516788
54.
Sackmann, E. K. , Fulton, A. L. , and Beebe, D. J. , Nature 507, 181 (2014).
http://dx.doi.org/10.1038/nature13118
55.
Santiago, J. G. , Anal. Chem. 73, 2353 (2001).
http://dx.doi.org/10.1021/ac0101398
56.
Santiago, J. G. , J. Colloid Interface Sci. 310, 675 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.01.088
57.
Shui, L. , Eijkel, J. C. T. , and van den Berg, A. , Adv. Colloid Interface Sci. 133, 35 (2007).
http://dx.doi.org/10.1016/j.cis.2007.03.001
58.
Sousa, P. C. , Pinho, F. T. , Alves, M. A. , and Oliveira, M. S. N. , Korea-Aust. Rheol. J. 28, 1 (2016).
http://dx.doi.org/10.1007/s13367-016-0001-z
59.
Sousa, P. C. , Pinho, F. T. , Oliveira, M. S. N. , and Alves, M. A. , Biomicrofluidics 5, 014108 (2011).
http://dx.doi.org/10.1063/1.3567888
60.
Velve-Casquillas, G. , Berre, M. L. , Piel, M. , and Tran, P. T. , Nano Today 5, 28 (2010).
http://dx.doi.org/10.1016/j.nantod.2009.12.001
61.
Wang, X. , Cheng, C. , Wang, S. L. , and Liu, S. R. , Microfluid. Nanofluid. 6, 145 (2009).
http://dx.doi.org/10.1007/s10404-008-0399-9
62.
Webster, A. , Greenman, J. , and Haswell, S. J. , J. Chem. Technol. Biotechnol. 86, 10 (2011).
http://dx.doi.org/10.1002/jctb.2482
63.
White, F. M. , Viscous Fluid Flow, 3rd ed. ( McGraw-Hill, 2006).
64.
Wu, T. and Feng, J. J. , Biomicrofluidics 7, 044115 (2013).
http://dx.doi.org/10.1063/1.4817959
65.
Yaginuma, T. , Oliveira, M. S. N. , Lima, R. , Ishikawa, T. , and Yamaguchi, T. , Biomicrofluidics 7, 054110 (2013).
http://dx.doi.org/10.1063/1.4820414
http://aip.metastore.ingenta.com/content/aip/journal/bmf/10/4/10.1063/1.4954814
Loading
/content/aip/journal/bmf/10/4/10.1063/1.4954814
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/10/4/10.1063/1.4954814
2016-07-05
2016-09-30

Abstract

In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/10/4/1.4954814.html;jsessionid=UWqfzZ7XWhmdWdrZIDxWXEE4.x-aip-live-03?itemId=/content/aip/journal/bmf/10/4/10.1063/1.4954814&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/10/4/10.1063/1.4954814&pageURL=http://scitation.aip.org/content/aip/journal/bmf/10/4/10.1063/1.4954814'
Right1,Right2,Right3,