Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
The Essentials of Diagnostics whitepaper, DX Insights, January 2012.
See for the uses of blood test.
M. L. Kovarik, P. C. Gach, D. M. Ornoff, Y. Wang, J. Balowski, L. Farrag, and N. L. Allbritton, “ Micro total analysis systems for cell biology and biochemical assays,” Anal. Chem. 84(2), 516540 (2012).
I. K. Dimov, L. Basabe-Desmonts, J. L. Garcia-Cordero, B. M. Ross, A. J. Ricco, and L. P. Lee, “ Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS),” Lab Chip 11, 845850 (2011).
X. Zhang, Z. Wu, K. Wang, J. Zhu, J. Xu, X. Xia, and H. Chen, “ Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip,” Anal. Chem. 84(8), 37803786 (2012).
H. W. Hou, A. A. S. Bhagat, W. C. Lee, S. Huang, J. Han, and C. T. Lim, “ Microfluidic devices for blood fractionation,” Micromachines 2, 319343 (2011).
D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “ Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397, 32493267 (2010).
M. Kersaudy-Kerhoas and E. Sollier, “ Micro-scale blood plasma separation: From acoustophoresis to egg-beaters,” Lab Chip 13, 33233346 (2013).
N. Pamme, “ Continuous flow separations in microfluidic devices,” Lab Chip 7, 16441659 (2007).
P. Sajeesh and A. K. Sen, “ Particle separation and sorting in microfluidic devices: A review,” Microfluid. Nanofluid. 17, 152 (2014).
M. Toner and D. Irimia, “ Blood-on-a-chip,” Annu. Rev. Biomed. Eng. 7, 77103 (2005).
A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “ Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 9991014 (2010).
M. Kersaudy-Kerhoas, R. Dhariwal, and M. P. Y. Desmulliez, “ Recent advances in microparticle continuous separation,” IET Nanobiotechnol. 2(1), 113 (2008).
A. Lenshof and T. Laurell, “ Continuous separation of cells and particles in microfluidic systems,” Chem. Soc. Rev. 39, 12031217 (2010).
L. Y. Yeo, J. R. Friend, and D. R. Arifin, “ Electric tempest in a teacup: The tea leaf analogy to microfluidic blood plasma separation,” Appl. Phys. Lett. 89, 103516-13 (2006).
Y. Nakashima, S. Hata, and T. Yasuda, “ Blood plasma separation and extraction from a minute amount of blood using dielectrophoretic and capillary forces,” Sens. Actuators, B 145, 561569 (2010).
H. Jiang, X. Weng, C. H. Chon, X. Wu, and D. Li, “ A microfluidic chip for blood plasma separation using electro-osmotic flow control,” J. Micromech. Microeng. 21, 085019-18 (2011).
A. Lenshof, A. Ahmad-Tajudin, K. Järås, A. Swärd-Nilsson, L. Åberg, G. Marko-Varga, J. Malm, H. Lilja, and T. Laurell, “ Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics,” Anal. Chem. 81, 60306037 (2009).
E. P. Furlani, “ Magnetophoretic separation of blood cells at the microscale,” J. Phys. D: Appl. Phys. 40, 13131319 (2007).
M. S. Maria, B. S. Kumar, T. S. Chandra, and A. K. Sen, “ Development of a microfluidic device for cell concentration and blood cell-plasma separation,” Biomed. Microdevices 17, 115 (2015).
T. A. Crowley and V. Pizziconi, “ Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications,” Lab Chip 5, 922929 (2005).
K. Aran, A. Fok, L. A. Sasso, N. Kamdar, Y. Guan, Q. Sun, A. Undar, and J. D. Zahn, “ Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery,” Lab Chip 11, 28582868 (2011).
C. Blattert, R. Jurischka, A. Schoth, P. Kerth, and W. Menz, “ Separation of blood cells and plasma in microchannel bend structures,” Lab Chip: Plat. Dev. Appl. 5591, 143151 (2004).
M. Faivre, M. Abkarian, K. Bickraj, and H. A. Stone, “ Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma,” Biorheology 43, 147159 (2006).
J. A. Davis, D. W. Inglis, K. J. Morton, D. A. Lawrence, L. R. Huang, S. Y. Chou, J. C. Sturm, and R. H. Austin, “ Deterministic hydrodynamics: Taking blood apart,” Proc. Natl. Acad. Sci. U.S.A. 103, 1477914784 (2006).
Y. C. Kim, S. Kim, D. Kim, S. Park, and J. Park, “ Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane),” Sens. Actuators, B 145(2), 861868 (2010).
K. K. Lee and C. H. Ahn, “ A new on-chip whole blood/plasma separator driven by asymmetric capillary forces,” Lab Chip 13(16), 32613267 (2013).
C. Szydzik, K. Khoshmanesh, A. Mitchell, and C. Karnutsch, “ Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis,” Biomicrofluidics 9, 064120 (2015).
J. H. Son, S. H. Lee, S. Hong, S. Park, J. Lee, A. M. Dickey, and L. P. Lee, “ Hemolysis-free blood plasma separation Hemolysis-free blood plasma separation,” Lab Chip 14, 2287 (2014).
C. Kuroda, Y. Ohki, H. Ashiba, M. Fujimaki, K. Awazu, T. Tanaka, and M. Makishima, “ Microfluidic sedimentation system for separation of plasma from whole blood,” in 2014 IEEE Sensors ( IEEE, 2014).
E. M. Keough, W. C. Mackey, R. Connolly, T. Foxall, K. Ramberg-Laskaris, J. L. McCullough, T. F. O'Donnell, Jr., and A. D. Callow, “ The interaction of blood components with PDMS (polydimethylsiloxane) and LDPE (low-density polyethylene) in a baboon ex vivo arteriovenous shunt model,” J. Biomed. Mater. Res. 19(5), 577587 (1985).
K. Kendall and A. D. Roberts, “ van der Waals forces influencing adhesion of cells,” Philos. Trans. R. Soc. B 370, 20140078 (2015).
O. Linderkamp, H. T. Versmold, K. P. Riegel, and K. Betke, “ Contributions of red cells and plasma to blood viscosity in preterm and full-term infants and adults,” Pediatrics 74(1), 4551 (1984).
E. W. Merril, “ Rheology of blood,” Physiol. Rev. 49(4), 863888 (1969).
J. Rosina, E. Kvašňák, D. Šuta, H. Kolářová, and J. Málek, “ Temperature dependence of blood surface tension,” Physiol. Res. 56, S93S98 (2007).
S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “ Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14(3), 590597 (2005).
S. H. Tan, N. Nguyen, Y. C. Chua, and T. G. Kang, “ Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel,” Biomicrofluidics 4, 032204 (2010).
K. Brakke, “ The surface evolver (PDF),” Exp. Math. 1(2), 141165 (1992).

Data & Media loading...


Article metrics loading...



We report capillary flow of blood in a microchannel with differential wetting for the separation of a plasma from sample blood and subsequent on-chip detection of glucose present in a plasma. A rectangular polydimethylsiloxane microchannel with hydrophilic walls (on three sides) achieved by using oxygen plasma exposure enables capillary flow of blood introduced at the device inlet through the microchannel. A hydrophobic region (on all four sides) in the microchannel impedes the flow of sample blood, and the accumulated blood cells at the region form a filter to facilitate the separation of a plasma. The modified wetting property of the walls and hence the device performance could be retained for a few weeks by covering the channels with deionised water. The effects of the channel cross-section, exposure time, waiting time, and location and length of the hydrophobic region on the volume of the collected plasma are studied. Using a channel cross-section of 1000 × 400 m, an exposure time of 2 min, a waiting time of 10 min, and a hydrophobic region of width 1.0 cm located at 10 mm from the device inlet, 450 nl of plasma was obtained within 15 min. The performance of the device was found to be unaffected (provides 450 nl of plasma in 15 min) even after 15 days. The purification efficiency and plasma recovery of the device were measured and found to be comparable with that obtained using the conventional centrifugation process. Detection of glucose at different concentrations in whole blood of normal and diabetic patients was performed (using 5 l of sample blood within 15 min) to demonstrate the compatibility of the device with integrated detection modules.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd