Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
T. Hamouda, M. M. Hayes, Z. Cao, R. Tonda, K. Johnson, D. C. Wright, J. Brisker, and J. R. Baker, J. Infect. Dis. 180, 1939 (1999).
C. Wibowo and K. M. Ng, AIChE J. 47, 2746 (2001).
G. De Filpo, J. Lanzo, F. P. Nicoletta, and G. Chidichimo, J. Appl. Phys. 84, 3581 (1998).
B. Born, E. L. Landry, and J. F. Holzman, IEEE Photonics J. 2, 873 (2010).
H. Shibata, Y. J. Heo, T. Okitsu, Y. Matsunaga, T. Kawanishi, and S. Takeuchi, Proc. Natl. Acad. Sci. U.S.A. 107, 17894 (2010).
R. Langer and J. P. Vacanti, Science 260, 920 (1993).
Y. T. Matsunaga, Y. Morimoto, and S. Takeuchi, Adv. Mater. 23, H90 (2011).
E. Tumarkin, L. Tzadu, E. Csaszar, M. Seo, H. Zhang, A. Lee, R. Peerani, K. Purpura, P. W. Zandstra, and E. Kumacheva, Integr. Biol. (Camb). 3, 653 (2011).
B. G. Chung, K.-H. Lee, A. Khademhosseini, and S.-H. Lee, Lab Chip 12, 45 (2012).
G. F. Christopher and S. L. Anna, J. Phys. D: Appl. Phys. 40, R319 (2007).
B. S. Lee, H.-J. Cho, J.-G. Lee, N. Huh, J.-W. Choi, and I. S. Kang, J. Colloid Interface Sci. 302, 294 (2006).
D. Moon, D. J. Im, T. Uhm, and I. S. Kang, Int. J. Chem. Eng. Appl. 3, 1 (2012).
J. G. Lee, H. J. Cho, N. Huh, C. Ko, W. C. Lee, Y. H. Jang, B. S. Lee, I. S. Kang, and J. W. Choi, Biosens. Bioelectron. 21, 2240 (2006).
S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett. 82, 364 (2003).
C. Cha, J. Oh, K. Kim, Y. Qiu, M. Joh, S. R. Shin, X. Wang, G. Camci-unal, K. Wan, R. Liao, and A. Khademhosseini, Biomacromolecules 15, 283 (2014).
J. Jung and J. Oh, Biomicrofluidics 8, 36503 (2014).
D. Oh, S. Lee, J. Kim, H. Choi, J. Seo, and K. I. Koo, in Proceedings of the 36th Annual International Conference on IEEE Engineering in Medicine and Biological Society (EMBC) (2014), pp. 13901393.
S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, Lab Chip 8, 198 (2008).
R. Samanipour, Z. Wang, A. Ahmadi, and K. Kim, J. Appl. Polym. Sci. 133, 43701 (2016).
C. Elbuken, T. Glawdel, D. Chan, and C. L. Ren, Sens. Actuators, A 171, 55 (2011).
Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
T. W. Lee, O. Mitrofanov, and J. W. P. Hsu, Adv. Funct. Mater. 15, 1683 (2005).
T.-D. Dang, Y. H. Kim, H. G. Kim, and G. M. Kim, J. Ind. Eng. Chem. 18, 1308 (2012).
J. Siepmann, N. Faisant, J. Akiki, J. Richard, and J. P. Benoit, J. Controlled Release 96, 123 (2004).
J. M. Cha, H. Bae, N. Sadr, S. Manoucheri, F. Edalat, K. Kim, S. B. Kim, I. K. Kwon, Y.-S. Hwang, and A. Khademhosseini, Macromol. Res. 23, 245 (2015).
Z. Wang, X. Xiao, H. Song, L. Wang, and Q. Li, IEEE Antennas Wirel. Propag. Lett. 13, 1757 (2014).
S. B. Kim, K. Koo, H. Bae, M. R. Dokmeci, G. A. Hamilton, A. Bahinski, S. M. Kim, D. E. Ingber, and A. Khademhosseini, Lab Chip 12, 3976 (2012).
K. Koo, S. B. Kim, K. Kim, and J. Oh, Biotechnol. Lett. 36, 1089 (2014).
X. Dong, P. Song, and X. Liu, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2015), p. 996.
P. Song, X. Dong, and X. Liu, Biomicrofluidics 10, 011912 (2016).
V. van Steijn, P. M. Korczyk, L. Derzsi, A. R. Abate, D. A. Weitz, and P. Garstecki, Biomicrofluidics 7, 024108 (2013).
A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. deMello, Lab Chip 8, 1244 (2008).
R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012).

Data & Media loading...


Article metrics loading...



Microdroplets have been widely used in various biomedical applications. During droplet generation, parameters are manually adjusted to achieve the desired size of droplets. This process is tedious and time-consuming. In this paper, we present a fully automated system for controlling the size of droplets to optimize droplet generation parameters in a microfluidic flow-focusing device. The developed system employed a novel image processing program to measure the diameter of droplets from recorded video clips and correspondingly adjust the flow rates of syringe pumps to obtain the required diameter of droplets. The system was tested to generate phosphate-buffered saline and 8% polyethylene (glycol) diacrylate prepolymer droplets and regulate its diameters at various flow rates. Experimental results demonstrated that the difference between droplet diameters from the image processing and manual measurement is not statistically significant and the results are consistent over five repetitions. Taking the advantages of the accurate image processing method, the size of the droplets can be optimized in a precise and robust manner via automatically adjusting flow rates by the feedback control. The system was used to acquire quantitative data to examine the effects of viscosity and flow rates. Droplet-based experiments can be greatly facilitated by the automatic droplet generation and optimization system. Moreover, the system is able to provide quantitative data for the modelling and application of droplets with various conditions in a high-throughput way.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd